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advancements spurred by the development of founda-
tion models, large language models (LLMs), and vision-
language models (VLMs). These cutting-edge innovations 
have transformed the fields of computer vision and natu-
ral language processing (NLP), introducing versatile and 
efficient methodologies to address a wide array of visual 
understanding tasks. AI/ML systems have become indis-
pensable in achieving significant progress across various 
domains, including object detection, image segmentation, 
or multimodal applications such as visual question answer-
ing (VQA) and cross-modal retrieval. Foundation models 
represent a fundamental shift in AI/ML approaches. Unlike 
traditional deep learning models, which rely heavily on 
task-specific annotated datasets, these models utilize exten-
sive and diverse datasets during pre-training [1]. This pre-
training spans multiple data modalities, including images, 
text, and their multimodal combinations, which allows 
foundation models to develop generalized representations 
that require minimal additional training for downstream 
tasks. Models such as CLIP [2] and DINO [3] epitomize 

1  Introduction

1.1  History of foundation models and recent trends

Over the past decade, artificial intelligence (AI) and 
machine learning (ML) have experienced groundbreaking 

Ji Seung Ryu and Hyunyoung Kang equally contributed to this work.

	
 Sejung Yang
syang@yonsei.ac.kr

Ji Seung Ryu
ryujissss@yonsei.ac.kr

Hyunyoung Kang
sonya23@yonsei.ac.kr

1	 Department of Precision Medicine, Yonsei University Wonju 
College of Medicine, Wonju, Korea

2	 Department of Medical Informatics and Biostatistics, Yonsei 
University Wonju College of Medicine, Wonju, Republic of 
Korea

Abstract
Foundation models, including large language models and vision-language models (VLMs), have revolutionized artificial 
intelligence by enabling efficient, scalable, and multimodal learning across diverse applications. By leveraging advance-
ments in self-supervised and semi-supervised learning, these models integrate computer vision and natural language pro-
cessing to address complex tasks, such as disease classification, segmentation, cross-modal retrieval, and automated report 
generation. Their ability to pretrain on vast, uncurated datasets minimizes reliance on annotated data while improving 
generalization and adaptability for a wide range of downstream tasks. In the medical domain, foundation models address 
critical challenges by combining the information from various medical imaging modalities with textual data from radiol-
ogy reports and clinical notes. This integration has enabled the development of tools that streamline diagnostic workflows, 
enhance accuracy (ACC), and enable robust decision-making. This review provides a systematic examination of the recent 
advancements in medical VLMs from 2022 to 2024, focusing on modality-specific approaches and tailored applications 
in medical imaging. The key contributions include the creation of a structured taxonomy to categorize existing models, 
an in-depth analysis of datasets essential for training and evaluation, and a review of practical applications. This review 
also addresses ongoing challenges and proposes future directions for enhancing the accessibility and impact of foundation 
models in healthcare.

Keywords  Foundation model · Vision-language model · Medical imaging · Deep learning

Received: 15 January 2025 / Revised: 30 April 2025 / Accepted: 20 May 2025 / Published online: 6 June 2025
© The Author(s) 2025

Vision-language foundation models for medical imaging: a review of 
current practices and innovations

Ji Seung Ryu1 · Hyunyoung Kang2 · Yuseong Chu1 · Sejung Yang1,2

1 3

https://doi.org/10.1007/s13534-025-00484-6
http://orcid.org/0000-0002-5841-851X
http://crossmark.crossref.org/dialog/?doi=10.1007/s13534-025-00484-6&domain=pdf&date_stamp=2025-6-6


Biomedical Engineering Letters (2025) 15:809–830

this paradigm by employing large-scale, self-supervised 
learning to align visual and textual data, thereby performing 
efficiently across a variety of applications.

Critical differentiators between foundation models 
and earlier deep learning architectures are their scalabil-
ity, adaptability, and efficiency. Traditional models often 
require large, labeled datasets and significant computational 
resources for task-specific training. In contrast, foundation 
models leverage self-supervised or unsupervised learning 
techniques, drawing on large, uncurated datasets such as 
web-crawled image-text pairs [4]. This approach minimizes 
the reliance on annotated data while enabling the extraction 
of rich, transferable representations. Consequently, founda-
tion models not only reduce the computational overhead 
but also address a broader spectrum of vision-related tasks. 
Moreover, these models demonstrate a remarkable abil-
ity to generalize visual features across different domains 
and tasks. The modular architecture of foundation models 
further enhances their utility by supporting incremental 
fine-tuning, thereby enabling seamless adaptation to new 
domains or tasks with minimal computational effort.

In computer vision and NLP, foundation models have 
driven revolutionary advancements in complex multimodal 
applications. Tasks such as cross-modal retrieval, action 
recognition, and high-level semantic understanding benefit 
from the robustness of these models. LLMs, including GPT-3 
[5], PaLM [6], Galactica [7], and LLaMA [8] are pretrained 
on vast text corpora using self-supervised learning tech-
niques. These models are particularly adept at zero-shot and 
few-shot learning, allowing them to perform a wide range of 
tasks with minimal fine-tuning. Unlike LLMs, VLMs focus 
on integrating visual and language modalities. By leverag-
ing paired datasets during pre-training, models such as CLIP 
[2] align images with text, making them highly effective for 
tasks requiring multimodal reasoning.

Healthcare is a field that naturally demands diverse data 
types—medical imaging, clinical records, and laboratory 
results, to name a few. Foundation models such as LLMs and 
VLMs are well-suited for addressing this complexity. For 
instance, LLMs reduce the reliance on task-specific training 
by efficiently extracting critical insights from unstructured 
textual data. They enable the seamless analysis of electronic 
health records (EHR) and support natural language-driven 
decision-making [9]. Simultaneously, VLMs excel in bridg-
ing textual and visual data and tackling tasks such as cross-
modal retrieval, disease diagnosis, and automated medical 
report generation. Their extensive pretraining allows them 
to generalize across applications, thereby minimizing man-
ual efforts and enhancing accuracy (ACC) [10].

These foundation models contribute to the transformative 
reshaping of healthcare workflows. GatorTron [9] optimizes 
EHR analysis, improves clinical documentation, and enables 

faster access to critical patient data. In interactive settings, 
ChatDoctor enhances patient-provider communication with 
conversational AI capabilities, bridging gaps in understand-
ing [11]. Visually, VLMs have proven to be indispensable 
for multimodal applications. BioViL [10] combines imaging 
and textual data to support disease classification and report-
ing, which are critical requirements for modern diagnostics. 
By enhancing diagnostic ACC, reducing manual workloads, 
and delivering comprehensive insights across multiple 
modalities, these foundation models can redefine the future 
of healthcare. Their ability to integrate and analyze diverse 
datasets not only improves efficiency but also paves the way 
for more personalized and effective patient care.

This article presents a comprehensive review of foun-
dation models, emphasizing their applications in medical 
imaging and the recent advancements in VLMs within the 
medical domain. We have organized and evaluated exist-
ing studies to provide a structured and insightful overview. 
Our analysis highlights the applications and strengths of 
these models, focusing specifically on research published 
between 2022 and 2024, to capture the latest developments 
in this dynamic field. A key highlight of this review is the 
meticulously curated summary of the datasets used for 
training and evaluation, which provide a valuable resource 
for researchers. Additionally, by categorizing models based 
on medical imaging modalities, we offer in-depth insights 
into the unique challenges and tailored solutions associated 
with each imaging modality.

Specifically, this paper focuses on the application of 
VLMs in the medical imaging domain, offering a structured 
analysis of studies in this field. To complement these find-
ings, Fig. 1 presents a four-part visual taxonomy that clas-
sifies the reviewed studies by imaging modality (Fig. 1a), 
anatomical target (Fig.  1b), task type (Fig.  1c), and data 
source (Fig. 1d). 

This review is intended to serve as a guiding framework 
for researchers, to foster deeper exploration and collabo-
ration between the vision and medical communities. The 
major contributions of this study are as follows:

	● This review presents a structured taxonomy and thor-
ough analysis of vision-language foundation models in 
medical imaging, with a focus on groundbreaking re-
search conducted between 2022 and 2024 (Fig. 1).

	● By categorizing the models according to their medical 
imaging modalities, we provide detailed insights into 
the modality-specific challenges and innovative solu-
tions designed to address them.

	● Furthermore, through a comparative evaluation of mod-
el performance across tasks and modalities, we empha-
size the clinical applicability and practical implications 
of VLMs.
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	● This review highlights the key applications and strengths 
of existing methodologies and proposes directions for 
future research.

1.2  Prior reviews on foundation models and the 
medical domain

Wang et al. [12] explored the impact of deep learning meth-
odologies on medical image analysis, with a particular focus 
on advances in convolutional neural networks (CNNs). 
Their review delved into applications such as disease 
detection, image segmentation, and classification, while 
addressing critical challenges such as data scarcity, model 
interpretability, and the integration of these techniques into 
clinical workflows. Suganyadevi et al. [13] provided a broad 
analysis of deep learning approaches across various medical 
imaging modalities, including magnetic resonance imaging 
(MRI), CT, and X-rays. By covering the entire technical 
pipeline—from preprocessing and model development to 
evaluation—their work also highlighted practical imple-
mentation barriers. To address these challenges, they offered 
actionable recommendations aimed at facilitating real-
world adoption. Azad et al. [14] focused on the emerging 
role of foundation models in medical imaging, emphasizing 
their scalability and adaptability to downstream tasks. Their 
review categorized the existing foundation models based on 
the architectural design and pretraining strategies, offering a 
critical assessment of their limitations, and proposed future 
research directions to enhance the efficacy of these models 
and broaden their applicability in medical contexts. Hartsock 

et al. [15] examined the application of VLMs to tasks such 
as medical report generation and VQA. By investigating 
the advancements in aligning visual and textual data, their 
review highlighted commonly used datasets and evaluation 
metrics. They also discussed the potential of these models 
in streamlining healthcare workflows by improving clini-
cal documentation and decision support. Zhang et al. [16] 
addressed the challenges of deploying foundation models 
for medical image analysis, particularly those related to data 
availability, bias, and clinical validation. These issues often 
hinder the transition from research to practical application. 
Their review emphasized the need for model interpretabil-
ity and robust evaluation frameworks to ensure clinical rel-
evance, offering a forward-looking perspective on bridging 
the gap between innovation and implementation.

