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Abstract

Breast cancer is one of the most common cancers among women,
and analyzing mammograms to assist in diagnosis is of great sig-
nificance in the fields of computer vision and artificial intelligence.
However, unlike natural image recognition, mammogram analysis
requires focusing on small and complex lesion areas. The diversity
of lesion morphology and the individual variability of anatomical
structures further increase the complexity and challenges of diag-
nosis. This paper proposes a multi-granularity knowledge-guided
multimodal pre-training method for breast cancer diagnosis. Experi-
ments demonstrate that, compared to previous CLIP-based methods,
the proposed approach is more effective.
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1 Introduction

Cancer is one of the most threatening diseases today, and breast
cancer is the most common cancer among women worldwide. Ac-
cording to statistics, breast cancer is listed as the most common
cancer in women in 157 out of 185 countries globally[11], with
over 2 million new cases diagnosed each year. Mammograms, as a
crucial basis for diagnosing breast cancer, play a vital role in early
detection and treatment. Meanwhile, advancements in artificial in-
telligence, such as Contrastive Language-Image Pretraining (CLIP),
are revolutionizing medical imaging and diagnostics. CLIP, which
establishes a bridge between images and texts through contrastive
training on large-scale image-text pairs, has demonstrated strong
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Figure 1: the semantic gap between image features and medi-
cal reports

transferability and generality across various downstream tasks, in-
cluding zero-shot image classification and image-text retrieval. Its
outstanding prior knowledge makes it a promising foundational
framework for vision-language models, potentially enhancing the
accuracy and efficiency of breast cancer diagnosis and other medical
imaging applications.

In mammographic imaging, CLIP struggles to replicate its suc-
cess with natural images. Breast cancer diagnosis relies on lesion
features like masses, calcifications, and asymmetries, but global
image labels fail to capture these local details, hindering accurate
lesion analysis. While some methods align images with medical
reports, challenges persist: lesion areas occupy only 2%-3% of the
image, while reports focus heavily on these small regions. This cre-
ates a semantic gap between image features and report descriptions,
making precise alignment a critical challenge.

To enhance the semantic association between lesion areas and
medical reports, this work proposes a Multi-granularity Mammog-
raphy Contrastive Image-Text Pretraining Network (MM-CLIP).
To our knowledge, MM-CLIP is the first model to address the se-
mantic gap between mammograms and medical reports using a
region-level alignment strategy. The network employs multimodal
contrastive learning, leveraging global image features and region of
interest (ROI) features annotated by physicians to enhance seman-
tic representation, achieving more accurate image-text alignment.
During pretraining, the model uses contrastive learning to acquire
discriminative features, mitigating imbalanced data distribution.
Experiments show that MM-CLIP exhibits strong zero-shot recogni-
tion and achieves significant improvements in tasks like benign and
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Figure 2: The structure of the Multi-granularity Mammography CLIP (MM-CLIP)

malignant classification of breast masses. The main contributions
are as follows:

o We proposed a region-focused image feature generation mod-
ule , which effectively incorporates prior knowledge of lesion
areas in mammograms to achieve comprehensive represen-
tation of both lesion-specific and global image features.

e We introduced a feature matching module based on multi-
head attention mechanisms, which aim to bridge the seman-
tic gap between image features and medical reports.

e We proposed MM-CLIP, a novel CLIP pre-training para-
digm, and validate it through experiments on multiple pub-
lic datasets. Compared to existing methods, our approach
demonstrates greater effectiveness in breast cancer diagno-
sis.

2 Related Work

Breast Canner Diagnosis: With the rapid development of deep
learning, breast cancer classification algorithms based on mammog-
raphy images have made significant progress in diagnosis. Zhu et
al.[21] transformed the overall classification problem of mammo-
grams into a Multiple Instance Learning (MIL) task by designing
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three MIL loss functions (max-pooling loss, label assignment loss,
and sparse loss) to fine-tune the pre-trained AlexNet model. Zhang
et al.[19] compared the performance of models such as ResNet50
based on transfer learning in the overall classification task. Shen
et al.[9] utilized data annotated with regions of interest (ROI), in-
tegrating clinical annotations and overall image labels to enhance
breast cancer classification performance. Shu et al.[10] proposed
region group max-pooling (RGP) and global group max-pooling
(GGP) methods based on the observation that cancerous tissues
typically account for only 2%-3% of breast tissue. Addressing the
challenge of medical image resolution, Ahamed et al.[12] introduced
an efficient HCT model based on linear self-attention mechanisms
to tackle long-range dependency issues. Tao et al.[16] designed a
domain-specific network front-end to reduce the memory require-
ments of high-resolution images and improve model applicability.
Han et al.[5] employed a position embedding module to extract
positional information from two different dimensions of feature
maps and converted it into weight maps to weight the original
features; based on this, they used two pooling strategies to capture
positional features at two scales, thereby selecting the most suspi-
cious lesion regions.Petrini et al.[ 7] proposed a Cross-View Relation
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Region Convolutional Neural Network. Chen et al.[2] introduced
a multi-view global-local analysis method, combining local and
global information to further enhance the accuracy of mammo-
gram classification. You et al.[18] incorporated contrastive learning,
utilizing contrastive learning and triplet loss on normal and lesion
samples to improve the separability of the embedding space. Wang
et al.[14] enhanced model performance by introducing a dual-view
correlation loss.

