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ABSTRACT

Understanding what deep learning (DL) models learn is essential for the safe deployment of artificial intelligence (AI) in
clinical settings. While previous work has primarily focused on pixel-based explainability methods, less attention has been
paid to the textual concepts learned by these models, which may more closely reflect the reasoning used by clinicians. We
introduce Mammo-CLIP Dissect, the first concept-based explainability framework for systematically dissecting DL vision models
trained for mammography. Leveraging a mammography-specific vision–language model (Mammo-CLIP) as a “dissector,” our
approach labels neurons at specified layers with human-interpretable textual concepts and quantifies their alignment to domain
knowledge.
Using Mammo-CLIP Dissect, we investigate three key questions: (1) how concept learning differs between DL vision models
trained on general image datasets versus mammography-specific datasets; (2) how fine-tuning for downstream mammography
tasks affects concept specialisation; and (3) which mammography-relevant concepts remain under-represented. We show
that models trained on mammography data capture more clinically relevant concepts and align more closely with radiologists’
workflows than models not trained on mammography data. Fine-tuning for task-specific classification enhances the capture of
certain concept categories (e.g., benign calcifications) but can lead to reduced coverage of others (e.g., density-related features),
indicating a trade-off between specialisation and generalisation. At the neuron level, we demonstrate selective responsiveness
of neurons to distinct mammography features such as implants and calcifications, demonstrating the framework’s ability to
capture and specialise on key mammography concepts.
Our findings show that concept-based explainability with Mammo-CLIP Dissect provides new insights into how convolutional
neural networks (CNNs) capture mammography-specific knowledge. By systematically comparing models across training
data and fine-tuning regimes, we reveal how domain-specific training and task-specific adaptation shape concept learning
and where clinically important features remain underrepresented. This concept-level perspective moves beyond pixel-level
interpretability toward an understanding more closely aligned with radiologists’ reasoning. Code and concept set are publicly
available: https://github.com/Suaiba/Mammo-CLIP-Dissect.

Keywords: • Mammography • Concept-based Explainability • Vision-Language Models • Deep Learning.

Introduction
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer-related deaths among women globally,
with an estimated 2.3 million diagnosed and 670,000 deaths in 2022, and incidence continuing to rise among younger women
over time1–3. Early detection through X-ray-based mammography is the current gold-standard for breast cancer screening,
playing a crucial role in improving treatment outcomes and overall prognosis4. Despite an overall reduction in breast cancer
mortality due to screening, there are limitations such as misinterpretations and inadequate image quality, which can lead to
failure in detecting cancer5, 6. Additionally, limitations in mammographic screening may lead to overdiagnosis and false positive
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Figure 1. An overview of the Mammo-CLIP-dissect framework.

screening results that cause anxiety and resource-intensive follow-up in asymptomatic women.
Recent advancements in artificial intelligence (AI) and deep learning (DL) have demonstrated significant potential in

overcoming these issues and enhancing the accuracy and efficiency of breast cancer screening in retrospective settings7–10.
Notably, the MASAI prospective study found that AI-supported readings might increase detection of clinically relevant cancers
without compromising false-positive rates compared to standard readings without AI11. Such DL-based tools aim to reduce the
screen–reading workload of medical practitioners and decrease false positive results by assisting in tasks such as breast cancer
detection and classification, as well as the assessment of mammographic density12, 13 as well as risk prediction14, 15.

However, despite their potential, the clinical adoption of AI technologies faces several significant challenges and concerns.
One of the most pressing issues is the lack of transparency and interpretability in many AI systems16, 17, which becomes
especially problematic in safety-critical applications like healthcare and breast cancer detection. The inability to clearly
understand how AI models arrive at their decisions raises concerns about trust, reliability, and accountability in clinical settings,
potentially hindering their widespread acceptance and use.

The emerging field of eXplainable AI (XAI) seeks to bridge this gap by providing insights into the decision-making
processes of AI systems17. XAI identifies aspects of data that influence predictions, enabling interpretable decision-making
better aligned with clinical reasoning. In mammography, the most widely adopted XAI methods—heatmaps, saliency maps,
and attention mechanisms—highlight regions of interest in mammograms18–21. While these approaches offer useful pixel-level
cues, they remain limited because they lack concept-level explanations essential for radiologists’ diagnostic reasoning. As a
result, they often fail to capture contextual and relational information, such as the shape, margin, or distribution of calcifications.
Furthermore, these methods can struggle to highlight global mammographic features, like high breast density, which can obscure
underlying findings, since such characteristics are defined across the broader tissue distribution rather than localised pixels.
Consequently, pixel-level XAI does not fully align with radiologists’ workflows, which rely on higher-level, domain-specific
concepts such as masses, calcifications, and breast density.

This gap is significant because radiologists typically describe their findings in terms of semantic concepts, and the Breast
Imaging Reporting and Data System (BI-RADS)22 is widely used for the interpretation of screening mammograms and
in clinical text reports. BI-RADS categories encapsulate concepts such as mass, calcification, architectural distortion, and
breast density, which are central to diagnostic decisions and communication of risk. Yet most current XAI approaches in
mammography fail to bridge the divide between low-level visual features and these high-level, clinically meaningful concepts.

DL models for computer vision, such as convolutional neural networks (CNNs)23, 24 and vision transformers (ViTs)25,
are the foundation for AI-based mammography analysis. Understanding how these DL models learn mammography-specific
concepts, leveraged from the radiology reports and BI-RADS descriptions, is a key step toward examining the models’ reasoning,
in a manner aligned with the radiologists’ workflow and interpretative processes, and increases the trust in AI systems thanks to
its interpretability.

Recently, vision-language models (VLMs), such as Contrastive Language-Image Pre-training (CLIP)26, have gained
attention as a potential solution to the lack of concept-level XAI for mammography. By jointly aligning textual and visual
information, VLMs enable models to learn associations between images and domain-specific concepts, which can later be
leveraged to facilitate interpretability (e.g., through CLIP Dissect27). In the context of mammography, Mammo-CLIP19

represents a significant advancement as the first VLM specifically designed for this domain. While classifier models based on
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the Mammo-CLIP image encoder have demonstrated strong performance in breast cancer detection and localisation tasks, their
interpretability—particularly in terms of the mammographic concepts it learns—remains underexplored.

To address these limitations, we propose Mammo-CLIP Dissect, a novel framework for dissecting DL-based vision models
when processing mammograms. An overview of Mammo-CLIP Dissect is presented in Figure 1. In our work, we focus on
vision models in the form of CNNs since such models are most common in DL-based analysis of mammography, but our study
can be extended to vision models in the form of ViTs. We aim to better understand and distinguish what concepts are learnt by
different CNNs, as well as analyse how the learned concepts relate to radiologists’ workflows. Our work builds on two key
prior studies. First, the CLIP-Dissect framework27, which labels neurons by concepts encoded by them within CNNs and ViTs.
Second, a more recent study28, which leveraged CLIP-Dissect to perform a layer-wise analysis of concepts in ViTs. This study
revealed that ViTs as well as CNNs encode increasingly complex concepts across layers, with early layers focusing on basic
features (e.g., colours and textures) and later layers capturing more specific and diverse categories (e.g., objects and animals).
Our approach builds on the strengths of these methodologies while addressing the unique challenges within the mammography
domain. By introducing a clinically informed concept set derived from radiology reports (in collaboration with radiologists)
and performing analysis at the neuron-level, Mammo-CLIP Dissect provides new insights into how mammography-specific
semantic concepts are learned and represented.

