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Abstract

Foundation models, including large language models and vision-language models (VLMs), have revolutionized artificial
intelligence by enabling efficient, scalable, and multimodal learning across diverse applications. By leveraging advance-
ments in self-supervised and semi-supervised learning, these models integrate computer vision and natural language pro-
cessing to address complex tasks, such as disease classification, segmentation, cross-modal retrieval, and automated report
generation. Their ability to pretrain on vast, uncurated datasets minimizes reliance on annotated data while improving
generalization and adaptability for a wide range of downstream tasks. In the medical domain, foundation models address
critical challenges by combining the information from various medical imaging modalities with textual data from radiol-
ogy reports and clinical notes. This integration has enabled the development of tools that streamline diagnostic workflows,
enhance accuracy (ACC), and enable robust decision-making. This review provides a systematic examination of the recent
advancements in medical VLMs from 2022 to 2024, focusing on modality-specific approaches and tailored applications
in medical imaging. The key contributions include the creation of a structured taxonomy to categorize existing models,
an in-depth analysis of datasets essential for training and evaluation, and a review of practical applications. This review
also addresses ongoing challenges and proposes future directions for enhancing the accessibility and impact of foundation
models in healthcare.
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1 Introduction advancements spurred by the development of founda-

tion models, large language models (LLMs), and vision-
1.1 History of foundation models and recent trends language models (VLMSs). These cutting-edge innovations

have transformed the fields of computer vision and natu-
Over the past decade, artificial intelligence (AI) and  ral language processing (NLP), introducing versatile and
machine learning (ML) have experienced groundbreaking  efficient methodologies to address a wide array of visual
understanding tasks. AI/ML systems have become indis-
pensable in achieving significant progress across various
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this paradigm by employing large-scale, self-supervised
learning to align visual and textual data, thereby performing
efficiently across a variety of applications.

Critical differentiators between foundation models
and earlier deep learning architectures are their scalabil-
ity, adaptability, and efficiency. Traditional models often
require large, labeled datasets and significant computational
resources for task-specific training. In contrast, foundation
models leverage self-supervised or unsupervised learning
techniques, drawing on large, uncurated datasets such as
web-crawled image-text pairs [4]. This approach minimizes
the reliance on annotated data while enabling the extraction
of rich, transferable representations. Consequently, founda-
tion models not only reduce the computational overhead
but also address a broader spectrum of vision-related tasks.
Moreover, these models demonstrate a remarkable abil-
ity to generalize visual features across different domains
and tasks. The modular architecture of foundation models
further enhances their utility by supporting incremental
fine-tuning, thereby enabling seamless adaptation to new
domains or tasks with minimal computational effort.

In computer vision and NLP, foundation models have
driven revolutionary advancements in complex multimodal
applications. Tasks such as cross-modal retrieval, action
recognition, and high-level semantic understanding benefit
from the robustness of these models. LLMs, including GPT-3
[5], PaLM [6], Galactica [7], and LLaMA [8] are pretrained
on vast text corpora using self-supervised learning tech-
niques. These models are particularly adept at zero-shot and
few-shot learning, allowing them to perform a wide range of
tasks with minimal fine-tuning. Unlike LLMs, VLMs focus
on integrating visual and language modalities. By leverag-
ing paired datasets during pre-training, models such as CLIP
[2] align images with text, making them highly effective for
tasks requiring multimodal reasoning.

Healthcare is a field that naturally demands diverse data
types—medical imaging, clinical records, and laboratory
results, to name a few. Foundation models such as LLMs and
VLMs are well-suited for addressing this complexity. For
instance, LLMs reduce the reliance on task-specific training
by efficiently extracting critical insights from unstructured
textual data. They enable the seamless analysis of electronic
health records (EHR) and support natural language-driven
decision-making [9]. Simultaneously, VLMs excel in bridg-
ing textual and visual data and tackling tasks such as cross-
modal retrieval, disease diagnosis, and automated medical
report generation. Their extensive pretraining allows them
to generalize across applications, thereby minimizing man-
ual efforts and enhancing accuracy (ACC) [10].

These foundation models contribute to the transformative
reshaping of healthcare workflows. GatorTron [9] optimizes
EHR analysis, improves clinical documentation, and enables
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faster access to critical patient data. In interactive settings,
ChatDoctor enhances patient-provider communication with
conversational Al capabilities, bridging gaps in understand-
ing [11]. Visually, VLMs have proven to be indispensable
for multimodal applications. BioViL [10] combines imaging
and textual data to support disease classification and report-
ing, which are critical requirements for modern diagnostics.
By enhancing diagnostic ACC, reducing manual workloads,
and delivering comprehensive insights across multiple
modalities, these foundation models can redefine the future
of healthcare. Their ability to integrate and analyze diverse
datasets not only improves efficiency but also paves the way
for more personalized and effective patient care.

This article presents a comprehensive review of foun-
dation models, emphasizing their applications in medical
imaging and the recent advancements in VLMs within the
medical domain. We have organized and evaluated exist-
ing studies to provide a structured and insightful overview.
Our analysis highlights the applications and strengths of
these models, focusing specifically on research published
between 2022 and 2024, to capture the latest developments
in this dynamic field. A key highlight of this review is the
meticulously curated summary of the datasets used for
training and evaluation, which provide a valuable resource
for researchers. Additionally, by categorizing models based
on medical imaging modalities, we offer in-depth insights
into the unique challenges and tailored solutions associated
with each imaging modality.

Specifically, this paper focuses on the application of
VLMs in the medical imaging domain, offering a structured
analysis of studies in this field. To complement these find-
ings, Fig. 1 presents a four-part visual taxonomy that clas-
sifies the reviewed studies by imaging modality (Fig. 1a),
anatomical target (Fig. 1b), task type (Fig. 1c), and data
source (Fig. 1d).

This review is intended to serve as a guiding framework
for researchers, to foster deeper exploration and collabo-
ration between the vision and medical communities. The
major contributions of this study are as follows:

e This review presents a structured taxonomy and thor-
ough analysis of vision-language foundation models in
medical imaging, with a focus on groundbreaking re-
search conducted between 2022 and 2024 (Fig. 1).

e By categorizing the models according to their medical
imaging modalities, we provide detailed insights into
the modality-specific challenges and innovative solu-
tions designed to address them.

e Furthermore, through a comparative evaluation of mod-
el performance across tasks and modalities, we empha-
size the clinical applicability and practical implications
of VLMs.
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e This review highlights the key applications and strengths
of existing methodologies and proposes directions for
future research.

1.2 Prior reviews on foundation models and the
medical domain

Wang et al. [12] explored the impact of deep learning meth-
odologies on medical image analysis, with a particular focus
on advances in convolutional neural networks (CNNs).
Their review delved into applications such as disease
detection, image segmentation, and classification, while
addressing critical challenges such as data scarcity, model
interpretability, and the integration of these techniques into
clinical workflows. Suganyadevi et al. [13] provided a broad
analysis of deep learning approaches across various medical
imaging modalities, including magnetic resonance imaging
(MRI), CT, and X-rays. By covering the entire technical
pipeline—from preprocessing and model development to
evaluation—their work also highlighted practical imple-
mentation barriers. To address these challenges, they offered
actionable recommendations aimed at facilitating real-
world adoption. Azad et al. [14] focused on the emerging
role of foundation models in medical imaging, emphasizing
their scalability and adaptability to downstream tasks. Their
review categorized the existing foundation models based on
the architectural design and pretraining strategies, offering a
critical assessment of their limitations, and proposed future
research directions to enhance the efficacy of these models
and broaden their applicability in medical contexts. Hartsock

In hospital — lab

— Segmentation

VQA

(d)

et al. [15] examined the application of VLMs to tasks such
as medical report generation and VQA. By investigating
the advancements in aligning visual and textual data, their
review highlighted commonly used datasets and evaluation
metrics. They also discussed the potential of these models
in streamlining healthcare workflows by improving clini-
cal documentation and decision support. Zhang et al. [16]
addressed the challenges of deploying foundation models
for medical image analysis, particularly those related to data
availability, bias, and clinical validation. These issues often
hinder the transition from research to practical application.
Their review emphasized the need for model interpretabil-
ity and robust evaluation frameworks to ensure clinical rel-
evance, offering a forward-looking perspective on bridging
the gap between innovation and implementation.

2 Research approach

We conducted an extensive search using Google Scholar
and Arxiv, utilizing the advanced search tools available on
these platforms. Custom queries were developed to compile
a diverse and comprehensive collection of academic studies.
This process encompassed multiple types of publications,
including peer-reviewed journal articles, conference papers,
workshop materials, preprints, and other non-peer-reviewed
work. To ensure this breadth and diversity, our search crite-
ria were carefully tailored to capture the full scope of rel-
evant research.
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The queries were carefully crafted to include the follow-
ing keywords: (foundation*| generalist*| medical*| [Task]),
(med-[FM]| medical vision language), and (foundation*|
biomedical*| image*| model*). Here, [FM] denotes well-
known foundation models such as PaLM and CLIP and
[Task] denotes specific tasks, such as segmentation and
question answering, within the context of medical imaging.