Medical CLIP: In medical imaging, Contrastive Language-Image
Pretraining (CLIP) models can generally be categorized into two
types based on their application scope: general-purpose medical
CLIP models and domain-specific medical CLIP models.General-
purpose medical CLIP models are typically pre-trained on large-
scale medical image datasets, covering multiple anatomical regions
and imaging modalities. These models focus on expanding dataset
scale while using the original CLIP architecture [8]. ConVIRT
[20] pioneered medical vision-language pre-training through con-
trastive learning, showcasing strong transfer learning with large-
scale medical images and reports. BioViL [1] improved joint rep-
resentation learning by aligning multiple image-report pairs, en-
hancing image-text semantic alignment. MedCLIP [15] integrated
medical knowledge, replacing InfoNCE loss with a knowledge-
based loss, boosting performance on tasks like chest X-rays and
fundus images. PubMedCLIP [3] expanded datasets from PubMed,
improving generalization. However, without modality-specific op-
timizations, these models underperform compared to specialized
ones.

Domain-specific medical CLIP models have gained traction in
mammography but face data limitations. Frozen [13] introduced
CLIP to mammography by freezing the visual encoder and training
only the classification head, skipping contrastive pre-training and
ignoring pixel-level imbalances. Kshitiz [6] used CNNs to extract
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regions of interest for contrastive learning but overlooked global
context. Ghosh et al. [4] proposed Mammo-CLIP but missed multi-
scale characteristics, hindering precise lesion-report alignment.
Current mammography CLIP models often focus on either global or
local regions, lacking a multi-granularity approach. This limitation
restricts their ability to fully capture the intricate interplay between
macroscopic tissue patterns and microscopic lesion details, both of
which are essential for accurate breast cancer diagnosis.

3 Method

As previously discussed, the core objective of the MM-CLIP model
is to bridge the gap between the textual features of medical re-
ports and the perceptual representations of lesion areas, thereby
introducing high-level human prior knowledge to drive the feature
encoding network of limited scale to extract richer semantic infor-
mation. Specifically, Figure 2 illustrates the detailed architecture of
MM-CLIP. Section 3.1 introduces the generation of image features,
Section 3.2 describes the generation of text features, Section 3.3
explains the process of feature matching, and Section 3.4 presents
the loss functions used in this study.

3.1 Image Feature generation Module

To simultaneously obtain feature representations of both the images
and the regions of interest (Rols) while preserving spatial informa-
tion, as shown in Figure 3, this paper designs a multi-scale image
feature generation module. The process within this module is de-
scribed as follows: Given the original image set I = (I°¢, I"™°) and
the Rol annotation set X = (X¢¢, X"™°), where X¢¢, X™° ¢ p cate-
gories and I¢¢, [ ¢ REXHXW First to enhance the feature rep-
resentation of the Rols in the original images, this paper generates
corresponding masks M€, Mmoo ¢ REXHXW hased on XC6€, XMlO
and inputs the masks along with the original images into the region
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attention module. Specifically, as shown in Figure 4, both are passed
through a convolutional layer with a kernel size of 1x 1, followed by
element-wise addition, to capture shallow feature representations

Flcc, Fl’"l" € REXHXW that are richer in semantic information of

the lesion regions.