Our work is structured around three key research questions:

• Do CNNs trained on mammography data learn more mammography-specific concepts compared to models trained on
non-mammography data?

• How does fine-tuning for mammography-relevant tasks, such as density classification, affect the learning of mammography-
specific concepts?

• Which key mammography concepts are learned and which are not picked up by CNNs?

These research questions are key to understanding how DL vision models capture and represent mammography-specific
knowledge. By addressing them, we can evaluate the impact of training and fine-tuning on concept learning, identify gaps
between model reasoning and radiologists’ workflows, and inform the development of more interpretable and clinically aligned
AI systems.

Our main contributions are as follows:

• Framework Development: We introduce the first framework, Mammo-CLIP dissect, for dissection of DL vision models
at specified layers leveraging mammography-specific vision-language models (VLMs). By applying neuron labelling,
Mammo-CLIP Dissect reveals the concepts encoded by individual neurons, offering insights into how DL vision models
represent mammographic features. Specifically, we employ Mammo-CLIP as the dissector to analyse different DL vision
models. This framework extends the explainability method, CLIP-dissect, used in general VLMs for natural images to the
domain of mammography-specific VLMs. Our goal is to analyse the concepts learned by these mammography-specific
VLMs and explore their relevance to clinical interpretations, thereby bridging the gap between DL model understanding
and domain-specific medical insights.

• Clinically Informed Concept Set: We present a new concept set derived from mammography radiology reports and BI-
RADS descriptions. This set has been categorised into clinically meaningful groups to facilitate analysis in collaboration
with radiologists.

• Concept-Level Explainability for DL vision models in mammography: We provide the first concept-level explanations for
the vision branch of Mammo-CLIP by leveraging neuron labelling. Our analysis explores how mammography-specific
concepts are learned across DL vision models trained on mammography data and DL vision models not trained on
mammography data, offering insights into the feature extraction process and its alignment with clinical workflows. We
also evaluate how fine-tuning affects the learning of task-relevant concepts, highlighting shifts in representations and
potential trade-offs.

Related works
XAI in Mammography
XAI methods have been applied in mammography to improve the interpretability of DL-based systems. Most current approaches
rely on pixel-level explanations—such as Grad-CAM29, saliency maps, and attention mechanisms—that highlight regions of
interest on mammograms18. For example, Dahl et al.20 used a two-stage ResNet10130 model on the BreastScreen Norway
dataset with Layered Grad-CAM to visualise regions associated with malignancies, while Raghavan et al.31 applied attention-
guided Grad-CAM to breast images using DenseNet32, VGG24, and EfficientNet alongside interactive question-answering for
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radiologists. Similarly, Farrag et al.33 used Grad-CAM and Occlusion Sensitivity with DeeplabV3+34 on INbreast35 to validate
tumour localisation, and Pertuz et al.36 compared Grad-CAM, Grad-CAM++, and Eigen-CAM to board-certified radiologists’
annotations.

Pixel-based XAI methods, such as Grad-CAM and saliency maps, lack concept-level explanations, failing to map DL
model decisions to domain-specific concepts37, 38. This limitation undermines human interpretation, as these explanations
often misalign with clinical expertise and overlook critical findings, such as small calcifications essential for breast cancer
diagnosis. Additionally, these methods frequently highlight irrelevant areas, like dense tissue or background structures, rather
than clinically significant regions, exacerbating challenges in cases with dense breast tissue where lesions are already obscured.
They also neglect contextual and relational information, such as the shape, margin, and distribution of calcifications, which are
vital for malignancy assessment. To address these gaps, concept-based XAI approaches that integrate textual explanations using
diagnostically relevant terms could improve interpretability and trust by aligning AI outputs with clinical reasoning.

CLIP
CLIP26 is one if the most widely used VLMs that jointly trains an image encoder and a text encoder on large-scale natural
image-text pairs to align similar image and text representations using contrastive learning. While CLIP is designed to generalise
across diverse downstream tasks after pretraining on large-scale datasets, it is not specifically trained on medical images and
has likely only encountered such data incidentally. Moreover, it has never been exposed to domain-specific contexts like
mammography reports. This lack of domain-specific training raises concerns about its applicability in mammography, where
minute details are critical for accurate clinical interpretation.

Mammo-CLIP
Mammo-CLIP19 is a domain-specific VLM, designed to process high-resolution mammography images and corresponding
radiology reports. Unlike standard CLIP, Mammo-CLIP incorporates an EfficientNet-B5 image encoder and a BioClinicalBERT
text encoder, both of which were trained on large-scale, domain-specific mammography datasets. This adaptation enables
Mammo-CLIP to capture subtle and clinically relevant features essential for mammography analysis. The implementation of
Mammo-CLIP as well as the pre-trained models, is publicly available*, making it accessible for implementation and adaptation.
While Mammo-CLIP has been applied to downstream tasks such as mass, calcification, and BI-RADS density classification,
our study extends its utility by investigating the concepts learned at different layers of the model.

CLIP-dissect
CLIP-dissect27 is an open-source and versatile framework† which automatically labels neurons within DL models using a
predefined set of concepts. CLIP-dissect uses a probing dataset, a target model to dissect, and a VLM dissector (e.g., CLIP) to
first compute concept-activation matrices based on similarities between images and concepts. This matrix acts as a look-up
dictionary, which is used to assign labels to neurons based on their activations across probing images and similarity to predefined
concepts. Dorszewski et. al.28 adapted CLIP-dissect to enable dissection of a broader range of DL models, and the code for this
study is publicly available ‡.

While CLIP-Dissect has been applied to general VLMs, our study adapts this framework to the mammography domain by
leveraging Mammo-CLIP and introducing a clinically informed, mammography-specific concept set.

Methods
In this work, we propose Mammo-CLIP Dissect, a novel framework for layer-wise analysis of mammography-specific concepts
learned by Mammo-CLIP. Our approach adapts the CLIP-Dissect framework to the mammography domain by leveraging
Mammo-CLIP and introducing a clinically informed, domain-specific concept set. Below, we describe the key components of
our methodology, including details on the datasets used, adaptations of Mammo-CLIP and CLIP-Dissect, the curation of the
mammography-specific concept set and the fine-tuning process for downstream tasks.

We make our code implementation of Mammo-CLIP dissect along with our concept set and the concept categories we used,
publicly available§.