To provide a structured overview of this emerging field,
this review adopts a narrative synthesis approach, focus-
ing specifically on VLMs applied in medical imaging. The
objective is to analyze recent advances in architectures,
data modalities, and clinical applications, with emphasis
on interpretability, scalability, and domain-specific chal-
lenges. Studies were selected for inclusion based on the
following criteria: (1) publication between 2020 and 2024,
(2) application of VLMs to medical domains including
radiology, pathology, and ophthalmology, and (3) the pres-
ence of experimental results or evaluations conducted on
clinical datasets. Studies that were purely theoretical or not
directly related to medical tasks were excluded. Reflecting
the rapid and ongoing developments in vision-language
models within the medical imaging domain, the literature
search strategy incorporated preprints published between
2022 and 2024. Scientific rigor and reliability were pre-
served by applying a critical appraisal process, through
which only preprints demonstrating sound methodological
quality and adequate experimental validation were retained.
In addition, non-English studies were excluded in order to
minimize the risk of misinterpretation stemming from lin-
guistic ambiguity or inconsistencies in translation, thereby

ensuring coherence and clarity in the synthesis of findings.
Ultimately, this review aims to serve as a resource for both
researchers and clinicians by offering a comprehensive
understanding of the current state of medical VLMs, iden-
tifying prevailing limitations, and outlining potential direc-
tions for future research.

2.1 Review organization

The remainder of this review is organized, as follows. Sec-
tion 2 provides an overview of the foundational principles
underlying foundation models and their significance in the
healthcare domain. It also summarizes the major tasks in
medical imaging and classifies the primary frameworks of
the foundation models used in this field. Section 3 focuses
on VLMs used in medical imaging. It distinguishes between
Specialist VLMs tailored for specific imaging modali-
ties, such as CT, X-ray, and fundus; and Generalist VLMs
designed to handle multiple imaging modalities for diverse
applications (Fig. 2). Section 4 addresses the challenges
in medical VLMs, including dataset bias, inadequate mul-
tilingual representation, and the limitations of evaluation
metrics, along with an analysis of the overall trends in
methodology adoption. It highlights the widespread use of
cross-modal alignment for scalability, whereas multimodal
attention and encoder—decoder integration face computa-
tional challenges.

Fig.2 Organization of the review R R .
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3 Preliminary information

The concept of “foundation models” was first introduced
by the Stanford Institute for Human-Centered Al, which
defined them as “base models trained on large-scale data
in a self-supervised or semi-supervised manner, adaptable
for various downstream tasks” [1]. These models are built
on the principles of deep learning, such as deep neural net-
works and self-supervised learning, and are influenced by
the development of LLMs. Their growth has been driven
by the scaling up of both data and model sizes, thereby
enabling their use across many fields. This section discusses
the main tasks that foundation models address in the medi-
cal field, their underlying architectures, and the factors that
make them effective for medical applications.

3.1 Primary tasks in the medical field
3.1.1 Classification and zero-shot classification

Classification is a cornerstone task in medical imaging,
in which models predict categories such as disease types
or imaging conditions. Zero-shot classification, a more
advanced approach, utilizes pre-trained VLMs to classify
images without requiring fine-tuning using task-specific
data. This capability is particularly valuable in scenarios
where labeled datasets are scarce. One notable example
is CheXNet [17] which achieves a radiologist-level per-
formance in detecting pneumonia from chest radiographs.
By leveraging DenseNet architecture and the large-scale
labeled dataset ChestX-ray14, the study highlights the criti-
cal role of extensive datasets in achieving high diagnostic
accuracy.

3.1.2 Segmentation

Segmentation focuses on identifying and delineating spe-
cific anatomical structures or regions of interest such as
tumors, organs, or lesions. This task is crucial for applica-
tions such as treatment planning and surgical procedures.
The U-Net architecture introduced by Ronneberger et al.
[18] has become the gold standard for biomedical image
segmentation. U-Net features an encoder—decoder design
enhanced with skip connections and excels in precise
boundary delineation, even with limited training data. Its
adaptability makes it an indispensable tool for a wide range
of medical imaging tasks.

3.1.3 Detection

Detection tasks are centered on identifying and localizing
abnormalities, such as nodules, fractures, or tumors, within

medical images. These tasks are essential for early diagnosis
and treatment planning. MedYOLO [19], a 3D object detec-
tion framework based on the YOLO family, was introduced
and specifically tailored for medical imaging applications.
The model has demonstrated an exceptional performance in
detecting various medical structures, highlighting its poten-
tial for use in clinical workflows.

3.1.4 Retrieval

Retrieval tasks focus on identifying visually or semantically
similar images from medical datasets and play a critical
role in comparative diagnosis and research. This capability
is particularly valuable in fields such as radiology, pathol-
ogy, and dermatology, where historical cases often guide
diagnostic decisions. Lehmann et al. [20] proposed a com-
prehensive framework for content-based image retrieval
in medical applications. By incorporating feature extrac-
tion and relevance feedback mechanisms, their system can
significantly improve the retrieval ACC across multimodal
datasets.

3.1.5 VQA

VQA integrates visual understanding with clinical reason-
ing to address natural language questions regarding medical
images. This task is particularly vital in domains such as
radiology and pathology, where clinicians require targeted
insights from imaging data. Ben Abacha et al. [21] achieved
significant strides in this area by developing the VQA-Med
benchmark dataset. Designed to evaluate the VQA mod-
els in medical imaging, the dataset features clinically rel-
evant questions related to imaging findings and diagnostic
tasks. By providing a standardized resource, VQA-Med has
become instrumental in advancing VQA systems for medi-
cal applications.

3.1.6 Image captioning

Image captioning automates the generation of textual
descriptions for medical images, enhancing documenta-
tion and communication among healthcare professionals.
Wang et al. [22] introduced TieNet, a model that embeds
radiological images and reports into a shared representation
space to produce descriptive captions for chest radiograph.
By aligning visual data with textual representations, TieNet
can improve the efficiency of automated reporting systems
and support streamlined radiological workflows.
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3.1.7 Image and report generation

Image generation focuses on synthesizing realistic medical
images to augment datasets, particularly in cases involv-
ing rare conditions or limited training data. Hou et al. [23]
developed a hybrid synthesis pipeline for histopathology
image segmentation that combines real histopathology
textures with generative adversarial networks (GANSs).
This innovative approach generates diverse training image
patches across various tissue types, enhancing generaliza-
tion performance. By improving the heterogeneity of syn-
thetic datasets, this method is especially valuable for cancer
types lacking annotated training data.

Report generation automates the creation of structured
diagnostic reports by summarizing the key imaging find-
ings. Jing et al. [24] designed a model that learns the joint
representations of imaging data and textual information and
produces radiology reports. By bridging the gap between
image analysis and textual synthesis, this approach con-
tributes to more accurate and efficient reporting in clinical
radiology.

3.2 Model architecture

VLMs represent a groundbreaking category of Al systems
designed to process and reason across both visual and tex-
tual modalities. These models support a wide range of tasks
including image captioning, cross-modal retrieval, VQA,
and text-conditioned image generation. Methodologically,
VLMs can be divided into three main approaches: encoder-
based cross-modal alignment, encoder-based multimodal
attention, and encoder—decoder based multimodal inte-
gration (Fig. 3). This section explores each approach in
detail, focusing on the architecture, learning strategies, and
expected effects in the medical domain.

3.2.1 Encoder based cross-modal alignment

Encoder based cross-modal alignment employs separate
encoders for visual and textual inputs and aligns their rep-
resentations in a shared embedding space, shown in Fig. 3a.
This alignment enables the model to compute semantic
similarity between modalities—such as visual features in
an X-ray and corresponding medical terms in a diagnos-
tic report—without requiring pixel-level annotations. By
comparing the similarity between encoded features, the
model learns to associate paired inputs and distinguish
them from unpaired examples. This methodology relies pri-
marily on contrastive learning in which paired inputs are
brought closer together in the embedding space and mis-
matched pairs are pushed apart. CLIP [2] by OpenAl is a
seminal model in this category that has achieved zero-shot
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capabilities across various tasks by pre-training on 400 mil-
lion image-text pairs. CLIP utilizes a vision transformer
(ViT) or ResNet as its image encoder and a transformer for
text encoding, jointly optimizing them using contrastive
loss. ALIGN [25] has extended this approach using a larger
dataset, demonstrating state-of-the-art results in image-text
retrieval. Subsequent advancements, such as CLOOB [26]
and DeCLIP [27] have focused on improving robustness and
efficiency by integrating self-supervised learning objectives
and better sampling strategies for contrastive pairs. In medi-
cal imaging, encoder based alignment models facilitate the
development of robust retrieval systems that match medi-
cal images with their corresponding textual annotations or
reports. This capability can significantly enhance the effi-
ciency of case-based reasoning and diagnostic support in
radiology.