Conv

Figure 4: Region Focus Module

Furthermore, the obtained feature representations F;“, Flmlo are
fed into a visual encoder to acquire higher-level feature representa-
tions F.°, F;l"lo. These high-level features can model the complex
morphology and structure of lesions, capturing intricate nonlinear
relationships, thereby learning more discriminative features. Subse-
quently, this paper employs the RolAlign layer to obtain high-level
feature representations Fy Fr"(;ll.o corresponding to the lesion re-
gions while preserving spatial information. Finally, this paper intro-
duces an MLP-based global prediction layer and an Rol prediction
layer to obtain the final feature representations Fyy = (F¢¢, F mlo)
and Fro; = (Fy¢, F::’)II.O)A The entire process is formally defined by
the following Equations:

Fu = Fee = @(&(Iee, Mec)), Mee = Mask(Xcc); )
Fio = <I)(g(Imlo’ Mmlo))’ Mnio = MaSk(Xmlo)§
FC. = (Fep);
Froi = ';ZIlo l//( CC) (2)
Froi =¥ (Fmio)s

where & represents the region attention module processing the
input images and masks; Mask denotes the conversion of Rol anno-
tations into corresponding mask images; ® represents the visual en-
coder extracting deep-level features; and i represents the RolAlign
layer obtaining features with spatial information and deep semantic
information.

3.2 Text Feature generation Module

Due to the absence of prior textual descriptions related to mammo-
graphic images, we employ a structured report generation method
based on Large Language Models (LLMs). As illustrated in Figure
5, this paper inputs bilateral image data into a visual encoder to
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extract preliminary textual descriptions. The visual encoder uti-
lized is MedCLIP[15], a medical image-text comprehension model.
Subsequently, this paper combines the preliminary textual descrip-
tions with pixel-level and image-level annotations as prompts to
be fed into a large language model, thereby obtaining structured
medical reports. The LLM used here is GPT-4. The method pre-
sented in this paper can also be applied to common datasets such
as Vindr, further expanding the usability of multimodal data. After
generating the medical report,we input these reports as textual
prompts into MM-CLIP.The specific steps are as follows: input text
prompts W, and W,,;, are converted into tokens Tec and T,
using a medical-optimized tokenizer, which better handles med-
ical terminology. These tokens are processed by the pre-trained
Bio_ClinicalBERT model to generate initial text features F. and
Fpulo- A shared-weight deep neural network further refines these
features to capture lesion semantics. To align image and text fea-
tures, a multi-layer perceptron (MLP) maps both modalities into a
unified space, enabling semantic consistency matching. This step
is formally defined by the follow Equation:

Tec = Token(Wee);

F o= Fee = q)(F(ch)): (3)
! Tmilo = TOken(Wmlo);

Fnto = q)(F(Tmlo)):

where @ represents the text feature encoder based on the multi-
layer perceptron; F denotes the pre-trained Bio_ClinicalBERT model;
and Token represents the processing of the original medical reports
using the tokenizer.

3.3 Feature Matching Module

In CLIP-related research, the feature matching module processes
image content and text descriptions using specialized encoders to
extract image features Fyy, Fro;, and text features F;. A contrastive
learning strategy is employed to project these features into a shared
embedding space, enhancing their discriminative power and quan-
tifying semantic similarity.

For a batch size of B, feature matching matrices My, and M,;,
each of size 2 X B X B, are constructed. Positive samples are matched
"image-text" pairs, while unmatched pairs are negative samples.
The diagonal elements of the matching matrix correspond to the
B positive sample pairs, representing their matching degree. The
feature matching matrix for whole images is defined as:

= aOﬁc}g ® (ﬁctc)Ts

M. = Mec
VM, = FY o (Ft )T
mlo = %18, mlo’ *

©)

Here, M, and M,y,;, represent the similarity between dual-view
images and text for the CC and MLO views, respectively. oy and
ay are learnable temperature parameters, F, denotes normalized
features, ® represents matrix multiplication, and T denotes trans-
position.

A cross-modal attention module explores the relationship be-
tween regional image features F,,; and text features F;. The image
features serve as the query matrix (Q), and text features as the key
matrix (K). The feature matching matrix is generated as:
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Projection View: LCC.

Breast Density Rating: Category 2.
Radiological Description: A high-
density irregular mass is observed
in the upper outer quadrant with
indistinct margins, accompanied
by microcalcifications and edema.
Radiological Assessment: The
overall presentation of the left
breast is indicative of malighancy.

LLM:GPT4

Figure 5: the pipeline of LLM report generation

Myoj = {NIroiCC = P (T (L(Qcc: Kee))), )

Mroiyo = asP (T (L(Qmior Kimio)))-

Here, Myoi,, and My;,,,, are the feature matching matrices for
dual-view lesion images and text; # denotes the MLP, 7~ calcu-
lates similarity via multi-head attention, a; and a3 are learnable
parameters, and £ unifies dimensions for fusion and similarity
computation.