Datasets
Screening mammography typically involves acquiring four images per individual, two images of each breast, left and right,
from two standard views. The BI-RADS system is used by radiologists to help categorise and report likelihood of cancer and
breast density based upon breast characteristics and presence of clinically relevant findings such as mass and calcifications.

*https://github.com/batmanlab/Mammo-CLIP
†https://github.com/Trustworthy-ML-Lab/CLIP-dissect
‡https://github.com/teresa-sc/concepts_in_ViTs
§https://github.com/Suaiba/Mammo-CLIP-Dissect
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Figure 2. Structure of EfficientNet-B5 model and the grouping of layers for analysis.

(a) Bar plots of the distribution of the six broad concept
categories created in collaboration with radiologists. There are
roughly an equal number of mammography and
non-mammography concepts.

(b) Bar plots highlighting the distribution of concepts related to
three specific fine-tuning classification tasks: Mass,
Calcification, and Density, present within our concept set.

Figure 3. Subcategorisation of concept set used in the study.

We utilised the publicly available VinDR-Mammo39 and EMory BrEast imaging Dataset (EMBED)40 datasets for our
experiments. Additionally, the large-scale natural image database, ImageNet41, the private University of Pittsburgh Medical
Center (UPMC)19dataset and VinDR-Mammo were employed to pre-train Mammo-CLIP models, which we leveraged.

The UPMC dataset comprises 13,289 screening mammograms and corresponding text report pairs. This encompasses
25,355 screening mammograms with subjects having at least one imaging view present. The data was split into 80 : 20 ratio
for training and test, respectively. The public dataset VinDR-Mammo included 20,000 mammograms with all four standard
views present for each subject. This was divided into training and test sets with 16391 and 4095 images, respectively. While no
radiology reports are available for VinDR-Mammo, additional attributes such as BI-RADS cancer (1−5) and density (A-D)
assessments and locations and details on findings (including mass and calcifications) are available for this dataset. These
findings were leveraged along with imaging details to generate text reports using templates by Ghosh et. al19. The pre-processed
VinDR-Mammo images, made available by Ghosh et. al19, of dimensions 1520×912 have been used in our experiments. The
full publicly available EMBED contains 64,564 mammograms from 23,256 individuals from different racial backgrounds.
Besides mammograms, EMBED contains information on breast density and the number of relevant clinical findings, as well as
images with foreign bodies, including implants and clinical markers, which assist us in our analysis of concepts. For some of
our experiments, we used a subset of the EMBED dataset with a total of 84 images comprising 42 images with implants and 42
images without implants. We resized these images to be 1520×912.

Mammography-Specific Concept Set
We created a novel mammography-specific concept set in collaboration with two expert radiologists to analyse how different
Mammo-CLIP-based models learn clinically relevant concepts. This set also includes non-mammography-related concepts. The
mammography-related concepts were derived from multiple sources, including the official BI-RADS taxonomy, findings data,
and synthesised radiology reports for the VinDR-Mammo dataset, as well as direct input from radiologists. These concepts
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consist of both individual words and short, clinically relevant phrases.
To complement this, non-mammography concepts were collected from the publicly available list¶ of the 20,000 concepts

most frequently used in the English language, which were categorised into semantic concepts by Dorszewski et al.28. From this
list, four semantic concept categories were selected: Materials, Natural, Objects, and Colours, to create a non-mammography-
related word bank roughly equal in size to the mammography-related concepts. To refine the concept set, we excluded the
100 most commonly occurring English words, such as articles (a, an, is), and further revised the categories in consultation
with the radiologists. This process resulted in a final concept set comprising 763 unique concepts, which were organised into
subcategories and grouped into broader categories for analysis, as shown in Figures 3a and 3b.

For the broad concept categories shown in Figure 3a, we considered two experimental setups: (1) all six broad categories,
and (2) a simplified division into mammography-related and non-mammography-related concepts. The six broad categories
comprise five mammography-related categories and one non-mammography-related category. The mammography-related
concepts are divided into 22 subcategories reflecting the clinical workflow used by consulting radiologists during mammography
analyses. These subcategories capture varying levels of conceptual complexity, progressing from simpler concepts addressed
early in the workflow to more complex, interpretative concepts derived later. Ordered by increasing complexity, these are:
Breast anatomy or structures, Breast locations, Findings and characterizations, Interpretations, and Action or follow up. In
Figure 3a, mammography concepts are presented vertically in this order of increasing complexity.

The sixth broad category, representing non-mammography-related concepts, consists of four subcategories as described
above. For experiments comparing mammography-related and non-mammography-related concepts, the 22 mammography sub-
categories were combined into a single category containing 369 unique concepts, and the four non-mammography subcategories
into another containing 394 unique concepts.

In addition to these broader categories, we curated task-specific concept categories tailored to three downstream classification
tasks: mass classification, calcification classification, and BI-RADS density classification. This resulted in three specialised
categories: Mass-related concepts (73 concepts), Calcification-related concepts (79 concepts), and Density-related concepts (38
concepts). The distribution of these task-specific categories is visualised in Figure 3b.

The proposed concept set and its categorisations are designed to be flexible and can be further customised or refined for
additional analyses. This adaptability ensures that the concept set can be tailored to meet the specific needs of future studies or
tasks.

Mammo-CLIP-dissect framework
An overview of the implemented Mammo-CLIP Dissect framework is presented in Figure 1. The framework closely follows
the CLIP-dissect implementation and incorporates four primary components: (1) a set of probing images, Dprobe; (2) a target
model, Ftarget , whose neurons are to be labelled—this can be any DL vision model; (3) a VLM as the dissector model, Fdissector,
such as Mammo-CLIP, where the text and image encoders of the Fdissector model embed the probing images and facilitate the
dissection of the Ftarget model; and (4) a predefined set of concepts, C , with M concepts. This concept set is used to assign
labels to the neurons of Ftarget .

These components are leveraged for neuron labelling in Mammo-CLIP-dissect using three stages:

• Each probing image xi ∈ Dprobe ⊂RChannel×Height×Width from the probing set Dprobe is embedded using the image encoder
of the dissector model, while the concepts tj from the concept set C are embedded using its text encoder. The inner
product between image embedding Ii of probe image xi, and concept embedding Tj of concept tj, is computed to form a
concept-activation matrix, P ∈ RN×M , where N and M are the number of image and text embeddings, respectively. P
quantifies the similarity between embeddings of the images and concepts, where Pi, j = ⟨Ii ·Tj⟩. This matrix acts as a
look-up dictionary when comparing neuron activations to concept activations in the next steps.

• For each neuron, k, in Ftarget , its mean activation map, Ak(xi) ∈ R, is recorded for each probing image xi ∈ Dprobe. These
neuron activations across all probing images are collected in the activation vector qk =

[
Ak(x1), . . . ,Ak(xN)

]T ∈ RN . qk
is then used to match the neuron activations to the concept activations over the same probing dataset.