3.2.2 Encoder based multimodal attention

Encoder based multi-modal attention combines the visual
and textual inputs within a unified encoder architecture
(Fig. 3b). By embedding both modalities into a single
encoder, the model learns joint representations that capture
their contextual relationships through layer-wise interaction.
Unlike cross-modal alignment, which processes the modali-
ties separately, this approach uses self-attention mecha-
nisms to model cross-modal interactions directly within an
encoder, thereby enabling joint representation learning. An
example of this methodology is SimVLM [28], which treats
image patches and text tokens as inputs to a shared encoder,
using attention layers to capture the dependencies between
the two modalities. Similarly, VisualBERT [29] employs a
transformer encoder to jointly encode image regions and
text tokens, allowing it to excel in tasks such as VQA and
visual entailment. By fully integrating the information in
each layer, these models perform exceptionally well in tasks
requiring complex cross-modal reasoning. In the medical
context, encoder based multimodal attention models are
highly effective for tasks such as medical VQA, in which
nuanced interactions between clinical images and associ-
ated textual data are critical. This approach is particularly
useful for tasks that require contextual understanding, such
as combining diagnostic imaging with clinical notes to pro-
vide comprehensive insights.

3.2.3 Encoder-decoder based multimodal integration

Encoder—decoder based multi-modal integration models
adopt a generative approach, making them highly effec-
tive for tasks such as image captioning, report generation,
and text-conditioned image creation. Unlike models that
simply align or jointly embed inputs, this architecture is
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Fig. 3 Detailed illustration of
model architecture. a Encoder-
based cross-modal alignment
method employs separate encoders
for images and text, aligning their
embeddings across modalities to
facilitate integration. b In encoder-
based multi-modal attention, both
image and text inputs are processed
within a unified model, using the
encoder alone to execute tasks. ¢
Encoder—decoder-based multi-
modal integration combines images
and text as simultaneous joint
inputs to the encoder, adopting a
generative approach for decoding
outputs. d In another encoder—
decoder-based multi-modal
integration approach, text serves as
a conditional prompt, directing the
generation process by attention-
based mechanisms
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designed to actively generate outputs, allowing the model
to produce natural language or synthesized images condi-
tioned on mult-imodal input. These models typically pro-
cess visual and textual inputs within a shared encoder and
utilize a decoder to generate outputs based on the encoded

symmetry, trachea,
and mediastinum

Bone thoracic
symmetry, trachea,
and mediastinum
in the middle;

Medical Image

(d)

Medical Reports

representations. Some implementations also allow one
modality, such as text, to conditionally influence another,
such as images, during the intermediate stages of process-
ing the intermediate stages of processing, as illustrated as
Fig. 3c. In its encoder—decoder configuration, SimVLM

@ Springer



816

Biomedical Engineering Letters (2025) 15:809-830

[28] treats image patches as pseudo-text tokens and inte-
grates them seamlessly into prefixed language modeling for
tasks such as conditional text generation. Expanding on this
concept, VisualGPT [30] conditions pre-trained language
models on visual inputs, enabling the generation of detailed
captions or answers. Similarly, DeepMind’s Flamingo [31]
leverages cross-attention modules to fuse images and text
modalities dynamically, achieving impressive few-shot
performance across a variety of vision-language tasks. A
representative architectural structure of these models is
shown in Fig. 3d. In medical applications, encoder—decoder
models have significant potential for automating diagnostic
report generation, thereby reducing the workload of radi-
ologists. For instance, given a chest radiograph, such mod-
els can produce comprehensive findings and impressions,
improve workflow efficiency, and minimize human error.
Furthermore, text-conditioned image generation can be
used to simulate rare pathological cases, thereby enhancing
the diversity of training datasets for medical education and
model development.

4 Foundation models in medical imaging
4.1 Specific domain transfer applications
4.1.1 X-ray imaging

In the domain of X-ray imaging using encoder based cross-
modal alignment (Table 1), Phan et al. [32] proposed a
novel medical foundation model that breaks down dis-
ease descriptions into fundamental visual components.
This model, which is primarily trained on X-ray images,
aligns visual data with key pathological features, thereby
significantly improving its ability to detect and interpret
pathological findings. Similarly, Luo et al. [33] introduced
DeViDe, a transformer-based approach that enhanced the
performance of medical foundation models. The integration
of diverse medical knowledge sources, such as radiographic
descriptions, enables this model to establish a stronger con-
nection between visual data and textual representations.
Focusing on clinical knowledge, Liu et al. [34] developed a
hierarchical foundation model, IMITATE. With a structure
that relies on X-ray images, the model uses the findings and
impressions sections of medical reports to align multilevel
visual features with descriptive and conclusive text, thereby
achieving effective integration of clinical insights. Finally,
Wang et al. [35] presented multi-modal collaborative
prompt learning (MCPL), a framework aimed at refining
the relationship between medical texts and image represen-
tations. By employing collaborative prompt learning, this
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model demonstrated enhanced precision and interpretabil-
ity, making it suitable for a wide range of medical tasks.

In the domain of encoder based multi-modal atten-
tion, Moon et al. [36] introduced the Medical Vision Lan-
guage Learner (MedViLL), a framework that bridges the
understanding and generation of medical images and text.
Through an innovative self-attention mechanism, Med-
ViLL effectively captures joint representations and achieves
superior performance across a variety of medical tasks.
Wang et al. [37] proposed ECAMP, a model designed to
enhance the interpretation of medical data by emphasizing
entity-specific contexts within radiology reports. By lever-
aging advanced language models, ECAMP extracts and
refines entity-centered information from medical reports,
thereby strengthening the interaction between the textual
and visual modalities to improve diagnostic insights. Yan
et al. [38] adapted the bidirectional encoder representations
from transformers (BERT) architecture for clinical text by
pretraining it on extensive medical corpora, including the
medical information mart for intensive care I11 (MIMIC-III)
clinical notes. The resulting Clinical BERT model excels in
understanding the unique language patterns and specialized
terminology of the medical domain, making it highly effec-
tive for various clinical text-processing applications.

In the domain of encoder—decoder based multi-modal
integration, Chambon et al. [39] presented RoentGen, a
vision-language foundation model specifically designed
to produce clinically accurate and descriptive chest X-ray
reports. This model bridges the gap between imaging and
text by generating detailed radiological insights, making
it a robust tool for automated report generation. Huemann
et al. [40] developed ConTEXTual Net, a multi-modal
vision-language foundation model that integrates radiol-
ogy reports into the segmentation process for chest radio-
graphs. By incorporating a free-form textual context, the
model can enhance pneumothorax segmentation, surpassing
the performance of vision-only models, and demonstrating
the value of combining visual and textual modalities. Li et
al. [41] introduced an Anatomical Structure-Guided (ASG)
framework that integrates anatomical knowledge into a
medical vision-language foundation model. This innovative
approach aligns the anatomical regions in images with the
corresponding textual descriptions, enabling superior per-
formance in classification and segmentation tasks across
multiple datasets. Liu et al. [42] proposed M-FLAG, which
focuses on improving training stability and efficiency. By
freezing the language models and optimizing the latent
space geometry with a novel orthogonality loss, the model
achieves significant advancements in medical tasks. Tha-
wakar et al. [43] introduced XrayGPT, which was tailored
for radiology applications. By combining the MedClip
visual encoder with a fine-tuned Vicuna language model,
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Table 1 Summary of foundation models in X-ray imaging
Modality Model Dataset Prompt Task Metrics Mean (evaluation
type dataset)
Encoder MAVL MIMIC-CXR v2 Text Zero-shot AUROC, F1, 0.735, 26.25, 82.77
based classification ACC (ChestX-ray14)
cross-modal Detection ToU, Dice, 21.97,34.11, 84.29
alignment ACC (COVID Rural)
DeViDe MIMIC-CXRv2 Text Zero-shot AUROC, F1, 0.777,31.5,82.3
classification ACC (ChestX-ray14)
Segmentation Dice 70.27 (ChexDet)
IMITATE MIMIC-CXR, CheXpert, RSNA, Text Classi- AUROC, Dice 0.897 (CheXpert), 64.5
SIIM, COVIDx, ChestX-ray14 fication, mAP, (SIIM)
Segmentation Precision@5 26.4 (RSNA), 71.83
Detection, (CheXpert 5x%200)
Retrieval
MCPL MIMIC-CXR Report, Classification ACC, AUROC 83.3, 0.843 (CheXpert)
Hand-craft Detection mAP, mloU 20.1, 27.5 (Object-CXR)
Encoder MedViLL MIMIC-CXR, Open-I Report Classification Avg AUROC, 0.980, 0.839
based Retrieval F1 (MIMIC-CXR)
multi-modal MRR, H@5, 56.5,77.0,47.4
attention R@5 (MIMIC-CXR)
ECAMP MIMIC-CXR Text gener- Classification AUROC 0.867, 0.851
ated by Segmentation Dice (ChestX-ray14)
ChatGPT 84.5 (SIIM-ACR
Pneumothorax)
Clinical-BERT MIMIC-CXR, IU X-Ray, Report Image BLUEIL,CIDEr 0.383,0.151
COV-CTR, NIH ChestXray14 Captioning ~ AUROC (MIMIC-CXR)
Classification 0.845 (NIH
ChestXray14)
Encoder— RoentGen MIMIC-CXR Text Image FID 3.6 MIMIC-CXR)
decoder based generation AUROC 0.824 (CheXpert)
multi-modal Classification
integration ConTEXTual Net CANDID-PTX Report Segmentation Dice 0.716 (CANDID-PTX)
ASG MIMIC-CXR Report Classification AUROC 0.836 (NIH Chest
Segmentation Dice X-ray)
73 (RSNA Pneumonia)
M-FLAG MIMIC-CXR Report Classification AUC 69.50 (MIMIC-CXR)
Segmentation Dice 64.80 (SIIM-ACR)
XrayGPT MIMIC-CXR, Open-I Report Image BLEU 17.8 (Openl)
captioning AUROC 0.832 (CheXpert)
Classification
Libra MIMIC-CXR, Report Report BLEU-1, 51.3,24.5
Medical-Dift-VQA, generation BLEU-4, (MIMIC-CXR)