3.4 Loss Functions

This paper employs three loss functions to train the MM-CLIP
model: cross-view consistency loss, global CLIP loss, and Rol CLIP
loss. The basic CLIP loss is defined to maximize the diagonal val-
ues of the feature matching matrix, ensuring consistent matching
between text and image features. The formula is:

exp(Fye - ﬁt;; /7)

?:1 eXP(ﬁk* : ﬁt]*./f*)

B
1

Lewp, = -3 Z log
BH| X

eXP(ﬁ:;; P /)
S, expF By 7

+log

(©)

Here, Fj. and ﬁt; are image and text embeddings, and 7 is the
temperature coefficient.

e Global CLIP Loss: Aligns overall semantic relationships
between whole image features and text features. Defined as:

Leuw,, + Lcuwp,,,
Lcupy, = — 5

™
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e Rol CLIP Loss: Focuses on lesion regions for precise align-
ment between lesion image features and text features. De-
fined as:

Lo, oo + LoLip, ;i
LCLIPrm- — roi-cc - roi-mlo (8)

e Cross-View Consistency Loss: Captures semantic consis-
tency between CC and MLO views of mammograms. Defined
as:

1
B 4

i=1

Leross = (1 — Cos (ﬁCC,i) PMLO,I'))

©)

The total loss combines these losses with weight coefficients:

A A 2
+ MFec,i = Furo,ill

Liotal = aLcripy, + BLcLip,,; + ¥ Leross (10)

Here, @ = 1.0, f = 0.5, and y = 0.2 are the weight coefficients.

4 Experiments

We pre-trained the MM-CLIP model on image-region-text pairs us-
ing the Vindr-based data pipeline. Subsequently, we fine-tuned
the visual encoder module of the pre-trained MM-CLIP model
on datasets such as RSNA and MRDR using a classification data
pipeline for the task of benign and malignant breast lesion classifi-
cation. Compared to the original CLIP, our method demonstrates
significant performance improvement.

4.1 Datasets

Vindr DataSet:A fully digital mammography dataset from Vietnam,
significantly surpassing the scale of most existing publicly avail-
able datasets. Vindr comprises 20,000 images from 5,000 patients,
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Figure 6: Data preprocessing

providing not only breast-level diagnostic information but also de-
tailed region-level annotations. Vindr has a clear advantage over
CBIS-DDSM in terms of the richness of lesion annotations and data
scale.

RSNA Dataset:The RSNA-Mammo dataset, released by the Ra-
diological Society of North America (RSNA) in 2023, is a mammo-
graphic imaging database aimed at advancing Al research in breast
cancer detection. This dataset contains a large number of mam-
mographic images, with over 55,000 images, covering a variety of
breast abnormalities, including masses, calcifications, asymmetries,
and architectural distortions.

MRMD: A private mammogram dataset, comprising medical
reports, images, and Rol segmentation annotations, includes 1,150
images from 350 patients.

4.2 Data Preprocessing

During the pre-training phase, this study utilizes both the private
MRMD dataset and the public Vindr dataset for model training. The
Rol masks for the Vindr dataset are constructed based on annotation
information, while the MRMD dataset directly provides images and
corresponding masks. The original images are cropped to remove
background information, resulting in a size of 480 X 760

In the downstream task testing phase, the RSNA dataset is in-
troduced to validate the performance of MM-CLIP on long-tailed
classification tasks. Experiments are conducted using an NVIDIA
GeForce RTX 3090 GPU.During the pre-training phase, the visual
encoder employs ResNet50, EfficientNet-B2, and EfficientNet-B4,
initialized with ImageNet weights. The MRMD and Vindr datasets
are trained for 60 and 30 epochs, respectively, with a batch size
of 16. The AdamW optimizer is used (learning rate: le-6, weight
decay: le-5, momentum: 0.9), and warm-up is applied to improve
convergence.
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4.3 Comparative Experiments

We compared the performance of various methods in benign and
malignant classification on the MRMD dataset, with evaluation met-
rics including Accuracy and Area Under the Curve (AUC). The ex-
perimental results in Table 1 demonstrate that, compared to models
pre-trained on ImageNet and several open-source methods, our ap-
proach can more effectively extract discriminative features, thereby
significantly improving classification performance. When using
EFB4 as the backbone of the visual encoder, our model achieves
an improvement of 1.6% in Accuracy and 3.4% in AUC compared
to the network pre-trained on ImageNet. These results fully vali-
date the effectiveness of enhancing semantic associations through
knowledge guidance.