2  Research approach

We conducted an extensive search using Google Scholar 
and Arxiv, utilizing the advanced search tools available on 
these platforms. Custom queries were developed to compile 
a diverse and comprehensive collection of academic studies. 
This process encompassed multiple types of publications, 
including peer-reviewed journal articles, conference papers, 
workshop materials, preprints, and other non-peer-reviewed 
work. To ensure this breadth and diversity, our search crite-
ria were carefully tailored to capture the full scope of rel-
evant research.

Fig. 1  Distribution of founda-
tion model in medical field. The 
diagrams provide an analysis of 
the training datasets utilized in the 
reviewed studies. Each subfigure 
illustrates the distribution of key 
aspects: a imaging modalities, b 
target classifications, c organs of 
focus, and d data sources. The total 
number of papers included in the 
analysis is 61
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ensuring coherence and clarity in the synthesis of findings. 
Ultimately, this review aims to serve as a resource for both 
researchers and clinicians by offering a comprehensive 
understanding of the current state of medical VLMs, iden-
tifying prevailing limitations, and outlining potential direc-
tions for future research.

2.1  Review organization

The remainder of this review is organized, as follows. Sec-
tion 2 provides an overview of the foundational principles 
underlying foundation models and their significance in the 
healthcare domain. It also summarizes the major tasks in 
medical imaging and classifies the primary frameworks of 
the foundation models used in this field. Section 3 focuses 
on VLMs used in medical imaging. It distinguishes between 
Specialist VLMs tailored for specific imaging modali-
ties, such as CT, X-ray, and fundus; and Generalist VLMs 
designed to handle multiple imaging modalities for diverse 
applications (Fig.  2). Section  4 addresses the challenges 
in medical VLMs, including dataset bias, inadequate mul-
tilingual representation, and the limitations of evaluation 
metrics, along with an analysis of the overall trends in 
methodology adoption. It highlights the widespread use of 
cross-modal alignment for scalability, whereas multimodal 
attention and encoder–decoder integration face computa-
tional challenges.

The queries were carefully crafted to include the follow-
ing keywords: (foundation*| generalist*| medical*| [Task]), 
(med-[FM]| medical vision language), and (foundation*| 
biomedical*| image*| model*). Here, [FM] denotes well-
known foundation models such as PaLM and CLIP and 
[Task] denotes specific tasks, such as segmentation and 
question answering, within the context of medical imaging.

To provide a structured overview of this emerging field, 
this review adopts a narrative synthesis approach, focus-
ing specifically on VLMs applied in medical imaging. The 
objective is to analyze recent advances in architectures, 
data modalities, and clinical applications, with emphasis 
on interpretability, scalability, and domain-specific chal-
lenges. Studies were selected for inclusion based on the 
following criteria: (1) publication between 2020 and 2024, 
(2) application of VLMs to medical domains including 
radiology, pathology, and ophthalmology, and (3) the pres-
ence of experimental results or evaluations conducted on 
clinical datasets. Studies that were purely theoretical or not 
directly related to medical tasks were excluded. Reflecting 
the rapid and ongoing developments in vision-language 
models within the medical imaging domain, the literature 
search strategy incorporated preprints published between 
2022 and 2024. Scientific rigor and reliability were pre-
served by applying a critical appraisal process, through 
which only preprints demonstrating sound methodological 
quality and adequate experimental validation were retained. 
In addition, non-English studies were excluded in order to 
minimize the risk of misinterpretation stemming from lin-
guistic ambiguity or inconsistencies in translation, thereby 

Fig. 2  Organization of the review 
paper. The proposed taxonomy 
organizes foundational models 
in medical field into two broad 
categories. Specific-domain trans-
fer applications, which include 
X-ray, CT, fundus imaging, MRI, 
and other medical imaging types. 
Multi-domain integrated applica-
tions, which combine insights 
across multiple imaging modalities
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medical images. These tasks are essential for early diagnosis 
and treatment planning. MedYOLO [19], a 3D object detec-
tion framework based on the YOLO family, was introduced 
and specifically tailored for medical imaging applications. 
The model has demonstrated an exceptional performance in 
detecting various medical structures, highlighting its poten-
tial for use in clinical workflows.

3.1.4  Retrieval

Retrieval tasks focus on identifying visually or semantically 
similar images from medical datasets and play a critical 
role in comparative diagnosis and research. This capability 
is particularly valuable in fields such as radiology, pathol-
ogy, and dermatology, where historical cases often guide 
diagnostic decisions. Lehmann et al. [20] proposed a com-
prehensive framework for content-based image retrieval 
in medical applications. By incorporating feature extrac-
tion and relevance feedback mechanisms, their system can 
significantly improve the retrieval ACC across multimodal 
datasets.

3.1.5  VQA

VQA integrates visual understanding with clinical reason-
ing to address natural language questions regarding medical 
images. This task is particularly vital in domains such as 
radiology and pathology, where clinicians require targeted 
insights from imaging data. Ben Abacha et al. [21] achieved 
significant strides in this area by developing the VQA-Med 
benchmark dataset. Designed to evaluate the VQA mod-
els in medical imaging, the dataset features clinically rel-
evant questions related to imaging findings and diagnostic 
tasks. By providing a standardized resource, VQA-Med has 
become instrumental in advancing VQA systems for medi-
cal applications.

3.1.6  Image captioning

Image captioning automates the generation of textual 
descriptions for medical images, enhancing documenta-
tion and communication among healthcare professionals. 
Wang et al. [22] introduced TieNet, a model that embeds 
radiological images and reports into a shared representation 
space to produce descriptive captions for chest radiograph. 
By aligning visual data with textual representations, TieNet 
can improve the efficiency of automated reporting systems 
and support streamlined radiological workflows.

3  Preliminary information

The concept of “foundation models” was first introduced 
by the Stanford Institute for Human-Centered AI, which 
defined them as “base models trained on large-scale data 
in a self-supervised or semi-supervised manner, adaptable 
for various downstream tasks” [1]. These models are built 
on the principles of deep learning, such as deep neural net-
works and self-supervised learning, and are influenced by 
the development of LLMs. Their growth has been driven 
by the scaling up of both data and model sizes, thereby 
enabling their use across many fields. This section discusses 
the main tasks that foundation models address in the medi-
cal field, their underlying architectures, and the factors that 
make them effective for medical applications.

3.1  Primary tasks in the medical field

3.1.1  Classification and zero-shot classification

Classification is a cornerstone task in medical imaging, 
in which models predict categories such as disease types 
or imaging conditions. Zero-shot classification, a more 
advanced approach, utilizes pre-trained VLMs to classify 
images without requiring fine-tuning using task-specific 
data. This capability is particularly valuable in scenarios 
where labeled datasets are scarce. One notable example 
is CheXNet [17] which achieves a radiologist-level per-
formance in detecting pneumonia from chest radiographs. 
By leveraging DenseNet architecture and the large-scale 
labeled dataset ChestX-ray14, the study highlights the criti-
cal role of extensive datasets in achieving high diagnostic 
accuracy.

3.1.2  Segmentation

Segmentation focuses on identifying and delineating spe-
cific anatomical structures or regions of interest such as 
tumors, organs, or lesions. This task is crucial for applica-
tions such as treatment planning and surgical procedures. 
The U-Net architecture introduced by Ronneberger et al. 
[18] has become the gold standard for biomedical image 
segmentation. U-Net features an encoder–decoder design 
enhanced with skip connections and excels in precise 
boundary delineation, even with limited training data. Its 
adaptability makes it an indispensable tool for a wide range 
of medical imaging tasks.

3.1.3  Detection

Detection tasks are centered on identifying and localizing 
abnormalities, such as nodules, fractures, or tumors, within 
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capabilities across various tasks by pre-training on 400 mil-
lion image-text pairs. CLIP utilizes a vision transformer 
(ViT) or ResNet as its image encoder and a transformer for 
text encoding, jointly optimizing them using contrastive 
loss. ALIGN [25] has extended this approach using a larger 
dataset, demonstrating state-of-the-art results in image-text 
retrieval. Subsequent advancements, such as CLOOB [26] 
and DeCLIP [27] have focused on improving robustness and 
efficiency by integrating self-supervised learning objectives 
and better sampling strategies for contrastive pairs. In medi-
cal imaging, encoder based alignment models facilitate the 
development of robust retrieval systems that match medi-
cal images with their corresponding textual annotations or 
reports. This capability can significantly enhance the effi-
ciency of case-based reasoning and diagnostic support in 
radiology.