MIMIC-Ext-MIMIC-CXR-VQA

AUROC, area under receiver operating characteristic curve; ACC, accuracy; loU, intersection over union; mAP, mean average precision; mloU,
mean intersection over union; MRR, mean reciprocal rank; H, Hit Rate; R, Recall; CIDEr, consensus-based image description evaluation; FID,

fréchet inception distance; BLEU, bilingual evaluation understudy

their approach excels in radiology report generation and
interactive reasoning, offering state-of-the-art performance
in these areas. Zhang et al. [44] designed Libra, a tempo-
rally aware multi-modal LLM aimed at improving radiol-
ogy report generation. Libra effectively captures temporal
changes in radiological data, achieving good performance
with the MIMIC-CXR dataset across lexical and clinical
evaluation metrics.

4.1.2 Computed tomography imaging

Chen et al. [45] presented 3D-CT-GPT, a cutting-edge VQA-
based medical VLM developed to generate radiology reports
from 3D CT scans, with a specific focus on chest computed
tomography (CT) using encoder-based cross-modal align-
ment in CT imaging (Table 2). By employing advanced
VQA techniques, this model improves the interpretability
and ACC of automated radiological assessments, thereby
providing a significant step forward in generating detailed
and clinically meaningful reports. Building on the need for
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Table 2 Summary of foundation models in CT imaging

Modality Model Dataset Prompt Task Metrics Mean (evaluation dataset)
type
Encoder based 3D-CT-GPT CT-RATE, Dataset-XY Text Report generation BLEU, ROUGE-1 13.27,25.94 (CT-RATE)
cross-modal CT-CLIP,  CT-RATE Text  Detection MAP@1 0.886 (CT-RATE)
alignment CT-CHAT Zero-shot classification MAP@1 0.886 (CT-RATE)
E3D-GPT  BIMCV-R, CT-RATE  Text Report generation BLEU 18.19 (BIMCV-R)
Unlabeled 3D CT VQA ACC 42.24 (BIMCV-R-VQA)
Encoder— Merlin Abdominal CT Report  Zero-shot classification F1 0.741 (Abdominal CT)
decoder based  ProMISe Medical Segmentation Point Segmentation Dice, NSD 66.81, 81.24 (MSD)
multi-modal Decathlon (MSD)
Integration Med-2E3  M3D-Cap, M3D-VQA Report Report generation BLEU-1, ROUGE-1  51.51, 54.48 (M3D-Cap)
VQA BLEU-1, ROUGE-1  58.55, 62.04 (M3D-VQA)
Proposed MIMIC-CXR, Open-I, Text Detection AUROC, Precision 0.96,0.95 (MIMIC-CXR)
Methods CT-KIDNEY

BLEU, bilingual evaluation understudy; ROUGE, recall-oriented understudy for gisting evaluation; MAP, mean average precision; ACC, accu-
racy; NSD, normalized surface dice; AUROC, area under receiver operating characteristic curve

robust datasets, Hamamci et al. [46] introduced CT-RATE,
which is the first open-source multi-modal dataset that
pairs 3D CT scans with the corresponding textual reports.
By leveraging this dataset, the authors also developed CT-
CLIP and CT-CHAT, two innovative foundation models that
excel in tasks such as zero-shot multi-abnormality detection
and multi-modal Al assistance for 3D medical imaging. To
address the challenges of extracting high-quality 3D visual
features, Lai et al. [47] proposed E3D-GPT, an enhanced
3D visual foundation model tailored for medical vision-
language applications. The model is built on a substantial
corpus of unlabeled 3D CT data utilized in a self-supervised
learning framework to extract robust 3D visual features. By
incorporating 3D spatial convolutions, E3D-GPT efficiently
aggregates and projects high-level image features while
reducing computational complexity.

In the domain of encoder—decoder based multi-modal
integration, Blankemeier et al. [48] presented Merlin, a
computationally efficient 3D vision-language foundation
model specifically designed for interpreting abdominal CT
scans. Merlin achieves exceptional performance across a
wide range of downstream tasks by integrating supervi-
sion from both structured EHR and unstructured radiology
reports. Notably, Merlin achieves state-of-the-art results
while maintaining minimal computational resource require-
ments, making it a practical and scalable solution. To address
the challenges of 3D medical image segmentation, Li et al.
[49] introduced ProMISe, a framework driven by prompt
engineering that adapts general VLMs for domain-specific
applications. By leveraging the flexibility of prompts, this
method demonstrates both high effectiveness and versatil-
ity, thereby establishing a new standard for segmentation in
complex medical imaging. Focusing on multi-modal inte-
gration, Shi et al. [50] developed Med-2E3, a vision-lan-
guage foundation model that combines 3D and 2D encoders
to enhance medical-image analysis. The model incorporates

@ Springer

an innovative text-guided interslice (TG-IS) scoring module
that mimics the attention mechanisms used by radiologists
when analyzing CT images. This approach enables Med-
2E3 to excel in tasks such as report generation and VQA
using large-scale multi-modal benchmarks. Zhou et al. [51]
proposed a sophisticated vision-language framework that
merges LLMs with hierarchical attention mechanisms. By
effectively integrating multi-modal inputs, the model excels
in fine-grained abnormality detection and the generation of
natural language descriptions for medical CT images. This
approach significantly improves the clinical relevance and
detection ACC, establishing a new benchmark for precision
in medical imaging tasks.

4.1.3 Fundus imaging

In the domain of fundus imaging using encoder based cross-
modal alignment (Table 3), Cherukuri et al. [52] employed a
guided context self-attention mechanism to integrate visual
and textual features within a vision-language foundation
model designed for retinal image captioning. The GCS-
M3VLT architecture effectively captures intricate visual
details and a broader clinical context, even with limited data.
Evaluations of the DeepEyeNet dataset have demonstrated
improvements in BLEU-4 scores, indicating its capability to
generate accurate and comprehensive medical captions. Du
et al. [53] developed RET-CLIP, a vision-language founda-
tion model pre-trained on a large dataset of color fundus
photographs paired with clinical diagnostic reports. The
model employs a tripartite optimization strategy to extract
features at three levels: the left eye, right eye, and report
data. This multilevel approach facilitates effective represen-
tation learning, leading to enhanced diagnostic performance
in diseases such as diabetic retinopathy and glaucoma. Luo
et al. [54] addressed demographic biases in VLMs by intro-
ducing FairCLIP, a framework designed to promote fairness
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Table 3 Summary of foundation models in Fundus imaging

Modality Model Dataset Prompt type  Task Metrics Mean (evaluation dataset)
Encoder based GCS-M3VLT DeepEyeNet Text Report BLEU-1, BLEU-2  0.430, 0.345
cross-modal generation (DeepEyeNet)
alignment RET-CLIP Private Dataset Report Classification ~ AUROC, AUPR 0.856 0.616 (IDRID)
FairCLIP Harvard-FairVLMed Report Classification =~ AUROC, ES-AUC  0.702, 0.655
generated (Harvard-FairVLMed)
by ChatGPT
FLAIR 37 Combined datasets Text Detection ACA/x 0.604/0.772 (MESSIDOR)
Segmentation ~ AUROC 0.92 (FIVES)
VisionCLIP SynFundus-1 M Text Zero-shot ACC 43.1 (MESSIDOR)
classification
ViLReF Private Dataset Report Classification ~ AUROC, mAP 94.29, 63.62 (RFMiD)
Segmentation  DSC, IoU 52.65, 38.38 (IDRiD)
Encoder— VisionUnite MMFundus Text Classification ~ ACC, 77.8, 2.937 (MMFundus)
decoder based Diagnostic
multi-modal Relevance

integration

BLEU, bilingual evaluation understudy; AUROC, area under receiver operating characteristic curve; AUPR, area under the precision-recall
curve; ES-AUC, early stopping area under the curve; ACA, average classification accuracy; k, Cohen's Kappa; ACC, accuracy; mAP, mean
average precision; DSC, dice similarity coefficient; IoU, intersection over union