Table 1: Comparison on the MRMD dataset.

Methods Accuracy | AUC
ViT-S-16 (pretrained) 0.731 0.792
ResNet50 (pretrained) 0.756 0.813
ConvNet (pretrained) 0.761 0.810

EfficientNet-B4 (pretrained) 0.772 0.827
DenseNet[17] 0.780 0.844
Petrini et al. [7] 0.786 0.852
MM-CLIP+EFB4(ours) 0.788 0.861

The Vindr dataset is a highly imbalanced long-tailed dataset
with a benign-to-malignant sample ratio of 49:1. This study uses
this dataset to validate the model’s ability to learn discriminative
features and evaluate its classification performance under severe
data imbalance. We selected two classic image-text multimodal
models as baseline comparisons: CLIP (a vision-text contrastive
learning multimodal model proposed by OpenAI) and ConVIRT
[20] (a vision-text contrastive learning model proposed by Zhang
et al. for the medical imaging domain). Since the original training
data for these models are unavailable, we retrained them on the
Vindr and MRMD datasets using their open-source training code
to ensure the fairness of the experiments.

Table 2: Comparison on the RSNA dataset

Methods Back Zeroshot Finetuning
bone| Acc AUC Acc AUC
CLIP RN50| 0.4813 | 0.4246 | 0.6375 | 0.7033
CLIP EFb2 | 0.5700 | 0.5215 | 0.6757 | 0.7821
CLIP EFb4 | 0.5936 | 0.5410 | 0.6931 | 0.7932
ConVIRT RN50| 0.5113 | 0.5246 | 0.6775 | 0.7233
ConVIRT EFb2 | 0.5320 | 0.6015 | 0.7157 | 0.8011
ConVIRT EFb4 | 0.5723 | 0.6310 | 0.7331 | 0.8349
MM-CLIP (Ours) | RN50| 0.5734 | 0.6231 | 0.7234 | 0.8299
MM-CLIP (Ours) | EFb2 | 0.6188 | 0.6423 | 0.7620 | 0.8492
MM-CLIP (Ours) | EFb4 | 0.6232 | 0.6537 | 0.7850 | 0.8593
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4.4 Ablation Study

We evaluated four different models on the RSNA validation set. Abla-
tion experiments showed that the performance of the method with-
out RoI CLIP loss significantly decreased (AUC: 0.7213 vs. 0.8563,
Accuracy: 0.7213 vs. 0.784), demonstrating that Rol CLIP loss is a
key module for improving performance. Secondly, the performance
of the method without CLIP loss also significantly declined, vali-
dating its importance. The model without the cross-view matching
module performed slightly worse than the full model. The base-
line method showed a significant performance gap compared to
the full model. Overall, Rol CLIP loss played the most significant
role, while CLIP loss and the cross-view matching module further
enhanced model performance. To further validate the impact of

Table 3: ablation study

‘ CLIP ‘ Rol CLIP ‘ cross loss ‘ Accuracy ‘ AUC

X X X 0.6867 | 0.7742
v X X 07213 | 0.8153
%4 %4 X 0.784 0.8563
%4 4 4 0.785 | 0.8593

regional text knowledge features on model performance, we visual-
ized the global similarity matrix and the regional similarity matrix.
As shown in the figure7, the diagonal distribution is highlighted,
representing matched positive samples, while low brightness indi-
cates poor matching. It can be observed that the highlighted areas
in the regional image-text similarity matrix are significantly fewer
than those in the global matrix, indicating more precise image
alignment.

Global Image-Text Similarity Matrix Region Image-Text Similarity Matrix

Figure 7: Similarity Matrix

5 Conslusion

In this work, we propose a novel pre-training framework for Mam-
mography: Multi-granularity Mammography CLIP (MM-CLIP),to
effectively address the semantic gap between image features and
medical reports in mammography image-report pairs. A series of
experiments conducted on the constructed mammography image
pair dataset and mainstream public datasets fully validate the ef-
fectiveness of MM-CLIP in enhancing semantic associations, while
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also alleviating diagnostic challenges under data imbalance con-
ditions. These experimental results demonstrate the potential of
MM-CLIP in the field of mammography image analysis.
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