• The label assigned to each neuron, k, by defining by the most similar concept tm to k as per the activation vector qk
comprising of the activations Ak. We do this by comparing qk with the concept–activation matrix using a similarity
function sim(tm,qk). We then define

m̃ = argmax
m

sim(tm,qk),

where m̃ is the index of the most similar concept in the concept set C (with M concepts). The concept label assigned to
neuron k is thus tm̃, the concept corresponding to index m̃. Soft Weighted Pointwise Mutual Information (SoftWPMI)27, 42

¶https://github.com/teresa-sc/concepts_in_ViTs/tree/main/data
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was the similarity function selected in this work based on the original CLIP-Dissect implementation by Oikarinen et.
al.27. SoftWPMI is computed by computing the mutual information (MI) between the set of images Dqk

probe = {xi ∈
Dprobe : Ak(xi)} is among the top-Z largest entries of qk and the concept tm. SoftWPMI is formulated as:

sim(tm,qk)≜ SoftWPMI(tm,qk) = logE[p(tm|Dqk
probe)]−λ log p(tm) (1)

Here, λ is a regularising parameter. The term logE[p(tm|Dqk
probe)] = log(∏xi∈Dprobe

[1+ p(xi ∈ Dqk
probe)(p(tm|xi)−1)]), further

details and derivation of this are available in the work by Oikarinen et al27. The SoftWPMI similarities between each neuron
and concept are collected in the matrix S.

This process enables the automatic assignment of the most relevant concept labels to neurons, providing insights into the
concepts learned by the target model, Ftarget .

Mammo-CLIP models
Mammo-CLIP architecture consists of an image encoder, EI and a text encoder, ET , which are pre-trained to capture domain-
specific features, using a contrastive loss to align image and text representations. For N pairs of images xi and text ti,
Mammmo-CLIP computes image embeddings, Ii = EI(xi), and text embeddings, Ti = ET (ti). The training objective is to
maximise the SoftWPMI similarity between matching pairs (Ii,Ti) and minimise the SoftWPMI similarity between non-
matching pairs (Ii,Tj), where j ̸= i.

In our approach, we adopted Mammo-CLIP with the CNN EfficientNet-B543 as the image encoder and the transformer-based
BioClinicalBERT44 as the text encoder as per the original implementation by Ghosh et al.19.

Fgeneral: This general, non-mammography specific setup involves an EfficientNet-B5 backbone pre-trained on the ImageNet
dataset, and the BioClinicalBERT encoder pre-trained on general biomedical text to encode radiology reports.

Fmammo: To specialise Mammo-CLIP for screening mammography data, this general setup was further pre-trained on
paired screening mammograms and radiology text reports by Ghosh et al.19. Specifically, a combination of the private UPMC
dataset (with its associated radiology reports) and the public VinDR dataset was used to fine-tune the encoders in Mammo-CLIP.
For our experiments, we employed the publicly available weights from this mammography-specific pre-trained setup ||, which
we refer to as Fmammo.

The image encoder of Fmammo was further tailored for various downstream mammography classification tasks by adding a
linear classification layer and fine-tuning the overall architecture. These tasks included:

• BI-RADS density classification,

• BI-RADS cancer classification,

• binary mass classification and

• binary suspicious calcification classification.

We refer to this collection of fine-tuned Mammo-CLIP image encoder-based classifier setups as Fclassi f ier.
We explored three main Mammo-CLIP dissect configurations presented in Table 1. In all three experimental setups, the

Setup Ftarget Fdissector Purpose D_probe
G-Mammo-CLIP Dissect Fgeneral Fgeneral Evaluates the performance of a general Mammo-CLIP

without domain-specific pre-training.
VinDR-Mammo

M-Mammo-CLIP Dissect Fmammo Fmammo Assesses the benefits of mammography-specific training
on Mammo-CLIP.

VinDR-Mammo

C-Mammo-CLIP Dissect Fclassi f ier Fmammo Evaluates task-specific classifier performance while
leveraging domain knowledge in Fmammo.

VinDR-Mammo

Table 1. Summary of Mammo-CLIP Dissect Configurations.

dissector network Fdissector is Mammo-CLIP, incorporating both its image and text encoders and the Dprobe is VinDR-Mammo.
By contrast, the target network Ftarget employs only the image encoder of Mammo-CLIP. The primary distinction between the
G-Mammo-CLIP Dissect and M-Mammo-CLIP Dissect configurations lies in the data used for model training. Each setup is
designed to address a distinct research question:

||https://github.com/batmanlab/Mammo-CLIP
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• G-Mammo-CLIP Dissect,evaluates how general, non-mammography specific Mammo-CLIP trained on ImageNet and
general medical text performs when applied to mammography, thereby establishing a baseline without domain-specific
pretraining. Within this setup, the Ftarget is the image encoder of Fgeneral . The Fdissector in G-Mammo-CLIP Dissect
includes both the image and text encoders of Fgeneral .

• M-Mammo-CLIP Dissect assesses the effect of domain-specific training by using Mammo-CLIP models pretrained
on mammography images (UPMC and VinDR-Mammo) and corresponding radiology reports. In this setup, Ftarget
corresponds to the image encoder of Fmammo. The Fdissector in M-Mammo-CLIP Dissect consists of both encoders of
Fmammo.

• C-Mammo-CLIP Dissect examines task-specific fine-tuning by using Fclassi f ier as the Ftarget . Fclassi f ier is an image
classifier built upon the image encoder of Fmammo. This third setup helps us assess the impact of fine-tuning for
downstream mammography tasks on the concepts learned.

Concept-Based Analysis
We base our concept analyses on Mammo-CLIP models with an EfficientNet-B5 image encoder as discussed. Specifically, we
focus on three representative convolutional layers corresponding to the early, middle, and late stages of the model, respectively
(Figure 2). At each of these layers, we evaluate the concepts captured by computing similarity scores between neuron activations
and concept representations.

To determine which concepts are most relevant to neurons within a given layer, we adopt an adaptive, model-specific
thresholding scheme inspired by Dorszewski et al.28. For each layer l ∈ {1,2, . . . ,L} of the target model Ftarget, we compute
a threshold τl equal to the mean similarity score between neuron activations and concept representations at that layer:
τl = mean(Sl), where Sl denotes the SoftWPMI similarity scores between all neurons and all concepts in layer l.

When comparing two models, we define the threshold at each layer as the maximum of the two models’ mean similarity
scores to ensure fair comparison: τl = max

(
τ

Model1
l , τ

Model2
l

)
, where τ

Modeli
l is the mean similarity score at layer l for Model i.

For example, when comparing G-Mammo-CLIP Dissect and M-Mammo-CLIP Dissect using the same Dprobe, τl is determined
by the higher mean similarity at that layer across the two models.