Table 4 Summary of foundation models in MRI imaging

Modality Model Dataset Prompt type Task Metrics Mean (evaluation dataset)
Encoder based MedBLIP ADNI, NACC, Text generated Classification ACC 78.7 (ADNI)
multi-modal attention OASIS by EHRs Zero-shot ACC 80.8 (AIBL)
classification

Encoder—decoder based Med-UniC  MIMIC-CXR, Report Image captioning ~ BLEU 18.25 (MIMIC-CXR)
multi-modal integration PadChest Classification AUROC  0.832 (CheXpert)

FM-ABS Left Atrium, Bbox generated  Segmentation Dice, 86.14, 75.85 (Left

Brain Tumor by MobileSAM Jaccard Atrium)

Bbox, bounding box; ACC, accuracy; BLEU, bilingual evaluation understudy

across diverse data distributions. Using optimal transport
methods, the model mitigates performance disparities
between demographic groups, ensuring more equitable out-
comes in medical image analysis while maintaining robust
diagnostic capabilities. Silva-Rodriguez et al. [55] incorpo-
rated domain-specific retinal knowledge into the training
process of FLAIR, a vision-language foundation model for
medical image analysis. The model embeds expert clinical
insights into text supervision and demonstrates improved
interpretative abilities, resulting in an enhanced performance
in disease classification and anomaly detection tasks. Wei et
al. [56] utilized synthetic fundus images paired with natu-
ral language descriptions to develop VisionCLIP, a vision-
language foundation model for retinal image analysis. This
strategy enabled the model to effectively generalize to
real-world datasets while preserving patient confidentiality.
Yang et al. [57] designed ViLReF, a vision-language foun-
dation model optimized for detecting fine-grained abnor-
malities in retinal images. By leveraging expert-driven label
extraction and implementing weighted similarity coupling
loss, the model effectively captures subtle yet clinically sig-
nificant patterns. This approach improves the ACC of lesion

detection and segmentation tasks and highlights its utility in
precision diagnostics.

In the domain of encoder—decoder based multi-modal
integration, Li et al. [58] introduced VisionUnite, which is
designed specifically for ophthalmology, to address criti-
cal challenges in multi-disease diagnosis, user interaction,
and interpretability. The model is trained on MMFundus,
the largest multi-modal fundus dataset to date that contains
more than 1.24 million image-text pairs, including high-
resolution fundus images and simulated doctor-patient
dialogues.

4.1.4 MRIimaging

In the domain of MRI imaging using encoder based multi-
modal attention (Table 4), Chen et al. [59] introduced
MedBLIP, a vision-language foundation model aimed at
seamlessly integrating 3D medical imaging with textual
data derived from EHRs. By leveraging vision language
pre-training, this model effectively captures the intricate
relationships between volumetric medical images and the
associated textual information. Consequently, MedBLIP has
achieved significant breakthroughs in applications such as
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automated radiology report generation and clinical decision
making.

Inresponse to the biases often present in multilingual med-
ical datasets, Wan et al. [60] developed Med-UniC, a vision-
language foundation model that employs cross-lingual text
alignment regularization. This innovative framework aligns
textual representations across languages, thereby enhanc-
ing inclusivity and optimizing performance in a variety of
vision-language tasks. In particular, Med-UniC excels in
multilingual diagnostic reporting and image-text retrieval,
underscoring its adaptability to diverse clinical contexts. Xu
et al. [61] proposed foundation model-driven active barely
supervised (FM-ABS), a vision-language foundation model
designed to address the complexities of 3D medical image
segmentation under minimal supervision. By incorporat-
ing a prompt-driven architecture alongside active learning
methodologies, FM-ABS significantly reduces the reliance
on large, annotated datasets while maintaining high seg-
mentation precision.

4.1.5 Other medical imaging

In the domain of other medical imaging using encoder
based cross-modal alignment (Table 5), Ferber et al. [62]
explored the potential of in-context learning within multi-
modal LLMs to classify cancer pathology images without
the need for task-specific fine-tuning. By harnessing the
contextual information embedded in both visual and tex-
tual data, the model demonstrates its capability to analyze
complex pathology slides with adaptability and efficiency.

Table 5 Summary of foundation models in other medical imaging

This innovative approach shows promise in supporting flex-
ible diagnostic workflows that align seamlessly with clinical
requirements. Vo et al. [63] investigated the utilization of
frozen, large-scale, pretrained vision-language foundation
models as foundational backbones for multi-modal breast
cancer prediction. Rather than retraining the models, this
method preserves the pretrained parameters while incor-
porating domain-specific mammography data, leading to
improved predictive ACC for breast cancer diagnosis. This
study highlights the practical advantages of repurposing
large-scale VLMs for medical imaging, showcasing their
effectiveness in addressing domain-specific diagnostic chal-
lenges. Building on the EchoCLIP model, Christensen et al.
[64] introduced EchoCLIP-R, a vision-language foundation
model specifically designed for echocardiographic analysis.
This updated model features a customized echocardiogra-
phy report text tokenizer, enabling a more precise alignment
of multi-modal data. EchoCLIP-R achieves impressive
results across various tasks, including identifying individual
patients across multiple videos, detecting clinical transi-
tions, and delivering robust image-to-text retrieval with top-
tier cross-modal ranking. These advancements underscore
its versatility and reliability in echocardiographic interpreta-
tion and report generation.

In the domain of encoder—decoder based multi-modal
integration, Yin et al. [62] investigated the use of prompt
engineering to customize vision foundation models for
analyzing pathology images. Task-specific prompts are
incorporated within the QAP framework, enabling the
model to excel in pathology-oriented tasks such as tissue

Modality Model Dataset Image type Prompt type Task Metrics Mean (evaluation
dataset)
Encoder based GPT-4 V Private dataset attrib-  Pathology Slides Text Zero-shot ACC 32.5 (CRC-VAL-
cross-modal uted to company classification HE-7 K)
alignment Proposed CBIS-DDSM, Mammography Text gener-  Classification ACC, 79.6, 0.907
Methods EMBED ated by AUROC  (CBIS-DDSM)
Tab2Text
EchoCLIP-R  Cedars-Sinai Medical ~Echocardiography ~ Report Retrieval MCMRR  206.1 (Cedars-Sinai
Center Regression MAE Medical Center)
16.9 (Cedars-Sinai
Medical Center)
Encoder based QAP NAFLD-Anomaly Pathology Slides Morpho- Classification F1 99.58
multi-modal logical Scoring Avg F1 (NAFLD-Anomaly)
attention Attributes 83.37
(NAFLD-Anomaly)
LLaVA-Ultra US-Hospital Ultrasound Text VQA F1, 76.85, 81.88
Precision (SLAKE)
GP-VLS 11 Combined datasets ~ Surgical Imaging Text VQA ACC 46.1 (MedQA)
Encoder— SkinGEN Fitzpatrick17k, SCIN  Clinical image Text Image CLIP, 0.76,0.82
decoder based generation DINOV2  (Fitzpatrick17k)
multi-modal Classification score

integration

ACC, accuracy; AUROC, area under receiver operating characteristic curve; MCMRR, mean cumulative mean reciprocal rank; MAE, mean

absolute error
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classification and anomaly detection without the need for
extensive fine-tuning. This innovative approach emphasizes
the adaptability and efficiency of prompt-based techniques
for streamlining medical imaging workflows for patho-
logical slides. Guo et al. [65] introduced LLaVA-Ultra, a
vision-language foundation model specifically designed for
ultrasound imaging in Chinese healthcare. This model inte-
grates sophisticated vision and language functionalities to
address critical challenges unique to ultrasound, including
the variability in interpretation and the demands of real-time
interaction. Optimized for tasks such as image interpreta-
tion, diagnostic decision-making, and interactive querying,
LLaVA-Ultra is effective in advancing clinical ultrasound
practices. In surgical applications, Schmidgall et al. [66]
developed GP-VLS, a versatile vision-language foundation
model that combines domain-specific medical and surgical
knowledge with advanced visual scene comprehension. This
model supports key tasks such as surgical phase recogni-
tion, instrument detection, and intraoperative decision-mak-
ing. GP-VLS offers real-time, context-sensitive assistance
and can enhance surgical workflows, improve clinical effi-
ciency, and support more informed decision-making in sur-
gical environments.

Lin et al. [67] introduced SkinGEN, a vision-language
foundation model augmented with stable diffusion, to
advance dermatological diagnostics through interactive
and explainable visualizations. The model generates life-
like depictions of potential skin conditions, enhancing the

diagnostic ACC in tasks such as classification and anom-
aly detection. By embedding explainability into its design,
SkinGEN not only improves clinical outcomes, but also
strengthens communication between clinicians and patients,
fostering greater trust and understanding in medical
consultations.