3.2.2  Encoder based multimodal attention

Encoder based multi-modal attention combines the visual 
and textual inputs within a unified encoder architecture 
(Fig.  3b). By embedding both modalities into a single 
encoder, the model learns joint representations that capture 
their contextual relationships through layer-wise interaction. 
Unlike cross-modal alignment, which processes the modali-
ties separately, this approach uses self-attention mecha-
nisms to model cross-modal interactions directly within an 
encoder, thereby enabling joint representation learning. An 
example of this methodology is SimVLM [28], which treats 
image patches and text tokens as inputs to a shared encoder, 
using attention layers to capture the dependencies between 
the two modalities. Similarly, VisualBERT [29] employs a 
transformer encoder to jointly encode image regions and 
text tokens, allowing it to excel in tasks such as VQA and 
visual entailment. By fully integrating the information in 
each layer, these models perform exceptionally well in tasks 
requiring complex cross-modal reasoning. In the medical 
context, encoder based multimodal attention models are 
highly effective for tasks such as medical VQA, in which 
nuanced interactions between clinical images and associ-
ated textual data are critical. This approach is particularly 
useful for tasks that require contextual understanding, such 
as combining diagnostic imaging with clinical notes to pro-
vide comprehensive insights.

3.2.3  Encoder–decoder based multimodal integration

Encoder–decoder based multi-modal integration models 
adopt a generative approach, making them highly effec-
tive for tasks such as image captioning, report generation, 
and text-conditioned image creation. Unlike models that 
simply align or jointly embed inputs, this architecture is 

3.1.7  Image and report generation

Image generation focuses on synthesizing realistic medical 
images to augment datasets, particularly in cases involv-
ing rare conditions or limited training data. Hou et al. [23] 
developed a hybrid synthesis pipeline for histopathology 
image segmentation that combines real histopathology 
textures with generative adversarial networks (GANs). 
This innovative approach generates diverse training image 
patches across various tissue types, enhancing generaliza-
tion performance. By improving the heterogeneity of syn-
thetic datasets, this method is especially valuable for cancer 
types lacking annotated training data.

Report generation automates the creation of structured 
diagnostic reports by summarizing the key imaging find-
ings. Jing et al. [24] designed a model that learns the joint 
representations of imaging data and textual information and 
produces radiology reports. By bridging the gap between 
image analysis and textual synthesis, this approach con-
tributes to more accurate and efficient reporting in clinical 
radiology.

3.2  Model architecture

VLMs represent a groundbreaking category of AI systems 
designed to process and reason across both visual and tex-
tual modalities. These models support a wide range of tasks 
including image captioning, cross-modal retrieval, VQA, 
and text-conditioned image generation. Methodologically, 
VLMs can be divided into three main approaches: encoder-
based cross-modal alignment, encoder-based multimodal 
attention, and encoder–decoder based multimodal inte-
gration (Fig.  3). This section explores each approach in 
detail, focusing on the architecture, learning strategies, and 
expected effects in the medical domain.

3.2.1  Encoder based cross-modal alignment

Encoder based cross-modal alignment employs separate 
encoders for visual and textual inputs and aligns their rep-
resentations in a shared embedding space, shown in Fig. 3a. 
This alignment enables the model to compute semantic 
similarity between modalities—such as visual features in 
an X-ray and corresponding medical terms in a diagnos-
tic report—without requiring pixel-level annotations. By 
comparing the similarity between encoded features, the 
model learns to associate paired inputs and distinguish 
them from unpaired examples. This methodology relies pri-
marily on contrastive learning in which paired inputs are 
brought closer together in the embedding space and mis-
matched pairs are pushed apart. CLIP [2] by OpenAI is a 
seminal model in this category that has achieved zero-shot 
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representations. Some implementations also allow one 
modality, such as text, to conditionally influence another, 
such as images, during the intermediate stages of process-
ing the intermediate stages of processing, as illustrated as 
Fig.  3c. In its encoder–decoder configuration, SimVLM 

designed to actively generate outputs, allowing the model 
to produce natural language or synthesized images condi-
tioned on mult-imodal input. These models typically pro-
cess visual and textual inputs within a shared encoder and 
utilize a decoder to generate outputs based on the encoded 

Fig. 3  Detailed illustration of 
model architecture. a Encoder-
based cross-modal alignment 
method employs separate encoders 
for images and text, aligning their 
embeddings across modalities to 
facilitate integration. b In encoder-
based multi-modal attention, both 
image and text inputs are processed 
within a unified model, using the 
encoder alone to execute tasks. c 
Encoder–decoder-based multi-
modal integration combines images 
and text as simultaneous joint 
inputs to the encoder, adopting a 
generative approach for decoding 
outputs. d In another encoder–
decoder-based multi-modal 
integration approach, text serves as 
a conditional prompt, directing the 
generation process by attention-
based mechanisms
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model demonstrated enhanced precision and interpretabil-
ity, making it suitable for a wide range of medical tasks.

In the domain of encoder based multi-modal atten-
tion, Moon et al. [36] introduced the Medical Vision Lan-
guage Learner (MedViLL), a framework that bridges the 
understanding and generation of medical images and text. 
Through an innovative self-attention mechanism, Med-
ViLL effectively captures joint representations and achieves 
superior performance across a variety of medical tasks. 
Wang et al. [37] proposed ECAMP, a model designed to 
enhance the interpretation of medical data by emphasizing 
entity-specific contexts within radiology reports. By lever-
aging advanced language models, ECAMP extracts and 
refines entity-centered information from medical reports, 
thereby strengthening the interaction between the textual 
and visual modalities to improve diagnostic insights. Yan 
et al. [38] adapted the bidirectional encoder representations 
from transformers (BERT) architecture for clinical text by 
pretraining it on extensive medical corpora, including the 
medical information mart for intensive care III (MIMIC-III) 
clinical notes. The resulting ClinicalBERT model excels in 
understanding the unique language patterns and specialized 
terminology of the medical domain, making it highly effec-
tive for various clinical text-processing applications.

In the domain of encoder–decoder based multi-modal 
integration, Chambon et al. [39] presented RoentGen, a 
vision-language foundation model specifically designed 
to produce clinically accurate and descriptive chest X-ray 
reports. This model bridges the gap between imaging and 
text by generating detailed radiological insights, making 
it a robust tool for automated report generation. Huemann 
et al. [40] developed ConTEXTual Net, a multi-modal 
vision-language foundation model that integrates radiol-
ogy reports into the segmentation process for chest radio-
graphs. By incorporating a free-form textual context, the 
model can enhance pneumothorax segmentation, surpassing 
the performance of vision-only models, and demonstrating 
the value of combining visual and textual modalities. Li et 
al. [41] introduced an Anatomical Structure-Guided (ASG) 
framework that integrates anatomical knowledge into a 
medical vision-language foundation model. This innovative 
approach aligns the anatomical regions in images with the 
corresponding textual descriptions, enabling superior per-
formance in classification and segmentation tasks across 
multiple datasets. Liu et al. [42] proposed M-FLAG, which 
focuses on improving training stability and efficiency. By 
freezing the language models and optimizing the latent 
space geometry with a novel orthogonality loss, the model 
achieves significant advancements in medical tasks. Tha-
wakar et al. [43] introduced XrayGPT, which was tailored 
for radiology applications. By combining the MedClip 
visual encoder with a fine-tuned Vicuna language model, 

[28] treats image patches as pseudo-text tokens and inte-
grates them seamlessly into prefixed language modeling for 
tasks such as conditional text generation. Expanding on this 
concept, VisualGPT [30] conditions pre-trained language 
models on visual inputs, enabling the generation of detailed 
captions or answers. Similarly, DeepMind’s Flamingo [31] 
leverages cross-attention modules to fuse images and text 
modalities dynamically, achieving impressive few-shot 
performance across a variety of vision-language tasks. A 
representative architectural structure of these models is 
shown in Fig. 3d. In medical applications, encoder–decoder 
models have significant potential for automating diagnostic 
report generation, thereby reducing the workload of radi-
ologists. For instance, given a chest radiograph, such mod-
els can produce comprehensive findings and impressions, 
improve workflow efficiency, and minimize human error. 
Furthermore, text-conditioned image generation can be 
used to simulate rare pathological cases, thereby enhancing 
the diversity of training datasets for medical education and 
model development.

4  Foundation models in medical imaging

4.1  Specific domain transfer applications

4.1.1  X-ray imaging

In the domain of X-ray imaging using encoder based cross-
modal alignment (Table  1), Phan et al. [32] proposed a 
novel medical foundation model that breaks down dis-
ease descriptions into fundamental visual components. 
This model, which is primarily trained on X-ray images, 
aligns visual data with key pathological features, thereby 
significantly improving its ability to detect and interpret 
pathological findings. Similarly, Luo et al. [33] introduced 
DeViDe, a transformer-based approach that enhanced the 
performance of medical foundation models. The integration 
of diverse medical knowledge sources, such as radiographic 
descriptions, enables this model to establish a stronger con-
nection between visual data and textual representations. 
Focusing on clinical knowledge, Liu et al. [34] developed a 
hierarchical foundation model, IMITATE. With a structure 
that relies on X-ray images, the model uses the findings and 
impressions sections of medical reports to align multilevel 
visual features with descriptive and conclusive text, thereby 
achieving effective integration of clinical insights. Finally, 
Wang et al. [35] presented multi-modal collaborative 
prompt learning (MCPL), a framework aimed at refining 
the relationship between medical texts and image represen-
tations. By employing collaborative prompt learning, this 
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4.1.2  Computed tomography imaging

Chen et al. [45] presented 3D-CT-GPT, a cutting-edge VQA-
based medical VLM developed to generate radiology reports 
from 3D CT scans, with a specific focus on chest computed 
tomography (CT) using encoder-based cross-modal align-
ment in CT imaging (Table  2). By employing advanced 
VQA techniques, this model improves the interpretability 
and ACC of automated radiological assessments, thereby 
providing a significant step forward in generating detailed 
and clinically meaningful reports. Building on the need for 

their approach excels in radiology report generation and 
interactive reasoning, offering state-of-the-art performance 
in these areas. Zhang et al. [44] designed Libra, a tempo-
rally aware multi-modal LLM aimed at improving radiol-
ogy report generation. Libra effectively captures temporal 
changes in radiological data, achieving good performance 
with the MIMIC-CXR dataset across lexical and clinical 
evaluation metrics.