A concept is considered encoded at a layer if its similarity score with the neuron activations is greater than or equal to τl .
This adaptive thresholding accounts for model-specific pretraining differences and allows fairer comparisons across layers.
Consequently, the number of neurons considered activated varies by layer depending on the threshold.

By examining the number and types of concepts activated at each layer, we can uncover and compare the representational
patterns learned by different mammography models at different stages. Additionally, comparing these thresholds across models
offers insight into differences in representations and selectivity throughout the network.

Implementation details
The training process for Fmammo models used in our framework involved 10 epochs using an AdamW45 optimiser and a
contrastive loss to align image and text representations. We set λ = 1 for the SoftWPMI similarity function sim(tm,qk),
following Oikarinen et al.27. The parameter Z was chosen based on the size of the probe dataset Dprobe: for VinDR-Mammo, we
used Z = 100 as in Oikarinen et al.27, whereas for the smaller EMBED subset of Dprobe containing 84 images, we set Z = 84.

Building on these pre-trained Fmammo models, Fclassi f ier models were implemented by fine-tuning the Fmammo image encoders
for four downstream mammography classification tasks. The fine-tuning setup closely followed the original configuration
described by Ghosh et. al.19. Specifically, a single fully connected linear layer was added on top of Fmammo, and the overall
architecture was then trained for the specified classification task. The fine-tuning process was conducted for 30 epochs with a
learning rate of (5×10−5), a batch size of 8, and the AdamW45 optimiser. A LinearWarmupCosineAnnealingLR scheduler
was employed to adjust the learning rate dynamically, with warmup steps set to 10. For the classification tasks, different loss
functions were used depending on the task type. For binary classification tasks (mass and calcification), a weighted binary
cross-entropy loss was optimised. The positive class weights were determined based on the class imbalance in the dataset. For
multi-class classification tasks (BI-RADS density and cancer), a standard cross-entropy loss was used. The evaluation metrics
also varied based on the task type. For binary classification tasks, binary AUC was used as the primary evaluation metric. For
multi-class classification tasks, multi-class accuracy and F1 scores were used.

All code was implemented on PyTorch46. For all neuron-labelling experiments, we utilised NVIDIA RTX 3090 and A6000
GPUs. The neuron labelling experiments took roughly 1.5 hours. For the fine-tuning experiments, we used AMD Instinct
MI210 GPUs. The training time for fine-tuning the classifier models ranged from 44 to 70 hours.

Results
In this section, we present our results for the three research questions posed.
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(a) Evolution of mean layer similarities.

(b) Comparison of occurrences of unique mammography and
non-mammography-related concepts.

(c) The top three broad concept categories learned by the two
models.

Figure 4. Comparison of G-Mammo-CLIP Dissect (pretrained on ImageNet) and M-Mammo-CLIP Dissect (pretrained on
mammography) with VinDR-Mammo as the probe. Mean layer-specific similarity thresholds have been applied in these plots.
(a) Evolution of mean layer similarities, used to determine threshold, τ , across G-Mammo-CLIP Dissect and M-Mammo-CLIP
Dissect. (b) Occurrences of mammography and non-mammography-related concepts across layers of G-Mammo-CLIP Dissect
and M-Mammo-CLIP Dissect. (c) Stacked bar plots visualising the top three broad concept categories learned by
G-Mammo-CLIP Dissect on the left and M-Mammo-CLIP Dissect on the right.

RQ1: Do CNNs trained on mammography data learn more mammography-specific concepts compared to
models trained on non-mammography data?
Within this section, we compare how G-Mammo-CLIP Dissect, which has been trained on ImageNet and M-Mammo-CLIP
Dissect, which has been trained on mammography data, learn in terms of concepts.

Figure 5. Comparison of wordclouds of unique concepts for G-Mammo-CLIP Dissect and M-Mammo-CLIP Dissect at the
last layer. The size of words is proportional to their similarity value with neurons and the colour of the broad category to which
they belong.
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First, we compare the mean similarity scores between neurons and concepts, used as thresholds, τ , at each layer within
both Ftarget models. This analysis is presented in Figure 4a. From this figure, we can observe that M-Mammo-CLIP Dissect
consistently has higher τ values than G-Mammo-CLIP Dissect. Next, we analyse the number of unique concepts captured,
surpassing the layer-specific threshold τ across three representative layers. Figures 4b and 4c summarise these findings for
G-Mammo-CLIP Dissect and M-Mammo-CLIP Dissect.

Figure 6. Top five activated concepts and images of neuron 451, at the last layer of M-Mammo-CLIP Dissect, which meets
the global mean threshold. In this case, the probe is a subset of EMBED.

Figure 7. Top five activated concepts and images of neuron 242, at the last layer of M-Mammo-CLIP Dissect, which meets
the global mean threshold. In this case, the probe is VinDR-Mammo.

Expanding on these results, Figure 4b presents the number of unique mammography-related and non-mammography-related
concepts captured by G-Mammo-CLIP Dissect and M-Mammo-CLIP Dissect. M-Mammo-CLIP Dissect learns substantially
more concepts overall, including both mammography-specific and general ones. Importantly, mammography-related concepts
dominate within M-Mammo-CLIP Dissect.
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We also examined which broad categories of concepts ranked among the top three most strongly associated with each model
in Figure 4c. For M-Mammo-CLIP Dissect, the categories Findings and Characterizations and Interpretations consistently
emerged, both highly relevant for mammography analysis. In contrast, G-Mammo-CLIP Dissect showed no stable pattern: its
middle layers focused on mammography-related categories, but the last layer shifted toward a mixture of mammography and
non-mammography categories.

To visualise the concepts themselves, Figure 5 presents word clouds of the last-layer concepts for both Ftarget models.
Concepts are coloured by category, with word size reflecting activation strength. M-Mammo-CLIP Dissect clearly emphasises
mammography-related concepts, while G-Mammo-CLIP Dissect places greater focus on concepts from the Environmental and
Natural category.

Taken together, these findings are consistent with expectations that models trained on mammography data will exhibit
stronger, more stable alignment with mammography-relevant concepts and categories than models trained on non-mammography
datasets.

We explore other combinations of Dprobe and Fdissector in Appendix I to further highlight the flexibility of the Mammo-CLIP
Dissect framework.

The analyses in Figures 4 and 5 provide a holistic view of the concepts learned in Ftarget models within G-Mammo-CLIP
Dissect and M-Mammo-CLIP Dissect. However, individual neurons can be analysed to identify specific behaviour. Prior work
by Bykov et al.47 demonstrated that neurons can react to distinct artefacts. Extending this approach to mammography, we can
identify neurons that detect clinically meaningful patterns or reflect potential biases.

One such example involves breast implants; we chose breast implants as they are visually distinct and easily interpretable,
even for non-experts in mammography analysis. Figure 6 shows neuron 451 from the last layer, evaluated on a subset of
EMBED as Dprobe containing 42 images with implants and 42 without. The top five activated concepts and images for this
neuron reveal a strong implant-related signal: four of the top five concepts explicitly reference implants, and four of the top five
images indeed contain implants. This suggests that individual neurons can specialise in clinically meaningful mammography
concepts.