4.2 Multi-domain integrated applications
4.2.1 Encoder based cross-modal alignment

In the domain of foundation models with encoder based
cross-modal alignment (Table 6), Ghosh etal. [68] introduced
Mammo-CLIP, a pioneering vision-language foundation
model pre-trained on an extensive dataset of mammogram-
report pairs. By capitalizing on the inherent alignment
between the visual and textual data in mammography, the
model achieves improvements in data efficiency and robust-
ness. Its enhanced performance in tasks such as abnormality
detection and image-text alignment underscores its potential
for integration into breast cancer screening workflows. Liu
etal. [69] developed T3D, which is a vision-language frame-
work tailored for high-resolution 3D medical imaging. This
model uses text-informed contrastive learning and advanced
image restoration techniques to capture intricate visual
details without down sampling. Consequently, T3D excels
in representation learning for volumetric datasets, making
it particularly effective for classification and segmentation

Table 6 Summary of foundation models with encoder-based cross-modal alignment

Model Dataset Image type Prompt Task Metrics Mean (evaluation
type dataset)
Mammo-CLIP UPMC, VinDr X-ray, CT Report  Zero-shot ACC 62.0, 76.0, 15.0
classification (RSNA)
T3D BIMCV-VLP X-ray, CT, MRI Text Segmentation avgDice 79.5 (BTCV)
Classification macro-avg 58.1 (MDLT)
AUROC
BLIP PubMed Image-Text ~ Xray, CT, MRI, Micros-  Caption Retrieval 2t@l i2t@10 36.52 72.62 (PubMed
copy, Fundus Imaging Image-Text)
PM2 BACH, Figshare MRI MRI, Fundus Imaging, Text Zero-shot ACC 47.5 (BACH)
Brain Tumor, DR Pathology Slides gener-  classification
ated by
CoOp
Medclip MIMIC-CXR, X-ray, CT Text Zero-shot classifi- ACC 59.4 (MIMIC-CXR)
CheXpert, Unpaired cation Retrieval P@1,P@2 45,49
Text, COVID, RSNA (CheXpert5 x200)
Pneumodia
UniDCP ROCO, MIMIC-CXR  X-ray, CT, MRI, Ultra-  Text VQA ACC 74.5 (VQA-RAD)
sound, Pathology Slides Report generation BLEU-1, 0.527, 0.349 (IU
BLEU-2 X-Ray)
MPMA ROCO, MIMIC-CXR  X-ray, CT, MRI, Text Classification AUROC 0.906 (CheXpert)
Ultrasound, Report generation BLEU-1, 0.518, 0.337 (IU
Pathology Slides BLEU-2 X-Ray)
BiomedCLIP PMC-15M X-ray, CT, MRI, Ultra- Text Retrieval R@1, R@5 56.0,77.9
sound, PET, Microscopy, VQA ACC (PMC-15 M)

Pathology Slides

72.7 (VQA-RAD)

ACC, accuracy; AUROC, area under receiver operating characteristic curve; i2t, image-to-text; P, precision; R, Recall
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tasks involving 3D modalities, such as CT scans. Monajati-
poor et al. [70] proposed BLIP, a pipeline designed to align
medical images with textual data through subfigure-caption
matching and multi-modal pretraining. Particularly adept at
analyzing brain abnormalities, this model enhances tasks
such as image-text retrieval and multi-modal understand-
ing. Its architecture emphasizes precise alignment between
visual inputs and textual descriptions, enabling superior
analysis of complex brain imaging datasets. Wang et al. [71]
introduced PM2, a multi-modal prompting paradigm that
addresses the challenges of few-shot medical image classi-
fication. By integrating cross-modal information, PM2 dem-
onstrates flexibility and robust performance, particularly in
scenarios with limited labeled data. This versatility makes
it a valuable tool for various medical imaging modalities.
Wang et al. [72] presented MedCLIP, a vision-language
foundation model designed to learn from unpaired medical
images and text. Employing a semantic similarity matrix for
contrastive learning, MedCLIP bypasses the need for paired
datasets, achieving notable success in zero-shot image-text
retrieval and classification across modalities such as X-rays
and pathology slides. Zhan et al. [73] introduced UniDCP, a
VLM that utilizes dynamic cross-modal learnable prompts.
This approach harmonizes inputs from diverse pretrain-
ing tasks, enabling the model to adapt to a wide range of
vision-language tasks in medical imaging without requiring

task-specific fine-tuning. UniDCP performs exceptionally
well in tasks such as report generation and cross-modal
retrieval. Zhang et al. [74] proposed MPMA, a vision-
language foundation model that integrates cross-modal
alignment into joint image-text reconstruction. By foster-
ing enhanced interactions between modalities, this method
improves the performance in tasks such as classification and
report generation, particularly when applied to multi-modal
datasets. Finally, Zhang et al. [75] introduced BiomedCLIP,
a multi-modal biomedical foundation model pre-trained on
PMC-15 M [75], a comprehensive dataset containing 15
million image-text pairs sourced from PubMed Central.
The model benefits from extensive pretraining and excels in
biomedical tasks such as image-text retrieval and zero-shot
classification. Its ability to address complex medical que-
ries with remarkable precision highlights its potential for
advancing biomedical research and applications.

4.2.2 Encoder based multi-modal attention

In the domain of foundation models with encoder based
multi-modal attention (Table 7), Chen et al. [76] devised an
approach that integrates domain-specific knowledge. Their
method refines the alignment between the visual and textual
data, enabling more accurate reasoning for complex tasks.
This advancement has proven to be particularly effective in

Table 7 Summary of foundation models with encoder based multi-modal attention

Model Dataset Image type Prompt type Task Metrics Mean (evaluation
dataset)
Proposed ROCO, MedICaT, X-ray, CT, MRI, Ultrasound Text, Graph VQA ACC 67.60 (VQA-RAD)
Methods MIMIC-CXR Classification ~ ACC 80.51 (MELINDA)
Llama3-Med Claude 3 Opu, X-ray, CT, MRI, Ultrasound, Text VQA Recall 31.20 (VQA-RAD)
LLaMA 3 70B PET
PPE COCO X-ray, Microscopy, Text generated ~ Segmentation  Dice, mloU 80.59, 67.59
Pathology Slides, RGB by BLIP, Hand- (MoNuSeg)
image craft, Mask
label generated
by LViT
LLaVA-Med PMC-15M X-ray, CT, MR, Ultrasound, Text generated VQA Recall 64.75 (VQA-RAD)
PET by GPT-4
TFA-LT ISIC2018, Dermoscopy, Fundus Text Classification ~ ACC 70.48 (ISIC2018)
APTOS2019 Imaging
LViT Private dataset attrib-  X-ray, CT Report Segmentation  Dice, mloU 83.66, 75.11
uted to company (MosMed Data+)
One-Prompt 78 Combined datasets X-ray, CT, MRI, Click, Bbox, Segmentation  Avg Dice 67.30 (KiTS23)
Segmentation Fundus Imaging, CBCT Doodles, Mask
label
Med-VLFM ROCOv2 X-ray, CT Text Report BERT 0.638,0.304
generation Score, (ROCOV2)
ROUGE-1
BiomedGPT-B 1U X-ray, MIMIC- X-ray, CT, MRI, Pathology = Report Image ROUGE-L, 28.50,12.90 (IU
CXR, Peir Gross, Slides captioning METEOR  X-ray)
SLAKE, VQA-RAD, VQA ACC 88.7 (SLAKE)

PathVQA

Bbox, bounding box; ACC, accuracy; mloU, mean intersection over union; ROUGE, recall-oriented understudy for gisting evaluation;

METEOR, metric for evaluation of translation with explicit ordering
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Table 8 Summary of foundation models with encoder—decoder based multi-modal integration

Model Dataset Image type Prompt  Task Metrics Mean (evaluation
type dataset)
TV-SAM Private dataset attrib- X-ray, CT, MRI, Ultra- Text gen- Segmentation  Avg Dice 0.831 (Polyp
uted to company sound, Microscopy, erated by benchmark)
Dermoscopy GPT-4,
Bbox
gener-
ated by
GLIP
SERPENT-VLM IU X-Ray, ROCO X-ray, CT Text Report BLEU4, 0.190,0.326 (IU X-Ray)
generation ROUGE-L
BiomedCoOp CTKidney, DermaM- CT, Dermoscopy, Endos-  Text Classification ~ ACC, Har- 86.93, 82.74
NIST, Kvasir, RETINA, copy, Fundus Imaging, monic Mean  (CTKidney)
LC25000 Pathology Slides
MS-VLM CT-RATE, In-house CT, MRI Report  Report genera- BLEU-4, 0.232, 0.438 (CT-RATE)
Rectal MRI tion VQA ROUGE-L 0.222,0.329 (CT-RATE)
Precision,
Recall
VILA-M3 MIMIC-CXR, SLAKE, X-ray, CT, MRI, Pathol- Text Segmentation  Dice ACC 0.95 (RSNA Pneumonia)
PathVQA, CheXpert ogy Slides VQA 84.20 (SLAKE)
MAKEN ImageCLEFmedical X-ray, CT, MRI, Ultra- Text Report BLEU-1, 0.189, 0.275 (Image-
2023 sound, PET, Endoscopy generation ROUGE-1 CLEFmedical 2023)
Proposed TN3K, Kvasir-SEG, Ultrasound, Endoscopic,  Bbox Segmentation ~mDice, mloU 93.67, 89.44 (TN3K)
Methods QaTa-COV19 CT