Table 1  Summary of foundation models in X-ray imaging
Modality Model Dataset Prompt 

type
Task Metrics Mean (evaluation 

dataset)
Encoder 
based 
cross-modal 
alignment

MAVL MIMIC-CXR v2 Text Zero-shot 
classification
Detection

AUROC, F1, 
ACC
IoU, Dice, 
ACC

0.735, 26.25, 82.77 
(ChestX-ray14)
21.97, 34.11, 84.29 
(COVID Rural)

DeViDe MIMIC-CXRv2 Text Zero-shot 
classification
Segmentation

AUROC, F1, 
ACC
Dice

0.777, 31.5, 82.3 
(ChestX-ray14)
70.27 (ChexDet)

IMITATE MIMIC-CXR, CheXpert, RSNA, 
SIIM, COVIDx, ChestX-ray14

Text Classi-
fication, 
Segmentation
Detection, 
Retrieval

AUROC, Dice
mAP, 
Precision@5

0.897 (CheXpert), 64.5 
(SIIM)
26.4 (RSNA), 71.83 
(CheXpert 5 × 200)

MCPL MIMIC-CXR Report, 
Hand-craft

Classification
Detection

ACC, AUROC
mAP, mIoU

83.3, 0.843 (CheXpert)
20.1, 27.5 (Object-CXR)

Encoder 
based 
multi-modal 
attention

MedViLL MIMIC-CXR, Open-I Report Classification
Retrieval

Avg AUROC, 
F1
MRR, H@5, 
R@5

0.980, 0.839 
(MIMIC-CXR)
56.5, 77.0, 47.4 
(MIMIC-CXR)

ECAMP MIMIC-CXR Text gener-
ated by 
ChatGPT

Classification
Segmentation

AUROC
Dice

0.867, 0.851 
(ChestX-ray14)
84.5 (SIIM-ACR 
Pneumothorax)

Clinical-BERT MIMIC-CXR, IU X-Ray,
COV-CTR, NIH ChestXray14

Report Image 
Captioning
Classification

BLUE1,CIDEr
AUROC

0.383,0.151 
(MIMIC-CXR)
0.845 (NIH 
ChestXray14)

Encoder–
decoder based
multi-modal 
integration

RoentGen MIMIC-CXR Text Image 
generation
Classification

FID
AUROC

3.6 (MIMIC-CXR)
0.824 (CheXpert)

ConTEXTual Net CANDID-PTX Report Segmentation Dice 0.716 (CANDID-PTX)
ASG MIMIC-CXR Report Classification

Segmentation
AUROC
Dice

0.836 (NIH Chest 
X-ray)
73 (RSNA Pneumonia)

M-FLAG MIMIC-CXR Report Classification
Segmentation

AUC
Dice

69.50 (MIMIC-CXR)
64.80 (SIIM-ACR)

XrayGPT MIMIC-CXR, Open-I Report Image 
captioning
Classification

BLEU
AUROC

17.8 (OpenI)
0.832 (CheXpert)

Libra MIMIC-CXR, 
Medical-Diff-VQA,
MIMIC-Ext-MIMIC-CXR-VQA

Report Report 
generation

BLEU-1, 
BLEU-4,

51.3, 24.5 
(MIMIC-CXR)

AUROC, area under receiver operating characteristic curve; ACC, accuracy; IoU, intersection over union; mAP, mean average precision; mIoU, 
mean intersection over union; MRR, mean reciprocal rank; H, Hit Rate; R, Recall; CIDEr, consensus-based image description evaluation; FID, 
fréchet inception distance; BLEU, bilingual evaluation understudy
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an innovative text-guided interslice (TG-IS) scoring module 
that mimics the attention mechanisms used by radiologists 
when analyzing CT images. This approach enables Med-
2E3 to excel in tasks such as report generation and VQA 
using large-scale multi-modal benchmarks. Zhou et al. [51] 
proposed a sophisticated vision-language framework that 
merges LLMs with hierarchical attention mechanisms. By 
effectively integrating multi-modal inputs, the model excels 
in fine-grained abnormality detection and the generation of 
natural language descriptions for medical CT images. This 
approach significantly improves the clinical relevance and 
detection ACC, establishing a new benchmark for precision 
in medical imaging tasks.

4.1.3  Fundus imaging

In the domain of fundus imaging using encoder based cross-
modal alignment (Table 3), Cherukuri et al. [52] employed a 
guided context self-attention mechanism to integrate visual 
and textual features within a vision-language foundation 
model designed for retinal image captioning. The GCS-
M3VLT architecture effectively captures intricate visual 
details and a broader clinical context, even with limited data. 
Evaluations of the DeepEyeNet dataset have demonstrated 
improvements in BLEU-4 scores, indicating its capability to 
generate accurate and comprehensive medical captions. Du 
et al. [53] developed RET-CLIP, a vision-language founda-
tion model pre-trained on a large dataset of color fundus 
photographs paired with clinical diagnostic reports. The 
model employs a tripartite optimization strategy to extract 
features at three levels: the left eye, right eye, and report 
data. This multilevel approach facilitates effective represen-
tation learning, leading to enhanced diagnostic performance 
in diseases such as diabetic retinopathy and glaucoma. Luo 
et al. [54] addressed demographic biases in VLMs by intro-
ducing FairCLIP, a framework designed to promote fairness 

robust datasets, Hamamci et al. [46] introduced CT-RATE, 
which is the first open-source multi-modal dataset that 
pairs 3D CT scans with the corresponding textual reports. 
By leveraging this dataset, the authors also developed CT-
CLIP and CT-CHAT, two innovative foundation models that 
excel in tasks such as zero-shot multi-abnormality detection 
and multi-modal AI assistance for 3D medical imaging. To 
address the challenges of extracting high-quality 3D visual 
features, Lai et al. [47] proposed E3D-GPT, an enhanced 
3D visual foundation model tailored for medical vision-
language applications. The model is built on a substantial 
corpus of unlabeled 3D CT data utilized in a self-supervised 
learning framework to extract robust 3D visual features. By 
incorporating 3D spatial convolutions, E3D-GPT efficiently 
aggregates and projects high-level image features while 
reducing computational complexity.

In the domain of encoder–decoder based multi-modal 
integration, Blankemeier et al. [48] presented Merlin, a 
computationally efficient 3D vision-language foundation 
model specifically designed for interpreting abdominal CT 
scans. Merlin achieves exceptional performance across a 
wide range of downstream tasks by integrating supervi-
sion from both structured EHR and unstructured radiology 
reports. Notably, Merlin achieves state-of-the-art results 
while maintaining minimal computational resource require-
ments, making it a practical and scalable solution. To address 
the challenges of 3D medical image segmentation, Li et al. 
[49] introduced ProMISe, a framework driven by prompt 
engineering that adapts general VLMs for domain-specific 
applications. By leveraging the flexibility of prompts, this 
method demonstrates both high effectiveness and versatil-
ity, thereby establishing a new standard for segmentation in 
complex medical imaging. Focusing on multi-modal inte-
gration, Shi et al. [50] developed Med-2E3, a vision-lan-
guage foundation model that combines 3D and 2D encoders 
to enhance medical-image analysis. The model incorporates 

Table 2  Summary of foundation models in CT imaging
Modality Model Dataset Prompt 

type
Task Metrics Mean (evaluation dataset)

Encoder based
cross-modal 
alignment

3D-CT-GPT CT-RATE, Dataset-XY Text Report generation BLEU, ROUGE-1 13.27, 25.94 (CT-RATE)
CT-CLIP,
CT-CHAT

CT-RATE Text Detection
Zero-shot classification

MAP@1
MAP@1

0.886 (CT-RATE)
0.886 (CT-RATE)

E3D-GPT BIMCV-R, CT-RATE
Unlabeled 3D CT

Text Report generation
VQA

BLEU
ACC

18.19 (BIMCV-R)
42.24 (BIMCV-R-VQA)

Encoder–
decoder based
multi-modal 
integration

Merlin Abdominal CT Report Zero-shot classification F1 0.741 (Abdominal CT)
ProMISe Medical Segmentation 

Decathlon (MSD)
Point Segmentation Dice, NSD 66.81, 81.24 (MSD)

Med-2E3 M3D-Cap, M3D-VQA Report Report generation
VQA

BLEU-1, ROUGE-1
BLEU-1, ROUGE-1

51.51, 54.48 (M3D-Cap)
58.55, 62.04 (M3D-VQA)

Proposed 
Methods

MIMIC-CXR, Open-I,
CT-KIDNEY

Text Detection AUROC, Precision 0.96,0.95 (MIMIC-CXR)

BLEU, bilingual evaluation understudy; ROUGE, recall-oriented understudy for gisting evaluation; MAP, mean average precision; ACC, accu-
racy; NSD, normalized surface dice; AUROC, area under receiver operating characteristic curve
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detection and segmentation tasks and highlights its utility in 
precision diagnostics.