A second example is presented in Figure 7 using the VinDR-Mammo test set probe. Neuron 242 exhibits the top five
concepts, all of which contain the term "calcification". Correspondingly, each of the top five activated images displays multiple
calcifications, which appear as bright spots on the mammograms; selected regions are highlighted with red boxes. Since
calcifications are a critical marker in breast cancer screening, this result underscores the model’s ability to capture diagnostically
important visual features at the neuron level.

RQ2: How does fine-tuning for mammography-relevant tasks, such as density classification, affect the
learning of mammography-specific concepts?
In this section, we examine how fine-tuning influences the mammography-specific concepts captured by Mammo-CLIP. We
compare M-Mammo-CLIP Dissect (trained on mammography data) with C-Mammo-CLIP Dissect (fine-tuned on a specific
mammography classification task) to identify which concepts are gained or lost during fine-tuning. This focus is motivated
by Dorszewski et al.28, who demonstrated that fine-tuning can substantially change the internal concepts learned by models,
potentially altering their downstream performance. By investigating these effects, we aim to better understand how task-specific
adaptation impacts concept-level representations and their alignment with clinically relevant features.

Table 2. The four fine-tuning classification tasks and their corresponding C-Mammo-CLIP Dissect variants. For each variant,
the corresponding task-specific Ftarget name is reported as well as the classification performance. Here, Fdissector is Fmammo in
all cases.

Variant Fine-tuning Task Ftarget Classification performance
C1 BI-RADS density classification FC1

classi f ier 0.860 (Accuracy), 0.576 (F1)
C2 BI-RADS cancer classification FC2

classi f ier 0.795 (Accuracy), 0.523 (F1)
C3 Binary mass classification FC3

classi f ier 0.874 (AUC)
C4 Binary suspicious calcification classification FC4

classi f ier 0.975 (AUC)

Specifically, we analyse four variants of C-Mammo-CLIP Dissect, each corresponding to a distinct mammography
classification task as reported in Table 2. The four downstream classification tasks investigated are—BI-RADS density, binary
mass, binary calcification, and BI-RADS cancer—along with their corresponding C-Mammo-CLIP Dissect variants. Each
variant uses a task-specific Ftarget (the classifier) while sharing the same Fdissector (Fmammo). In all cases, Ftarget consists of the
Fmammo image encoder with an added linear classification layer, fine-tuned for the respective task. For example, the BI-RADS
density classification variant (C1) employs Fclassi f ierC1 as its Ftarget , fine-tuned specifically for that task. Performance metrics
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Figure 8. Evolution of mean layer similarities, used as thresholds, across three different Fclassi f ier models. Each model was
fine-tuned for a different downstream task.

are reported per task: multi-class accuracy and F1 for BI-RADS density and BI-RADS cancer, and binary AUC for the mass
and calcification tasks. Across all tasks, the fine-tuned models demonstrate strong performance on both accuracy and AUC
metrics.

Figure 8 shows the mean similarity thresholds (τ) across Ftarget for M-Mammo-CLIP Dissect and the four variants of
C-Mammo-CLIP Dissect. Across all layers, the C-Mammo-CLIP Dissect variants exhibit higher τ values than M-Mammo-CLIP
Dissect, although the overall trend across layers remains consistent.

(a) Mass related concepts (b) Calcification related concepts (c) Density related concepts

Figure 9. Comparison of the number of fine-tuning task-related concepts learned by mammo pretrained Mammo-CLIP feature
extractors and Mammo-CLIP image classifiers fine-tuned for three different tasks (binary mass, binary suspicious calcification
and BI-RADS density).

Figure 9 compares the number of task-related concepts—specifically for mass, calcification, and density—captured at three
representative layers by M-Mammo-CLIP Dissect and the C-Mammo-CLIP Dissect variants. As before, we report the number
of unique concepts exceeding the threshold τ . For the mass and density tasks, Ftarget in both models captured a comparable
number of relevant concepts, with C-Mammo-CLIP Dissect capturing slightly fewer density-related concepts in the middle
and last layers. Interestingly, for calcification, the finetuned Ftarget in C-Mammo-CLIP Dissect identified more task-relevant
concepts across the middle and last layers.

To further investigate, we compared the calcification-related concepts uniquely captured by the calcification-finetuned
C-Mammo-CLIP Dissect and by M-Mammo-CLIP Dissect, focusing on the last Ftarget layer. Across both models, all
calcification-related concepts fell into either the Calcifications morphology or Suspicious calcifications subcategories, belonging
to the broader Findings and Characterizations and Interpretations categories, respectively. While both models captured the
same number of concepts from the Suspicious calcifications subcategory, the calcification-finetuned C-Mammo-CLIP Dissect
identified more concepts related to Calcifications morphology (seven versus four). The specific Calcifications morphology
concepts captured are listed in Table 3. The larger number of Calcifications morphology concepts captured by the finetuned
model suggests that its Ftarget may be more specialised for distinguishing between calcifications.

RQ3: Which key mammography concepts are learned and which are not picked up by CNNs?
In this section, we address our final research question: which mammography concepts are learned—and which are missed—by
CNNs trained on mammography data. For this analysis, we focus on Ftarget in M-Mammo-CLIP Dissect and the four variants
of C-Mammo-CLIP Dissect, using the VinDR-Mammo test set as probing data.
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Table 3. Closer look at selected layers of M-Mammo-CLIP Dissect and C4, calcification fine-tuned, variant of
C-Mammo-CLIP Dissect to analyse which task-related concepts were learnt by both and which were unique to each model.
Only concepts meeting the mean similarity threshold are included.

Layer Unique to M-Mammo-CLIP Dissect Unique to C4 variant of C-Mammo-CLIP Dissect

Last layer
suture calcification,

amourphous calcification,
rod-like

calcifications in a mass,
dystrophic calcification,

skin calcification,
diffusely scattered punctate calcification,

secretory calcification,
rim-like calcification,
eggshell calcification

Figure 10. Bar plots showing broad category distribution of number of unique concepts captured versus missed by Ftarget in
M-Mammo-CLIP Dissect.

Overall, 298 unique concepts were learned and 465 unique concepts were not learned by M-Mammo-CLIP Dissect,
respectively. Among the not learned concepts, 129 were unique mammography-related concepts, while the remainder belonged
to the Environmental and Natural categories. In our concept set, some concepts contain overlapping terms, such as "extremely"
and "extremely dense," or "amorphous" and "amorphous calcification". To ensure no overlap between the unique mammography
concepts in the learned and not learned sets, we excluded concepts from the not learned set that appeared in a slightly different
form in the learned set. This refinement resulted in unique, not learned mammography-related concepts that are distinct from
the learned concepts. These unique, not learned mammography-related concepts are presented in Figure 11.