Bbox, bounding box; BLEU, bilingual evaluation understudy; ROUGE, recall-oriented understudy for gisting evaluation; ACC, accuracy;
mDice, mean dice similarity coefficient; mloU, mean intersection over union

medical applications such as diagnostic support and anom-
aly detection. Llama3-Med, a vision-language foundation
model crafted by Chen et al. [77], is designed for biomedi-
cal tasks. The model utilizes a hierarchical image-encoding
strategy and an enriched biomedical image-text dataset,
significantly enhancing its capacity to analyze intricate
biomedical imagery. Its strong performance in generating
diagnostic reports and supporting clinical decisions high-
lights its potential. Focusing on the segmentation ACC and
adaptability across imaging modalities, Han et al. [78] cre-
ated prior prompt encoder (PPE), a VLM guided by textual
prompts at multiple scales. The integration of contextually
relevant guidance has been invaluable for tasks involving
X-rays, CT scans, and MRIs. Li et al. [79] streamlined the
training of LLaVA-Med, a foundation model optimized
for multi-modal biomedical conversations. The model was
trained in less than one day by using an efficient pipeline
that combines biomedical figure-caption pairs and GPT-
4-generated instruction data. This efficiency, paired with
conversational fluency, has made it stand out in biomedical
contexts. Li et al. [80] addressed the challenge of long-tailed
medical image classification using text-guided foundation
model adaptation for long-tailed medical (TFA-LT), which
is a text-guided framework. Their system employs light-
weight adapters and a two-stage training strategy and excels
in handling imbalanced datasets while maintaining com-
putational efficiency. Li et al. [81] introduced LViT, which
advances medical image segmentation. By fusing vision

transformers with language guidance, the model achieves
precise, context-aware segmentation. Its success demon-
strates the benefits of combining multi-modal understanding
with advanced techniques. Wu et al. [82] innovated a sin-
gle-prompt framework that simplifies medical image seg-
mentation across diverse imaging modalities. Its versatility
and straightforward design make it a promising choice for
tasks such as organ segmentation and lesion identification.
Yang et al. [83] achieved recognition with Med-VLFM (also
known as Pclmed), a vision-language foundation model that
triumphed in the ImageCLEFmedical 2024 Caption Predic-
tion Challenge. The model improves both interpretability
and clinician-patient communication by generating detailed,
context-aware captions for medical images. Finally, Zhang
et al. [84] introduced BiomedGPT-B, a multi-modal founda-
tion model designed for biomedical applications. The model
uses extensive pretraining to excel in tasks such as VQA and
multi-modal analysis, thus solidifying its role as a robust
tool for biomedical research.

4.2.3 Encoder-decoder based multi-modal integration

In the domain of foundation models with encoder—decoder
based multi-modal integration (Table 8), Jiang et al. [85]
improved the zero-shot segmentation capabilities for multi-
modal medical images by integrating GPT-4-generated
descriptive prompts into the text-visual-prompt segment
anything model (TV-SAM) framework. This innovation
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eliminated the reliance on human annotations, making seg-
mentation workflows more efficient while maintaining high
ACC across imaging modalities such as X-rays, CT scans,
and MRIs. Kapadnis et al. [86] introduced SERPENT-VLM,
a self-refining framework designed for generating radiology
reports. Employing a novel self-supervised loss function,
the model aligned generated text with the corresponding
input images, thereby effectively minimizing hallucina-
tions and bolstering robustness. Even when handling noisy
or incomplete inputs, SERPENT-VLM delivered consistent
results across multiple radiology benchmarks. Koleilat et al.
[87] addressed the challenges of biomedical image classi-
fication using BiomedCoOp, a vision-language foundation
model. By blending BiomedCLIP with prompt ensembles
derived from LLMs and employing selective knowledge
distillation, the framework excelled in few-shot classifica-
tion tasks. Its effectiveness has been demonstrated using
diverse imaging modalities, including pathology slides and
mammograms. For 3D medical imaging interpretation, Lee
et al. [88] introduced MS-VLM, a model optimized using
a slice-by-slice embedding strategy powered by Z-former.
This innovative design seamlessly integrated multi-view
and multi-phase data to overcome the computational chal-
lenges typically encountered by traditional 3D vision encod-
ers. MS-VLM has also achieved impressive performance
in generating clinically relevant radiology reports. Nath et
al. [89] expanded the potential of vision-language founda-
tion models with VILA-M3, which incorporated domain-
specific medical knowledge. Task-specific optimization
allowed the model to excel in VQA, report generation, and
medical image classification, particularly when used with
complex multi-modal datasets. Wu et al. [90] participated
in the ImageCLEFmedical 2023 challenge and utilized the
MAKEN framework to focus on internal validation because
of the absence of ground truth labels for external test data-
sets. By prioritizing reliable internal benchmarking, their
approach ensured robust performance even with data limi-
tations. Zheng et al. [91] explored the segmentation chal-
lenges in medical imaging through a curriculum-prompting
strategy for vision-language foundation models. This
framework gradually increased the task complexity dur-
ing training, leading to superior segmentation results across
imaging modalities, such as CT and ultrasound. This sys-
tematic approach offered an effective pathway to enhance
the segmentation performance.

5 Discussion
In the medical field, the use of VLMs is closely tied to both

imaging modalities and the underlying model architectures.
The choice of imaging modality is shaped by factors such
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as data availability, clinical relevance, and the technical
feasibility of integrating these modalities into VLM frame-
works. Similarly, the architecture of the model, including
encoder—decoder designs, attention mechanisms, and multi-
modal fusion techniques, significantly affects its ability to
process and analyze diverse medical data effectively. This
discussion explores the key trends in modern healthcare
VLMs, focusing on advancements in their applications and
strategies. Additionally, the ongoing challenges in applying
VLMs to the medical domain are also addressed, highlight-
ing areas that require further development.

5.1 Frequently used medical image modalities

X-rays are the most widely used imaging modalities in
research, serving as a foundation for numerous medical
applications. This can be attributed to several factors. First,
The availability of large-scale datasets, such as MIMIC-
CXR [92], CheXpert [93], and NIH ChestX-rayl4 [94],
provides millions of X-ray images paired with radiology
reports. These datasets are instrumental for VLM training,
facilitating robust cross-modal alignment, and supporting
tasks such as automated report generation. In addition, the
structured nature of radiology reports aligns well with the
requirements of cross-modal tasks, further enhancing their
utility. Second, the simplicity and consistency of X-ray
imaging make it particularly well-suited for scalable model
development. Unlike CT or MRI, which produce complex
3D volumetric data, X-rays are 2D single-view images. This
lower dimensionality significantly reduces computational
demands and helps mitigate the risk of overfitting, espe-
cially when working with limited data.

While CT and MRI are indispensable for diagnosing
complex conditions, such as cancer staging and neuro-
logical disorders, their use in VLM research remains rela-
tively limited compared to X-rays. A major barrier is the
computational demands of the modalities. CT and MRI
generate high-resolution volumetric data, requiring exten-
sive processing power and sophisticated algorithms, which
increases the complexity of training VLMs. Thus, despite
their clinical significance, CT and MRI are seldom used in
large-scale VLM studies. Efforts to incorporate 3D imag-
ing into vision-language pretraining have faced scalabil-
ity issues due to GPU memory limitations and the lack of
standardized radiology report formats across institutions
[45]. These challenges hinder model generalization and
underscore a key limitation, that clinically valuable imag-
ing modalities cannot be fully leveraged without adequate
computational resources and standardized datasets.

Fundus imaging is a specialized niche in research. Its
clinical applications, such as the diagnosis of diabetic reti-
nopathy and glaucoma, highlight its importance. Paired
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image-text datasets, such as IDRiD [95] and MMFundus
[96, 97] support research in this area by enabling vision-lan-
guage applications. However, fundus imaging is confined
to ophthalmology, which restricts its broad applicability in
diverse clinical contexts. Pathology and ultrasound imag-
ing are less researched because of the unique challenges
they pose. Pathology datasets require detailed expert anno-
tations, such as cell types or cancer grades, making them
time-consuming and costly. Additionally, the visual com-
plexity of pathology images complicates data preparation
and model training. Particularly, the extremely high reso-
lution of whole-slide pathology images, gigapixel scale,
imposes significant memory demands. Although tiling strat-
egies are often used to manage this, they frequently lead
to the loss of spatial context that is essential for accurate
diagnosis. In contrast, ultrasound imaging faces challenges
related to variability in image quality. Operator skills signif-
icantly affect the consistency of the ultrasound data, creat-
ing inconsistencies that make model training more difficult.
Furthermore, the lack of large-scale paired datasets limits
the use of VLMs.