In the domain of encoder–decoder based multi-modal 
integration, Li et al. [58] introduced VisionUnite, which is 
designed specifically for ophthalmology, to address criti-
cal challenges in multi-disease diagnosis, user interaction, 
and interpretability. The model is trained on MMFundus, 
the largest multi-modal fundus dataset to date that contains 
more than 1.24 million image-text pairs, including high-
resolution fundus images and simulated doctor-patient 
dialogues.

4.1.4  MRI imaging

In the domain of MRI imaging using encoder based multi-
modal attention (Table  4), Chen et al. [59] introduced 
MedBLIP, a vision-language foundation model aimed at 
seamlessly integrating 3D medical imaging with textual 
data derived from EHRs. By leveraging vision language 
pre-training, this model effectively captures the intricate 
relationships between volumetric medical images and the 
associated textual information. Consequently, MedBLIP has 
achieved significant breakthroughs in applications such as 

across diverse data distributions. Using optimal transport 
methods, the model mitigates performance disparities 
between demographic groups, ensuring more equitable out-
comes in medical image analysis while maintaining robust 
diagnostic capabilities. Silva-Rodriguez et al. [55] incorpo-
rated domain-specific retinal knowledge into the training 
process of FLAIR, a vision-language foundation model for 
medical image analysis. The model embeds expert clinical 
insights into text supervision and demonstrates improved 
interpretative abilities, resulting in an enhanced performance 
in disease classification and anomaly detection tasks. Wei et 
al. [56] utilized synthetic fundus images paired with natu-
ral language descriptions to develop VisionCLIP, a vision-
language foundation model for retinal image analysis. This 
strategy enabled the model to effectively generalize to 
real-world datasets while preserving patient confidentiality. 
Yang et al. [57] designed ViLReF, a vision-language foun-
dation model optimized for detecting fine-grained abnor-
malities in retinal images. By leveraging expert-driven label 
extraction and implementing weighted similarity coupling 
loss, the model effectively captures subtle yet clinically sig-
nificant patterns. This approach improves the ACC of lesion 

Table 3  Summary of foundation models in Fundus imaging
Modality Model Dataset Prompt type Task Metrics Mean (evaluation dataset)
Encoder based
cross-modal 
alignment

GCS-M3VLT DeepEyeNet Text Report 
generation

BLEU-1, BLEU-2 0.430, 0.345 
(DeepEyeNet)

RET-CLIP Private Dataset Report Classification AUROC, AUPR 0.856 0.616 (IDRID)
FairCLIP Harvard-FairVLMed Report 

generated
by ChatGPT

Classification AUROC, ES-AUC 0.702, 0.655 
(Harvard-FairVLMed)

FLAIR 37 Combined datasets Text Detection
Segmentation

ACA/κ
AUROC

0.604/0.772 (MESSIDOR)
0.92 (FIVES)

VisionCLIP SynFundus-1 M Text Zero-shot 
classification

ACC 43.1 (MESSIDOR)

ViLReF Private Dataset Report Classification
Segmentation

AUROC, mAP
DSC, IoU

94.29, 63.62 (RFMiD)
52.65, 38.38 (IDRiD)

Encoder–
decoder based
multi-modal 
integration

VisionUnite MMFundus Text Classification ACC,
Diagnostic 
Relevance

77.8, 2.937 (MMFundus)

BLEU, bilingual evaluation understudy; AUROC, area under receiver operating characteristic curve; AUPR, area under the precision-recall 
curve; ES-AUC, early stopping area under the curve; ACA, average classification accuracy; κ, Cohen's Kappa; ACC, accuracy; mAP, mean 
average precision; DSC, dice similarity coefficient; IoU, intersection over union

Table 4  Summary of foundation models in MRI imaging
Modality Model Dataset Prompt type Task Metrics Mean (evaluation dataset)
Encoder based
multi-modal attention

MedBLIP ADNI, NACC, 
OASIS

Text generated
by EHRs

Classification
Zero-shot 
classification

ACC
ACC

78.7 (ADNI)
80.8 (AIBL)

Encoder–decoder based
multi-modal integration

Med-UniC MIMIC-CXR, 
PadChest

Report Image captioning
Classification

BLEU
AUROC

18.25 (MIMIC-CXR)
0.832 (CheXpert)

FM-ABS Left Atrium, 
Brain Tumor

Bbox generated 
by MobileSAM

Segmentation Dice, 
Jaccard

86.14, 75.85 (Left 
Atrium)

Bbox, bounding box; ACC, accuracy; BLEU, bilingual evaluation understudy
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This innovative approach shows promise in supporting flex-
ible diagnostic workflows that align seamlessly with clinical 
requirements. Vo et al. [63] investigated the utilization of 
frozen, large-scale, pretrained vision-language foundation 
models as foundational backbones for multi-modal breast 
cancer prediction. Rather than retraining the models, this 
method preserves the pretrained parameters while incor-
porating domain-specific mammography data, leading to 
improved predictive ACC for breast cancer diagnosis. This 
study highlights the practical advantages of repurposing 
large-scale VLMs for medical imaging, showcasing their 
effectiveness in addressing domain-specific diagnostic chal-
lenges. Building on the EchoCLIP model, Christensen et al. 
[64] introduced EchoCLIP-R, a vision-language foundation 
model specifically designed for echocardiographic analysis. 
This updated model features a customized echocardiogra-
phy report text tokenizer, enabling a more precise alignment 
of multi-modal data. EchoCLIP-R achieves impressive 
results across various tasks, including identifying individual 
patients across multiple videos, detecting clinical transi-
tions, and delivering robust image-to-text retrieval with top-
tier cross-modal ranking. These advancements underscore 
its versatility and reliability in echocardiographic interpreta-
tion and report generation.

In the domain of encoder–decoder based multi-modal 
integration, Yin et al. [62] investigated the use of prompt 
engineering to customize vision foundation models for 
analyzing pathology images. Task-specific prompts are 
incorporated within the QAP framework, enabling the 
model to excel in pathology-oriented tasks such as tissue 

automated radiology report generation and clinical decision 
making.

In response to the biases often present in multilingual med-
ical datasets, Wan et al. [60] developed Med-UniC, a vision-
language foundation model that employs cross-lingual text 
alignment regularization. This innovative framework aligns 
textual representations across languages, thereby enhanc-
ing inclusivity and optimizing performance in a variety of 
vision-language tasks. In particular, Med-UniC excels in 
multilingual diagnostic reporting and image-text retrieval, 
underscoring its adaptability to diverse clinical contexts. Xu 
et al. [61] proposed foundation model-driven active barely 
supervised (FM-ABS), a vision-language foundation model 
designed to address the complexities of 3D medical image 
segmentation under minimal supervision. By incorporat-
ing a prompt-driven architecture alongside active learning 
methodologies, FM-ABS significantly reduces the reliance 
on large, annotated datasets while maintaining high seg-
mentation precision.

4.1.5  Other medical imaging

In the domain of other medical imaging using encoder 
based cross-modal alignment (Table  5), Ferber et al. [62] 
explored the potential of in-context learning within multi-
modal LLMs to classify cancer pathology images without 
the need for task-specific fine-tuning. By harnessing the 
contextual information embedded in both visual and tex-
tual data, the model demonstrates its capability to analyze 
complex pathology slides with adaptability and efficiency. 

Table 5  Summary of foundation models in other medical imaging
Modality Model Dataset Image type Prompt type Task Metrics Mean (evaluation 

dataset)
Encoder based
cross-modal 
alignment

GPT-4 V Private dataset attrib-
uted to company

Pathology Slides Text Zero-shot 
classification

ACC 32.5 (CRC-VAL-
HE-7 K)

Proposed 
Methods

CBIS-DDSM, 
EMBED

Mammography Text gener-
ated by 
Tab2Text

Classification ACC, 
AUROC

79.6, 0.907 
(CBIS-DDSM)

EchoCLIP-R Cedars-Sinai Medical 
Center

Echocardiography Report Retrieval
Regression

MCMRR
MAE

206.1 (Cedars-Sinai 
Medical Center)
16.9 (Cedars-Sinai 
Medical Center)

Encoder based
multi-modal 
attention

QAP NAFLD-Anomaly Pathology Slides Morpho-
logical 
Attributes

Classification
Scoring

F1
Avg F1

99.58 
(NAFLD-Anomaly)
83.37 
(NAFLD-Anomaly)

LLaVA-Ultra US-Hospital Ultrasound Text VQA F1, 
Precision

76.85, 81.88 
(SLAKE)

GP-VLS 11 Combined datasets Surgical Imaging Text VQA ACC 46.1 (MedQA)
Encoder–
decoder based
multi-modal 
integration

SkinGEN Fitzpatrick17k, SCIN Clinical image Text Image 
generation
Classification

CLIP, 
DINOV2 
score

0.76,0.82 
(Fitzpatrick17k)

ACC, accuracy; AUROC, area under receiver operating characteristic curve; MCMRR, mean cumulative mean reciprocal rank; MAE, mean 
absolute error
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diagnostic ACC in tasks such as classification and anom-
aly detection. By embedding explainability into its design, 
SkinGEN not only improves clinical outcomes, but also 
strengthens communication between clinicians and patients, 
fostering greater trust and understanding in medical 
consultations.