We further assess the number of unique mammography concepts captured versus missed by Ftarget in M-Mammo-CLIP
Dissect within each of the six broad categories in Figure 10. The grouping of concepts into broad categories facilitates analysis
and helps align comparisons with radiological relevance. Figure 10 shows that, across all broad categories, Ftarget captures more
concepts than it misses, indicating that M-Mammo-CLIP Dissect effectively learns most mammography-relevant concepts, with
only a small subset remaining uncaptured. We further discuss the implications of the concepts which were not learned in the
Discussion section.

Discussion
Our findings show that domain-specific training substantially improves alignment with mammography concepts. As shown
in Figure 4a, the Ftarget CNN trained on mammography data (M-Mammo-CLIP Dissect) captured substantially more
mammography-specific concepts than the Ftarget trained on ImageNet (G-Mammo-CLIP Dissect). Higher mean similarity
values (τ) between neurons and concepts reflect stronger alignment with clinically relevant features. We found M-Mammo-
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Figure 11. The 54 unique and distinct mammography concepts not learned by M-Mammo-CLIP Dissect.

CLIP Dissect captures both more mammography-related and non-mammography-related concepts than G-Mammo-CLIP
Dissect in Figure 4b. This suggests that training on mammography data enhances the Ftarget model’s ability to capture
mammography-relevant concepts while still learning general ones. Importantly, the consistent top concept categories cap-
tured by M-Mammo-CLIP Dissect were Findings and Characterizations and Interpretations, which mirror radiologists’
workflows. Whereas G-Mammo-CLIP Dissect lacked such focus and switched between capturing non-mammography and
mammography concept categories. This is showcased in Figure 4c. In Figure 5, we show that G-Mammo-CLIP Dissect
focused on more non-mammography concepts than M-Mammo-CLIP Dissect, like Shih-Tzu and goblet, underscoring that
the non-mammography-specific Ftarget may not have effectively learned to represent mammography-specific concepts, likely
due to the lack of domain-specific training. Yet some concepts in M-Mammo-CLIP Dissect—such as stable calcification or
asymmetrically enlarged lymph node—may be keyword-driven rather than reflecting clinically meaningful representations, as
these require multi-view or temporal analysis, which we have not investigated.

Interestingly, Mammo-CLIP Dissect also reveals individual neurons specialised to distinct mammography features or
artefacts. In Figures 6 and 7, we observe that the top 5 concepts captured by the neurons visualised all contain a common
keyword. The keywords, in Figures 6 and 7, are implant and calcification, respectively.

Notably, three of the top five concepts (benign skin calcification, cluster calcification and benign calcification) in Figure 7
are indeed represented in the top five images as determined by consultation with a radiologist. However, of the remaining two
concepts, stable calcification cannot be determined with only one image from a single time-point, and secretory calcification
does not appear on the top images. This could indicate that, despite concepts comprising several words, the model may
sometimes place a greater emphasis on a keyword (i.e., calcification) and not truly capture/distinguish the more granular clinical
findings/details. This might also occur in the case of the concept peri-implant fluid in Figure 6. peri-implant fluid is not a
concept which can be observed from mammograms, but it is likely captured by the neuron due to the presence of the word
implant within the concept.

We also examined how fine-tuning for mammography classification tasks affects the concepts captured by Mammo-CLIP,
comparing C-Mammo-CLIP Dissect (four task-specific fine-tuned models) to the base feature extractor in M-Mammo-CLIP
Dissect. All fine-tuned models showed higher overall similarity scores τ than M-Mammo-CLIP Dissect (Figure 8), indicating
that fine-tuning increases alignment between neurons and mammography concepts and increases task specialisation. When
comparing the number of unique concepts across key diagnostic categories, Figure 9, we found little change in mass-related
concepts, a slight decrease in density-related concepts, but a clear increase in calcification-related concepts. In particular,
the model fine-tuned for suspicious calcifications (C4) captured more benign calcification concepts—such as dystrophic
calcification, rim-like calcification, eggshell calcification, skin calcification and secretory calcification—than M-Mammo-CLIP
Dissect, which instead retained the malignant amorphous calcification concept (Table 3).

This pattern suggests that fine-tuning may enhance recognition of certain benign findings while narrowing coverage of
other clinically important ones. Consulting radiologists note that benign calcifications can sometimes appear larger and denser
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than malignant calcifications, making them visually identifiable. This could be a possible reason for the stronger focus of the
fine-tuned Ftarget model on the benign findings. But at the same time, distinguishing benign from malignant calcifications
remains inherently difficult—even for experienced radiologists— so the observed shift may actually reflect a focus on the
keyword calcification rather than on fine-grained pathological details.

Understanding the differences in learned and not learned concepts in the Ftarget in M-Mammo-CLIP Dissect is important
for identifying the clinically relevant aspects that such models capture, as well as the gaps that may limit their accuracy and
trustworthiness. Our analysis in Figure 10 demonstrates that the mammography-trained M-Mammo-CLIP Dissect does capture
most concepts relevant to mammography, across all five broad mammography categories present in C . When focusing on the
mammography concepts missed by M-Mammo-CLIP Dissect, we find 54 distinct concepts which are highlighted in Figure 11.
We find that these missed concepts include:

• Less visually distinct and well-represented findings such as architectural distortion, which, while clinically relevant, can
be less prominent on mammograms compared to other findings such as masses and calcifications. This concept also
may not be well-represented in the training data used. In total, we identified six concepts containing architectural or
distortion which were not captured. We hypothesise that the Ftarget in M-Mammo-CLIP Dissect perhaps fails to grasp
this concept due to its under-representation and nuances.

• Modality-inappropriate concepts which are linked to ultrasound and MRI and not mammography. This comprises 24
concepts of the 54 missed concepts. Some examples for concepts linked to ultrasound and MRI include: subcapsular
line, saline, silicone and radial folds. Such concepts are not encountered by the Ftarget in M-Mammo-CLIP Dissect both
during training and also within our Dprobe, which consists only of mammograms. This reflects that the model in fact does
not largely learn concepts from outside the domain of mammograms. In cases of exceptions to this as we observed with
peri-implant fluid, maybe linked to individual neurons, gravitating to single keywords—such as implant —even when the
full concept required broader contextual information, suggesting an area for future refinement.

In terms of limitations, we note that our concept set C , underpinning our analysis, reflects the challenges in defining
clinically valid mammography concepts. Overlaps (e.g., densities vs. density), inclusion of concepts requiring multi-view or
temporal context (e.g. asymmetry, stable calcification), and modality-specific terms from ultrasound or MRI (e.g., peri-implant
fluid, saline) may confound model evaluation. Despite these limitations, the framework provides valuable insight into the
interaction between neurons and concepts.