5.2 Frequently used methodologies

Encoder based cross-modal alignment is the most widely
used VLM methodology in the medical domain. Its popu-
larity arises from its simplicity, scalability, and efficiency
in addressing tasks such as classification and retrieval,
particularly when large paired datasets such as X-rays and
radiology reports are available. By separating the image
and text encoders, this approach reduces the computational
overhead, making it an attractive choice for resource-con-
strained settings. The strength of this methodology in zero-
shot learning has revolutionized case-based reasoning and
diagnostics. For example, DeViDe [33] excels in both seg-
mentation and classification tasks, whereas RET-CLIP [53]
demonstrates high performance in fundus imaging classi-
fication. Its effectiveness is primarily due to the fact that
many widely used medical datasets, such as MIMIC-CXR
[92] and CheXpert [93], contain loosely aligned image-
text pairs rather than fully annotated or structured reports.
Despite these advantages, the independent processing of
visual and textual modalities remains a notable limitation.
This separation hinders the model’s ability to capture com-
plex interactions between modalities, making it less effec-
tive for tasks that demand deep semantic understanding,
such as those involving nuanced cross-modal reasoning.

In the medical domain, encoder based multi-modal atten-
tion is moderately used, primarily in tasks that demand
nuanced reasoning and rich contextual understanding. In
contrast to cross-modal alignment, which processes modali-
ties independently, multi-modal attention fosters deeper

interactions between visual and textual data. Although
this approach increases computational costs, it excels in
scenarios that require simultaneous reasoning over both
modalities. A notable example is MedViLL [36], which
demonstrates strong classification performance by combin-
ing X-ray images with clinical notes. This method performs
well in tasks that require understanding both image and text
together such as matching clinical findings with correspond-
ing visual patterns because it directly models interactions
between the two. However, this comes at a cost. The inter-
nal workings of the attention mechanism are hard to inter-
pret, making it difficult for clinicians to understand why the
model made a certain prediction. This lack of transparency
can be a major drawback in medical settings where trust and
accountability are essential. In addition, these models often
need large amounts of training data to perform well. When
trained on smaller datasets, their performance tends to pla-
teau early, limiting their usefulness in low-resource domains
like rare diseases or specialized imaging modalities.

Encoder—decoder based multi-modal integration is
among the least commonly applied methodologies in VLMs
within the medical domain, despite its significant potential
for generative tasks. Its limited adoption can be attributed
to the considerable computational power and large-scale
paired datasets required for effective training. Generative
tasks, such as radiology report generation, often depend on
structured text outputs; however, such datasets are scarce,
particularly for modalities such as MRI and pathology. Even
in the case of widely available modalities, such as X-rays,
datasets such as MIMIC-CXR [92] offer only partially
structured text, further complicating the training process.
The high computational demands of encoder—decoder mod-
els present another major challenge, particularly for institu-
tions that lack a robust infrastructure. Consequently, such
models are often limited to niche applications in resource-
rich environments. However, their capabilities are limited
to tasks for which structured and coherent outputs are indis-
pensable. For instance, RoentGen [39] demonstrates strong
performance in radiology report generation by producing
clinically relevant and coherent text. Similarly, XrayGPT
[43] has demonstrated its potential for automating diag-
nostic reporting workflows, thereby reducing the manual
effort required for such labor-intensive processes. While the
promise of encoder—decoder based integration for genera-
tive applications is evident, its current reliance on extensive
paired datasets and computationally intensive training limits
its broader adoption. Addressing these challenges is essen-
tial for making this methodology more accessible and appli-
cable across diverse medical contexts.
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5.3 Bias and variance in VLMs

The bias and variance issues in VLMs for medical imaging
remains a significant challenge. Bias arises from training
datasets that do not adequately represent diverse popula-
tions, leading to an imbalanced model performance across
different groups. For example, biases related to race, eth-
nicity, sex, socioeconomic factors, and language can result
in unreliable predictions regarding underrepresented com-
munities. Variance, on the other hand, refers to the sensitiv-
ity of the model to variations in training data, which limits
its ability to effectively generalize across different patient
populations or healthcare settings. In VLM datasets, Eng-
lish continues to dominate, despite the fact that most of
the world’s population does not speak English as their pri-
mary language. This dominance restricts the performance
of monolingual VLMs in multilingual tasks and introduces
community bias, which disproportionately affects non-Eng-
lish speakers. This bias is particularly concerning in medical
applications and can have serious consequences [60].

Recent developments in VLMs have indicated a shift
towards emphasizing the diversity and representativeness of
datasets to address these challenges. For example, datasets
such as FairCLIP [54], PadChest [98], PMC-15 M [75], and
Mammo-CLIP [68] include racially and demographically
diverse data to reduce bias and ensure fairness. Specifi-
cally, PadChest [98] can construct reports that incorporate
non-English languages, such as Spanish, to integrate cross-
lingual representations and improve performance on non-
English tasks. The VLMs applied to these datasets include
MAVL [32], Medunic [60], BioMedCLIP [75], DeViDe
[33], IMITATE [34], LLaVA-Med [79], and Mammo-CLIP
[68]. These models demonstrate the potential to address
biases, improve multilingual capabilities, and enhance real-
world performance.

Despite ongoing efforts to mitigate bias in recent models,
existing datasets and methodologies remain inadequate for
fully addressing this issue. A lack of diversity in training
data, such as under representation of different racial groups,
languages, or clinical settings, can lead to uneven model per-
formance, thereby increasing the risk of inaccurate or biased
outcomes for marginalized populations. This limitation is
particularly concerning in clinical contexts, where fairness,
reliability, and generalizability are critical for safe deploy-
ment. To overcome this challenge, it is essential to develop
more representative and inclusive datasets that accurately
reflect the heterogeneity of real-world patient populations.
Additionally, robust evaluation frameworks are needed to
assess model performance across diverse demographic and
linguistic subgroups.
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5.4 Lack of standardized evaluation metrics

Evaluation metrics, such as BLEU and ROUGE, are widely
used to assess the generative performance of medical VLMs.
These metrics serve as evaluation benchmarks for most mod-
els [38, 50, 90]. However, these metrics often fail to reflect
clinically important findings. BLEU and ROUGE focus on
surface-level matching by evaluating n-grams (words or
phrases) based on their overlap with reference texts. This
approach is limited because clinical reports often describe
the same conditions or findings using various terminologies
or expressions. As a result, clinically accurate texts may still
receive poor evaluations. Moreover, clinical reports fre-
quently emphasize specific disease names or findings that
carry greater clinical significance compared to other words.
Because BLEU and ROUGE treat all n-grams equally, they
cannot assign appropriate weights to clinically critical terms
or phrases. For instance, if a clinical report states “no malig-
nancy found” but rephrases it as “malignancy not detected,”
the two sentences convey identical clinical meaning. How-
ever, BLEU and ROUGE may assign low scores because of
differences in word choice or phrasing. Consequently, met-
rics should prioritize ACC, relevance, and interpretability,
which reflect the clinical importance of findings, over simple
textual similarity. To address these limitations, alternative
metrics such as the CLIP and Dinov2 scores have been pro-
posed, focusing on the similarity between medical text and
images [67]. Although these metrics represent an improve-
ment, they still fail to fully guarantee ACC for clinical sig-
nificance and lack sufficient evaluation of specific details or
key terms in medical texts. Therefore, future studies should
consider developing evaluation metrics that better reflect
the way medical professionals understand clinical reports.
For example, using medical term databases such as Unified
Medical Language System (UMLS) or RadLex could help
give more weight to important disease related terms during
evaluation. It is also important to recognize that different
expressions can mean the same thing in clinical language.
In addition, involving clinicians or radiologists in the evalu-
ation process could help judge whether a generated report is
truly useful and accurate in a medical context. Finally, cre-
ating benchmark datasets that include multiple correct ver-
sions of a report for the same image would allow for more
fair and realistic scoring, since there is often more than one
way to describe the same medical finding.

6 Conclusion

This review of VLMs in the medical domain provides a vital
synthesis of the rapidly evolving landscape of foundation
models in healthcare. Exploring the diverse applications of
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VLMs across key medical imaging tasks, such as segmenta-
tion, classification, and report generation, highlights their
transformative potential in enhancing diagnostic ACC and
clinical workflows. The modality-specific categorization of
VLMs, coupled with a detailed analysis of their strengths,
and a systematic mapping of their clinical applications offer
a structured and comprehensive perspective on the cur-
rent state of the art. This review aims to serve as both a
resource and roadmap to guide researchers and practitioners
in advancing the development and application of VLMs to
address the complex challenges of modern medicine.
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