4.2  Multi-domain integrated applications

4.2.1  Encoder based cross-modal alignment

In the domain of foundation models with encoder based 
cross-modal alignment (Table 6), Ghosh et al. [68] introduced 
Mammo-CLIP, a pioneering vision-language foundation 
model pre-trained on an extensive dataset of mammogram-
report pairs. By capitalizing on the inherent alignment 
between the visual and textual data in mammography, the 
model achieves improvements in data efficiency and robust-
ness. Its enhanced performance in tasks such as abnormality 
detection and image-text alignment underscores its potential 
for integration into breast cancer screening workflows. Liu 
et al. [69] developed T3D, which is a vision-language frame-
work tailored for high-resolution 3D medical imaging. This 
model uses text-informed contrastive learning and advanced 
image restoration techniques to capture intricate visual 
details without down sampling. Consequently, T3D excels 
in representation learning for volumetric datasets, making 
it particularly effective for classification and segmentation 

classification and anomaly detection without the need for 
extensive fine-tuning. This innovative approach emphasizes 
the adaptability and efficiency of prompt-based techniques 
for streamlining medical imaging workflows for patho-
logical slides. Guo et al. [65] introduced LLaVA-Ultra, a 
vision-language foundation model specifically designed for 
ultrasound imaging in Chinese healthcare. This model inte-
grates sophisticated vision and language functionalities to 
address critical challenges unique to ultrasound, including 
the variability in interpretation and the demands of real-time 
interaction. Optimized for tasks such as image interpreta-
tion, diagnostic decision-making, and interactive querying, 
LLaVA-Ultra is effective in advancing clinical ultrasound 
practices. In surgical applications, Schmidgall et al. [66] 
developed GP-VLS, a versatile vision-language foundation 
model that combines domain-specific medical and surgical 
knowledge with advanced visual scene comprehension. This 
model supports key tasks such as surgical phase recogni-
tion, instrument detection, and intraoperative decision-mak-
ing. GP-VLS offers real-time, context-sensitive assistance 
and can enhance surgical workflows, improve clinical effi-
ciency, and support more informed decision-making in sur-
gical environments.

Lin et al. [67] introduced SkinGEN, a vision-language 
foundation model augmented with stable diffusion, to 
advance dermatological diagnostics through interactive 
and explainable visualizations. The model generates life-
like depictions of potential skin conditions, enhancing the 

Table 6  Summary of foundation models with encoder-based cross-modal alignment
Model Dataset Image type Prompt 

type
Task Metrics Mean (evaluation 

dataset)
Mammo-CLIP UPMC, VinDr X-ray, CT Report Zero-shot 

classification
ACC 62.0, 76.0, 15.0 

(RSNA)
T3D BIMCV-VLP X-ray, CT, MRI Text Segmentation

Classification
avgDice
macro-avg 
AUROC

79.5 (BTCV)
58.1 (MDLT)

BLIP PubMed Image-Text Xray, CT, MRI, Micros-
copy, Fundus Imaging

Caption Retrieval i2t@1 i2t@10 36.52 72.62 (PubMed 
Image-Text)

PM2 BACH, Figshare MRI 
Brain Tumor, DR

MRI, Fundus Imaging, 
Pathology Slides

Text 
gener-
ated by 
CoOp

Zero-shot 
classification

ACC 47.5 (BACH)

Medclip MIMIC-CXR, 
CheXpert, Unpaired 
Text, COVID, RSNA 
Pneumodia

X-ray, CT Text Zero-shot classifi-
cation Retrieval

ACC
P@1,P@2

59.4 (MIMIC-CXR)
45,49 
(CheXpert5 × 200)

UniDCP ROCO, MIMIC-CXR X-ray, CT, MRI, Ultra-
sound, Pathology Slides

Text VQA
Report generation

ACC
BLEU-1, 
BLEU-2

74.5 (VQA-RAD)
0.527, 0.349 (IU 
X-Ray)

MPMA ROCO, MIMIC-CXR X-ray, CT, MRI, 
Ultrasound,
Pathology Slides

Text Classification
Report generation

AUROC
BLEU-1, 
BLEU-2

0.906 (CheXpert)
0.518, 0.337 (IU 
X-Ray)

BiomedCLIP PMC-15 M X-ray, CT, MRI, Ultra-
sound, PET, Microscopy, 
Pathology Slides

Text Retrieval
VQA

R@1, R@5
ACC

56.0, 77.9 
(PMC-15 M)
72.7 (VQA-RAD)

ACC, accuracy; AUROC, area under receiver operating characteristic curve; i2t, image-to-text; P, precision; R, Recall
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task-specific fine-tuning. UniDCP performs exceptionally 
well in tasks such as report generation and cross-modal 
retrieval. Zhang et al. [74] proposed MPMA, a vision-
language foundation model that integrates cross-modal 
alignment into joint image-text reconstruction. By foster-
ing enhanced interactions between modalities, this method 
improves the performance in tasks such as classification and 
report generation, particularly when applied to multi-modal 
datasets. Finally, Zhang et al. [75] introduced BiomedCLIP, 
a multi-modal biomedical foundation model pre-trained on 
PMC-15  M [75], a comprehensive dataset containing 15 
million image-text pairs sourced from PubMed Central. 
The model benefits from extensive pretraining and excels in 
biomedical tasks such as image-text retrieval and zero-shot 
classification. Its ability to address complex medical que-
ries with remarkable precision highlights its potential for 
advancing biomedical research and applications.

4.2.2  Encoder based multi-modal attention

In the domain of foundation models with encoder based 
multi-modal attention (Table 7), Chen et al. [76] devised an 
approach that integrates domain-specific knowledge. Their 
method refines the alignment between the visual and textual 
data, enabling more accurate reasoning for complex tasks. 
This advancement has proven to be particularly effective in 

tasks involving 3D modalities, such as CT scans. Monajati-
poor et al. [70] proposed BLIP, a pipeline designed to align 
medical images with textual data through subfigure-caption 
matching and multi-modal pretraining. Particularly adept at 
analyzing brain abnormalities, this model enhances tasks 
such as image-text retrieval and multi-modal understand-
ing. Its architecture emphasizes precise alignment between 
visual inputs and textual descriptions, enabling superior 
analysis of complex brain imaging datasets. Wang et al. [71] 
introduced PM2, a multi-modal prompting paradigm that 
addresses the challenges of few-shot medical image classi-
fication. By integrating cross-modal information, PM2 dem-
onstrates flexibility and robust performance, particularly in 
scenarios with limited labeled data. This versatility makes 
it a valuable tool for various medical imaging modalities. 
Wang et al. [72] presented MedCLIP, a vision-language 
foundation model designed to learn from unpaired medical 
images and text. Employing a semantic similarity matrix for 
contrastive learning, MedCLIP bypasses the need for paired 
datasets, achieving notable success in zero-shot image-text 
retrieval and classification across modalities such as X-rays 
and pathology slides. Zhan et al. [73] introduced UniDCP, a 
VLM that utilizes dynamic cross-modal learnable prompts. 
This approach harmonizes inputs from diverse pretrain-
ing tasks, enabling the model to adapt to a wide range of 
vision-language tasks in medical imaging without requiring 

Table 7  Summary of foundation models with encoder based multi-modal attention
Model Dataset Image type Prompt type Task Metrics Mean (evaluation 

dataset)
Proposed 
Methods

ROCO, MedICaT, 
MIMIC-CXR

X-ray, CT, MRI, Ultrasound Text, Graph VQA
Classification

ACC
ACC

67.60 (VQA-RAD)
80.51 (MELINDA)

Llama3-Med Claude 3 Opu, 
LLaMA 3 70B

X-ray, CT, MRI, Ultrasound, 
PET

Text VQA Recall 31.20 (VQA-RAD)

PPE COCO X-ray, Microscopy,
Pathology Slides, RGB 
image

Text generated 
by BLIP, Hand-
craft, Mask 
label generated 
by LViT

Segmentation Dice, mIoU 80.59, 67.59 
(MoNuSeg)

LLaVA-Med PMC-15 M X-ray, CT, MRI, Ultrasound, 
PET

Text generated 
by GPT-4

VQA Recall 64.75 (VQA-RAD)

TFA-LT ISIC2018, 
APTOS2019

Dermoscopy, Fundus 
Imaging

Text Classification ACC 70.48 (ISIC2018)

LViT Private dataset attrib-
uted to company

X-ray, CT Report Segmentation Dice, mIoU 83.66, 75.11 
(MosMed Data +)

One-Prompt 
Segmentation

78 Combined datasets X-ray, CT, MRI,
Fundus Imaging, CBCT

Click, Bbox, 
Doodles, Mask 
label

Segmentation Avg Dice 67.30 (KiTS23)

Med-VLFM ROCOv2 X-ray, CT Text Report 
generation

BERT 
Score, 
ROUGE-1

0.638, 0.304 
(ROCOv2)

BiomedGPT-B IU X-ray, MIMIC-
CXR, Peir Gross, 
SLAKE, VQA-RAD, 
PathVQA

X-ray, CT, MRI, Pathology 
Slides

Report Image 
captioning
VQA

ROUGE-L, 
METEOR
ACC

28.50, 12.90 (IU 
X-ray)
88.7 (SLAKE)

Bbox, bounding box; ACC, accuracy; mIoU, mean intersection over union; ROUGE, recall-oriented understudy for gisting evaluation; 
METEOR, metric for evaluation of translation with explicit ordering
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transformers with language guidance, the model achieves 
precise, context-aware segmentation. Its success demon-
strates the benefits of combining multi-modal understanding 
with advanced techniques. Wu et al. [82] innovated a sin-
gle-prompt framework that simplifies medical image seg-
mentation across diverse imaging modalities. Its versatility 
and straightforward design make it a promising choice for 
tasks such as organ segmentation and lesion identification. 
Yang et al. [83] achieved recognition with Med-VLFM (also 
known as Pclmed), a vision-language foundation model that 
triumphed in the ImageCLEFmedical 2024 Caption Predic-
tion Challenge. The model improves both interpretability 
and clinician-patient communication by generating detailed, 
context-aware captions for medical images. Finally, Zhang 
et al. [84] introduced BiomedGPT-B, a multi-modal founda-
tion model designed for biomedical applications. The model 
uses extensive pretraining to excel in tasks such as VQA and 
multi-modal analysis, thus solidifying its role as a robust 
tool for biomedical research.