Conclusion
We propose Mammo-CLIP Dissect, a concept-based explainability framework which enables analysis of concepts learned by
DL vision models when processing mammograms. This approach extends CLIP-Dissect to the clinical domain and directly
addresses the gap between pixel-level saliency and the concept-level reasoning radiologists use. We leveraged Mammo-CLIP
Dissect to enable an investigation of concepts learned by domain-specific CNNs trained with mammography data versus general
CNNs trained on non-mammography data, how fine-tuning affects these learned concepts, and where key diagnostic concepts
remain missing.

Together, our findings demonstrate that concept-based explainability using Mammo-CLIP Dissect offers insights into how
CNNs capture mammography-specific knowledge. By comparing models trained on different data sources and fine-tuning
regimes, we show how domain-specific training and task-specific adaptation shape concept learning and reveal where clinically
important concepts remain underrepresented. This approach moves beyond pixel-level interpretability toward concept-level
understanding, bringing DL systems closer to radiologists’ reasoning processes. Future work should focus on refining concept
sets to reduce ambiguity, addressing subtle underrepresented findings, and developing fine-tuning strategies that preserve
general conceptual breadth while enhancing task-relevant features—ultimately improving interpretability, trust, and clinical
adoption of AI in breast cancer screening.
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(a) Evolution of mean layer similarities.

(b) Comparison of occurrences of unique mammography and
non-mammography-related concepts.

(c) The top three broad concept categories learned by the two
models.

Figure 12. Comparison of Setup A (pretrained on ImageNet) and Setup B (pretrained on mammography) with ImageNet as
the probe. Mean layer-specific similarity thresholds have been applied in these plots. (a) Evolution of mean layer similarities,
used to determine threshold, τ , across Setup A and Setup B. (b) Occurrences of mammography and non-mammography-related
concepts across layers of Setup A and Setup B. (c) Stacked bar plots visualising the top three broad concept categories learned
by Setup A on the left and Setup B on the right.

Appendix I
Mammo-CLIP Dissect is a versatile framework that enables flexible choices of the VLM (Fdissector), the DL vision model under
analysis (Ftarget), and the probe dataset (Dprobe). In the main text, our analyses focused on configurations where Mammo-
CLIP acted as the Fdissector and mammography datasets (VinDR-Mammo or EMBED) served as Dprobe. To demonstrate the
broader applicability of our approach, we present four alternative experimental setups in which these components are varied.
These setups, summarised in Table 4, highlight how Mammo-CLIP Dissect can be extended beyond mammography-specific
configurations for concept-based analysis. Within these setups, when using ImageNet as the Dprobe, we draw samples from the
ImageNette48 and ImageWoof48 subsets of ImageNet. Each subset contains 10 classes derived from the full ImageNet dataset.
Our Dprobe comprises 3,000 images from ImageNette and 2,000 images from ImageWoof, with an equal number of images
sampled from each of the 10 classes within both subsets.

In Setups A and B, replacing Mammo-CLIP with the general CLIP model as Fdissector while using a subset of ImageNet as
Dprobe markedly shifted the distribution of captured concepts toward non-mammography categories. We observe that Setup A
with the ImageNet pretrained Ftarget dominates in terms of τ values (Figure 12a) as well as learning both more of mammography-
related and non-mammography-related concepts (Figure 12b). Notably, Setup A learns more non-mammography concepts than
mammography concepts overall. In Figure 12c, we can see that while both setups consistently prioritise the Environmental and
Natural concepts linked to ImageNet, Setup A, which is trained on ImageNet, captures far more concepts of that category at the
last layer.

These findings illustrate how substituting a domain-specific VLM Fdissector with a general one amplifies natural-image
concepts while perhaps focusing less on the mammography-specific concepts. This highlights the critical role of domain-specific
pretraining in steering concept discovery toward clinically meaningful patterns.

Setups C and D mirror the configurations of G-Mammo-CLIP Dissect and M-Mammo-CLIP Dissect, respectively, but
replace the purely mammography-based Dprobe with a mixture of VinDR-Mammo and ImageNet images. This allows us to
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Setup name Ftarget Fdissector Purpose D_probe
Setup A Fgeneral CLIP Examine how a general CLIP dissector combined with an

ImageNet-pretrained CNN captures concepts from a
natural-image probe.

ImageNet

Setup B Fmammo CLIP Assess how a mammography-pretrained CNN behaves
when dissected using a general CLIP dissector and a

natural-image probe.

ImageNet

Setup C Fgeneral Fgeneral Compare how a general ImageNet-pretrained CNN model
and Mammo-CLIP dissector handle mixed-domain probe

data (mammography + natural images).

VinDR-Mammo and ImageNet

Setup D Fmammo Fmammo Examine how a mammography-pretrained CNN model
and Mammo-CLIP dissector handle mixed-domain probe

data (mammography + natural images).

VinDR-Mammo and ImageNet

Table 4. Summary of alternative Mammo-CLIP Dissect configurations we investigated.

(a) Evolution of mean layer similarities.

(b) Comparison of occurrences of unique mammography and
non-mammography-related concepts.

(c) The top three broad concept categories learned by the two
models.

Figure 13. Comparison of Setup C (pretrained on ImageNet) and Setup D (pretrained on mammography) with ImageNet as
the probe. Mean layer-specific similarity thresholds have been applied in these plots. (a) Evolution of mean layer similarities,
used to determine threshold, τ , across Setup C and Setup D. (b) Occurrences of mammography and non-mammography-related
concepts across layers of Setup C and Setup D. (c) Stacked bar plots visualising the top three broad concept categories learned
by Setup C on the left and Setup D on the right.

evaluate how domain-specific versus general pretraining interacts with a mixed probe dataset. Setup D, using an Ftarget trained
on mammograms, exhibits higher τ values than Setup C, suggesting stronger neuron–concept alignment (Figure 13a). Setup D
also identifies more mammography-related and non-mammography-related concepts than Setup C (Figure 13b) and, when
examining the top three concept categories, consistently focuses on Findings and Characterizations and Interpretations—critical
for mammography analysis—while still capturing Environmental and Natural concepts linked to ImageNet in the deeper layers
(Figure 13c). Conversely, Setup C fails to surpass the mean similarity threshold τ for any concept category, indicating weak
overall concept capture.
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These results suggest that mammography-pretrained models retain their domain-specific specialisation even when processing
mixed-domain probes, whereas models pretrained solely on general images struggle to form strong concept associations across
domains. This may indicate that domain-specific training helps models learn more transferable and robust representations.

Data availability
The code implementation and concept set used in this study are made available on GitHub, with the link included in the abstract.
The VinDR-Mammo and EMBED probing datasets used in this study are publicly available upon request for access. The EM-
BED dataset can be accessed from: https://aws.amazon.com/marketplace/pp/prodview-unw4li5rkivs2#
links. Access to the VinDR-Mammo dataset can be obtained from https://physionet.org/content/vindr-mammo/
1.0.0/. In particular, we leveraged the pre-processed VinDR-Mammo images available from https://github.com/
batmanlab/Mammo-CLIP.
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