4.2.3  Encoder–decoder based multi-modal integration

In the domain of foundation models with encoder–decoder 
based multi-modal integration (Table  8), Jiang et al. [85] 
improved the zero-shot segmentation capabilities for multi-
modal medical images by integrating GPT-4-generated 
descriptive prompts into the text-visual-prompt segment 
anything model (TV-SAM) framework. This innovation 

medical applications such as diagnostic support and anom-
aly detection. Llama3-Med, a vision-language foundation 
model crafted by Chen et al. [77], is designed for biomedi-
cal tasks. The model utilizes a hierarchical image-encoding 
strategy and an enriched biomedical image-text dataset, 
significantly enhancing its capacity to analyze intricate 
biomedical imagery. Its strong performance in generating 
diagnostic reports and supporting clinical decisions high-
lights its potential. Focusing on the segmentation ACC and 
adaptability across imaging modalities, Han et al. [78] cre-
ated prior prompt encoder (PPE), a VLM guided by textual 
prompts at multiple scales. The integration of contextually 
relevant guidance has been invaluable for tasks involving 
X-rays, CT scans, and MRIs. Li et al. [79] streamlined the 
training of LLaVA-Med, a foundation model optimized 
for multi-modal biomedical conversations. The model was 
trained in less than one day by using an efficient pipeline 
that combines biomedical figure-caption pairs and GPT-
4-generated instruction data. This efficiency, paired with 
conversational fluency, has made it stand out in biomedical 
contexts. Li et al. [80] addressed the challenge of long-tailed 
medical image classification using text-guided foundation 
model adaptation for long-tailed medical (TFA-LT), which 
is a text-guided framework. Their system employs light-
weight adapters and a two-stage training strategy and excels 
in handling imbalanced datasets while maintaining com-
putational efficiency. Li et al. [81] introduced LViT, which 
advances medical image segmentation. By fusing vision 

Table 8  Summary of foundation models with encoder–decoder based multi-modal integration
Model Dataset Image type Prompt 

type
Task Metrics Mean (evaluation 

dataset)
TV-SAM Private dataset attrib-

uted to company
X-ray, CT, MRI, Ultra-
sound, Microscopy, 
Dermoscopy

Text gen-
erated by 
GPT-4, 
Bbox 
gener-
ated by 
GLIP

Segmentation Avg Dice 0.831 (Polyp 
benchmark)

SERPENT-VLM IU X-Ray, ROCO X-ray, CT Text Report 
generation

BLEU4, 
ROUGE-L

0.190,0.326 (IU X-Ray)

BiomedCoOp CTKidney, DermaM-
NIST, Kvasir, RETINA, 
LC25000

CT, Dermoscopy, Endos-
copy, Fundus Imaging, 
Pathology Slides

Text Classification ACC, Har-
monic Mean

86.93, 82.74 
(CTKidney)

MS-VLM CT-RATE, In-house 
Rectal MRI

CT, MRI Report Report genera-
tion VQA

BLEU-4, 
ROUGE-L 
Precision, 
Recall

0.232, 0.438 (CT-RATE)
0.222, 0.329 (CT-RATE)

VILA-M3 MIMIC-CXR, SLAKE, 
PathVQA, CheXpert

X-ray, CT, MRI, Pathol-
ogy Slides

Text Segmentation 
VQA

Dice ACC 0.95 (RSNA Pneumonia)
84.20 (SLAKE)

MAKEN ImageCLEFmedical 
2023

X-ray, CT, MRI, Ultra-
sound, PET, Endoscopy

Text Report 
generation

BLEU-1, 
ROUGE-1

0.189, 0.275 (Image-
CLEFmedical 2023)

Proposed 
Methods

TN3K, Kvasir-SEG, 
QaTa-COV19

Ultrasound, Endoscopic, 
CT

Bbox Segmentation mDice, mIoU 93.67, 89.44 (TN3K)

Bbox, bounding box; BLEU, bilingual evaluation understudy; ROUGE, recall-oriented understudy for gisting evaluation; ACC, accuracy; 
mDice, mean dice similarity coefficient; mIoU, mean intersection over union
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as data availability, clinical relevance, and the technical 
feasibility of integrating these modalities into VLM frame-
works. Similarly, the architecture of the model, including 
encoder–decoder designs, attention mechanisms, and multi-
modal fusion techniques, significantly affects its ability to 
process and analyze diverse medical data effectively. This 
discussion explores the key trends in modern healthcare 
VLMs, focusing on advancements in their applications and 
strategies. Additionally, the ongoing challenges in applying 
VLMs to the medical domain are also addressed, highlight-
ing areas that require further development.

5.1  Frequently used medical image modalities

X-rays are the most widely used imaging modalities in 
research, serving as a foundation for numerous medical 
applications. This can be attributed to several factors. First, 
The availability of large-scale datasets, such as MIMIC-
CXR [92], CheXpert [93], and NIH ChestX-ray14 [94], 
provides millions of X-ray images paired with radiology 
reports. These datasets are instrumental for VLM training, 
facilitating robust cross-modal alignment, and supporting 
tasks such as automated report generation. In addition, the 
structured nature of radiology reports aligns well with the 
requirements of cross-modal tasks, further enhancing their 
utility. Second, the simplicity and consistency of X-ray 
imaging make it particularly well-suited for scalable model 
development. Unlike CT or MRI, which produce complex 
3D volumetric data, X-rays are 2D single-view images. This 
lower dimensionality significantly reduces computational 
demands and helps mitigate the risk of overfitting, espe-
cially when working with limited data. 

While CT and MRI are indispensable for diagnosing 
complex conditions, such as cancer staging and neuro-
logical disorders, their use in VLM research remains rela-
tively limited compared to X-rays. A major barrier is the 
computational demands of the modalities. CT and MRI 
generate high-resolution volumetric data, requiring exten-
sive processing power and sophisticated algorithms, which 
increases the complexity of training VLMs. Thus, despite 
their clinical significance, CT and MRI are seldom used in 
large-scale VLM studies. Efforts to incorporate 3D imag-
ing into vision-language pretraining have faced scalabil-
ity issues due to GPU memory limitations and the lack of 
standardized radiology report formats across institutions 
[45]. These challenges hinder model generalization and 
underscore a key limitation, that clinically valuable imag-
ing modalities cannot be fully leveraged without adequate 
computational resources and standardized datasets.

Fundus imaging is a specialized niche in research. Its 
clinical applications, such as the diagnosis of diabetic reti-
nopathy and glaucoma, highlight its importance. Paired 

eliminated the reliance on human annotations, making seg-
mentation workflows more efficient while maintaining high 
ACC across imaging modalities such as X-rays, CT scans, 
and MRIs. Kapadnis et al. [86] introduced SERPENT-VLM, 
a self-refining framework designed for generating radiology 
reports. Employing a novel self-supervised loss function, 
the model aligned generated text with the corresponding 
input images, thereby effectively minimizing hallucina-
tions and bolstering robustness. Even when handling noisy 
or incomplete inputs, SERPENT-VLM delivered consistent 
results across multiple radiology benchmarks. Koleilat et al. 
[87] addressed the challenges of biomedical image classi-
fication using BiomedCoOp, a vision-language foundation 
model. By blending BiomedCLIP with prompt ensembles 
derived from LLMs and employing selective knowledge 
distillation, the framework excelled in few-shot classifica-
tion tasks. Its effectiveness has been demonstrated using 
diverse imaging modalities, including pathology slides and 
mammograms. For 3D medical imaging interpretation, Lee 
et al. [88] introduced MS-VLM, a model optimized using 
a slice-by-slice embedding strategy powered by Z-former. 
This innovative design seamlessly integrated multi-view 
and multi-phase data to overcome the computational chal-
lenges typically encountered by traditional 3D vision encod-
ers. MS-VLM has also achieved impressive performance 
in generating clinically relevant radiology reports. Nath et 
al. [89] expanded the potential of vision-language founda-
tion models with VILA-M3, which incorporated domain-
specific medical knowledge. Task-specific optimization 
allowed the model to excel in VQA, report generation, and 
medical image classification, particularly when used with 
complex multi-modal datasets. Wu et al. [90] participated 
in the ImageCLEFmedical 2023 challenge and utilized the 
MAKEN framework to focus on internal validation because 
of the absence of ground truth labels for external test data-
sets. By prioritizing reliable internal benchmarking, their 
approach ensured robust performance even with data limi-
tations. Zheng et al. [91] explored the segmentation chal-
lenges in medical imaging through a curriculum-prompting 
strategy for vision-language foundation models. This 
framework gradually increased the task complexity dur-
ing training, leading to superior segmentation results across 
imaging modalities, such as CT and ultrasound. This sys-
tematic approach offered an effective pathway to enhance 
the segmentation performance.

5  Discussion

In the medical field, the use of VLMs is closely tied to both 
imaging modalities and the underlying model architectures. 
The choice of imaging modality is shaped by factors such 
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interactions between visual and textual data. Although 
this approach increases computational costs, it excels in 
scenarios that require simultaneous reasoning over both 
modalities. A notable example is MedViLL [36], which 
demonstrates strong classification performance by combin-
ing X-ray images with clinical notes. This method performs 
well in tasks that require understanding both image and text 
together such as matching clinical findings with correspond-
ing visual patterns because it directly models interactions 
between the two. However, this comes at a cost. The inter-
nal workings of the attention mechanism are hard to inter-
pret, making it difficult for clinicians to understand why the 
model made a certain prediction. This lack of transparency 
can be a major drawback in medical settings where trust and 
accountability are essential. In addition, these models often 
need large amounts of training data to perform well. When 
trained on smaller datasets, their performance tends to pla-
teau early, limiting their usefulness in low-resource domains 
like rare diseases or specialized imaging modalities.

Encoder–decoder based multi-modal integration is 
among the least commonly applied methodologies in VLMs 
within the medical domain, despite its significant potential 
for generative tasks. Its limited adoption can be attributed 
to the considerable computational power and large-scale 
paired datasets required for effective training. Generative 
tasks, such as radiology report generation, often depend on 
structured text outputs; however, such datasets are scarce, 
particularly for modalities such as MRI and pathology. Even 
in the case of widely available modalities, such as X-rays, 
datasets such as MIMIC-CXR [92] offer only partially 
structured text, further complicating the training process. 
The high computational demands of encoder–decoder mod-
els present another major challenge, particularly for institu-
tions that lack a robust infrastructure. Consequently, such 
models are often limited to niche applications in resource-
rich environments. However, their capabilities are limited 
to tasks for which structured and coherent outputs are indis-
pensable. For instance, RoentGen [39] demonstrates strong 
performance in radiology report generation by producing 
clinically relevant and coherent text. Similarly, XrayGPT 
[43] has demonstrated its potential for automating diag-
nostic reporting workflows, thereby reducing the manual 
effort required for such labor-intensive processes. While the 
promise of encoder–decoder based integration for genera-
tive applications is evident, its current reliance on extensive 
paired datasets and computationally intensive training limits 
its broader adoption. Addressing these challenges is essen-
tial for making this methodology more accessible and appli-
cable across diverse medical contexts.

image-text datasets, such as IDRiD [95] and MMFundus 
[96, 97] support research in this area by enabling vision-lan-
guage applications. However, fundus imaging is confined 
to ophthalmology, which restricts its broad applicability in 
diverse clinical contexts. Pathology and ultrasound imag-
ing are less researched because of the unique challenges 
they pose. Pathology datasets require detailed expert anno-
tations, such as cell types or cancer grades, making them 
time-consuming and costly. Additionally, the visual com-
plexity of pathology images complicates data preparation 
and model training. Particularly, the extremely high reso-
lution of whole-slide pathology images, gigapixel scale, 
imposes significant memory demands. Although tiling strat-
egies are often used to manage this, they frequently lead 
to the loss of spatial context that is essential for accurate 
diagnosis. In contrast, ultrasound imaging faces challenges 
related to variability in image quality. Operator skills signif-
icantly affect the consistency of the ultrasound data, creat-
ing inconsistencies that make model training more difficult. 
Furthermore, the lack of large-scale paired datasets limits 
the use of VLMs.

5.2  Frequently used methodologies

Encoder based cross-modal alignment is the most widely 
used VLM methodology in the medical domain. Its popu-
larity arises from its simplicity, scalability, and efficiency 
in addressing tasks such as classification and retrieval, 
particularly when large paired datasets such as X-rays and 
radiology reports are available. By separating the image 
and text encoders, this approach reduces the computational 
overhead, making it an attractive choice for resource-con-
strained settings. The strength of this methodology in zero-
shot learning has revolutionized case-based reasoning and 
diagnostics. For example, DeViDe [33] excels in both seg-
mentation and classification tasks, whereas RET-CLIP [53] 
demonstrates high performance in fundus imaging classi-
fication. Its effectiveness is primarily due to the fact that 
many widely used medical datasets, such as MIMIC-CXR 
[92] and CheXpert [93], contain loosely aligned image-
text pairs rather than fully annotated or structured reports. 
Despite these advantages, the independent processing of 
visual and textual modalities remains a notable limitation. 
This separation hinders the model’s ability to capture com-
plex interactions between modalities, making it less effec-
tive for tasks that demand deep semantic understanding, 
such as those involving nuanced cross-modal reasoning.

In the medical domain, encoder based multi-modal atten-
tion is moderately used, primarily in tasks that demand 
nuanced reasoning and rich contextual understanding. In 
contrast to cross-modal alignment, which processes modali-
ties independently, multi-modal attention fosters deeper 
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5.4  Lack of standardized evaluation metrics

Evaluation metrics, such as BLEU and ROUGE, are widely 
used to assess the generative performance of medical VLMs. 
These metrics serve as evaluation benchmarks for most mod-
els [38, 50, 90]. However, these metrics often fail to reflect 
clinically important findings. BLEU and ROUGE focus on 
surface-level matching by evaluating n-grams (words or 
phrases) based on their overlap with reference texts. This 
approach is limited because clinical reports often describe 
the same conditions or findings using various terminologies 
or expressions. As a result, clinically accurate texts may still 
receive poor evaluations. Moreover, clinical reports fre-
quently emphasize specific disease names or findings that 
carry greater clinical significance compared to other words. 
Because BLEU and ROUGE treat all n-grams equally, they 
cannot assign appropriate weights to clinically critical terms 
or phrases. For instance, if a clinical report states “no malig-
nancy found” but rephrases it as “malignancy not detected,” 
the two sentences convey identical clinical meaning. How-
ever, BLEU and ROUGE may assign low scores because of 
differences in word choice or phrasing. Consequently, met-
rics should prioritize ACC, relevance, and interpretability, 
which reflect the clinical importance of findings, over simple 
textual similarity. To address these limitations, alternative 
metrics such as the CLIP and Dinov2 scores have been pro-
posed, focusing on the similarity between medical text and 
images [67]. Although these metrics represent an improve-
ment, they still fail to fully guarantee ACC for clinical sig-
nificance and lack sufficient evaluation of specific details or 
key terms in medical texts. Therefore, future studies should 
consider developing evaluation metrics that better reflect 
the way medical professionals understand clinical reports. 
For example, using medical term databases such as Unified 
Medical Language System (UMLS) or RadLex could help 
give more weight to important disease related terms during 
evaluation. It is also important to recognize that different 
expressions can mean the same thing in clinical language. 
In addition, involving clinicians or radiologists in the evalu-
ation process could help judge whether a generated report is 
truly useful and accurate in a medical context. Finally, cre-
ating benchmark datasets that include multiple correct ver-
sions of a report for the same image would allow for more 
fair and realistic scoring, since there is often more than one 
way to describe the same medical finding.

6  Conclusion

This review of VLMs in the medical domain provides a vital 
synthesis of the rapidly evolving landscape of foundation 
models in healthcare. Exploring the diverse applications of 

5.3  Bias and variance in VLMs

The bias and variance issues in VLMs for medical imaging 
remains a significant challenge. Bias arises from training 
datasets that do not adequately represent diverse popula-
tions, leading to an imbalanced model performance across 
different groups. For example, biases related to race, eth-
nicity, sex, socioeconomic factors, and language can result 
in unreliable predictions regarding underrepresented com-
munities. Variance, on the other hand, refers to the sensitiv-
ity of the model to variations in training data, which limits 
its ability to effectively generalize across different patient 
populations or healthcare settings. In VLM datasets, Eng-
lish continues to dominate, despite the fact that most of 
the world’s population does not speak English as their pri-
mary language. This dominance restricts the performance 
of monolingual VLMs in multilingual tasks and introduces 
community bias, which disproportionately affects non-Eng-
lish speakers. This bias is particularly concerning in medical 
applications and can have serious consequences [60].

Recent developments in VLMs have indicated a shift 
towards emphasizing the diversity and representativeness of 
datasets to address these challenges. For example, datasets 
such as FairCLIP [54], PadChest [98], PMC-15 M [75], and 
Mammo-CLIP [68] include racially and demographically 
diverse data to reduce bias and ensure fairness. Specifi-
cally, PadChest [98] can construct reports that incorporate 
non-English languages, such as Spanish, to integrate cross-
lingual representations and improve performance on non-
English tasks. The VLMs applied to these datasets include 
MAVL [32], Medunic [60], BioMedCLIP [75], DeViDe 
[33], IMITATE [34], LLaVA-Med [79], and Mammo-CLIP 
[68]. These models demonstrate the potential to address 
biases, improve multilingual capabilities, and enhance real-
world performance.

Despite ongoing efforts to mitigate bias in recent models, 
existing datasets and methodologies remain inadequate for 
fully addressing this issue. A lack of diversity in training 
data, such as under representation of different racial groups, 
languages, or clinical settings, can lead to uneven model per-
formance, thereby increasing the risk of inaccurate or biased 
outcomes for marginalized populations. This limitation is 
particularly concerning in clinical contexts, where fairness, 
reliability, and generalizability are critical for safe deploy-
ment. To overcome this challenge, it is essential to develop 
more representative and inclusive datasets that accurately 
reflect the heterogeneity of real-world patient populations. 
Additionally, robust evaluation frameworks are needed to 
assess model performance across diverse demographic and 
linguistic subgroups.
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