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Abstract—With only coarse labels, weakly supervised learning typically uses top-down attention maps generated by back-propagating
gradients as priors for tasks such as object localization and semantic segmentation. While these attention maps are intuitive and
informative explanations of deep neural network, there is no effective mechanism to manipulate the network attention during learning
process. In this paper, we address three shortcomings of previous approaches in modeling such attention maps in one common
framework. First, we make attention maps a natural and explicit component in the training pipeline such that they are end-to-end
trainable. Moreover, we provide self-guidance directly on these maps by exploring supervision from the network itself to improve them
towards specific target tasks. Lastly, we proposed a design to seamlessly bridge the gap between using weak and extra supervision if
available. Despite its simplicity, experiments on the semantic segmentation task demonstrate the effectiveness of our methods.
Besides, the proposed framework provides a way not only explaining the focus of the learner but also feeding back with direct guidance
towards specific tasks. Under mild assumptions our method can also be understood as a plug-in to existing convolutional neural

networks to improve their generalization performance.

Index Terms—Convolutional neural network, semantic segmentation, network attention, weakly supervised learning, biased data

1 INTRODUCTION

EAKLY supervised learning [2], [6], [12], [19], [23], [32],

[41], [49], [50], [51], [52], [53], [54], [59] has recently
become a popular research direction since it directly
addresses the labeled data scarcity issue in computer vision.
For instance, using only image-level labels, one can obtain
the attention maps for a given input image with back-
propagation on a Convolutional Neural Network (CNN).
These maps are highly related to the network’s response
given specific patterns and tasks it was trained for. The
intensity of each pixel on the attention maps indicates
the degree that the corresponding pixel in the input image
supporting the network’s final output. From such attention
maps without the need of pixel-level labels, it is already
known that one can obtain the information of segmentation
and localization [12], [59].

Although the attention maps are supervised by only
classification loss without pixel-level labels, the attention
maps generated by the trained network usually cover only
the small and discriminative areas of the object of interest
[22], [43], [59]. These attention maps can still provide useful
localization cues as the priors for tasks like segmentation
[23]. However, we believe that encouraging the attention
maps to cover the target foreground objects as complete as
possible can further improve the performance. Aligned with
our belief, existing works either depend on consolidating
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attention maps from multiple networks [22] or aggregating
multiple attention maps from a network via iterative erasing
approaches [47]. Instead of post-processing the attention of
the trained network passively, we propose an end-to-end
framework where the attention of the network is trained
jointly with the task-specific supervision towards improving
the performance of the objective of the target task.

Moreover, as an effective tool to explain the network’s
decisions, attention maps can also help to find the biases of
the trained network. For example, in the classification task
where only image-level labels are available, it is likely that
we encounter a pathological bias in the training data when
the foreground object incidentally always correlates with
the same background object (also mentioned in [39]). Fig. 1
shows an example image belonging to the class “boat”
where it is highly likely that water and boats coexist. In this
scenario there is no incentive in training to focus the
network’s attention on only the boat because focusing on
water can also result in reasonably good performance. How-
ever, the generalization performance may suffer when the
testing data does not maintain the coexistence relationship
of foreground and background objects (e.g., boats out of
water). Although such bias can be manually alleviated by
re-balancing the training data, we propose to make the
attention map trainable in our framework. As one benefit of
this we are able to control the attention explicitly and can
put manual effort in providing minimal supervision of
attention rather than manually re-balancing the dataset.
While it may not always be clear how to manually balance
datasets to avoid bias, it is usually straightforward to guide
attention to the regions of interest, e.g., using a small
amount of pixel-level annotations like segmentation masks
or bounding boxes. We also observe that our explicit
self-guided attention model already improves the generali-
zation performance even without extra supervision.
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Self-Exploration

“Other parts
belong to boat?”

Input Attention Maps Improved Attention Maps

Fig. 1. The proposed Guided Attention Inference Network (GAIN) makes
the network’s attention on-line trainable and can plug in different kinds of
supervision directly on attention maps in an end-to-end way. We explore
the self-guided supervision from the network itself and propose GAIN ?

ext

when extra supervision are available. These guidance can optimize
attention maps towards the task of interest.

This paper is an extended version of our previous work
[27]. In particular, (a) we propose an extended framework
for Guided Attention Inference Network (GAIN) so that it
can be integrated with available bounding box annotations.
(b) We use a new weakly-supervised semantic segmentation
framework which takes the improved attention maps gener-
ated by our GAIN frameworks as input and achieves better
performance on PASCAL VOC 2012 benchmark compared
to our previous methods and other state-of-the-art algo-
rithms. (c) We include more real-world experiments to dem-
onstrate the effectiveness of GAIN in improving model
generalization. (d) We include additional detailed analysis,
more quantitative and qualitative results to help compre-
hensively analyze the performance of the proposed GAIN
frameworks and better understand how it can be applied
and extended to other applications.

According to our experimental results in the semantic
segmentation task, our method achieves mloU 59.4 and 59.6
percent, respectively on the PASCAL VOC 2012 segmentation
test and val sets. Our method also outperforms the comparable
state-of-the-art when limited pixel-level supervision (mloU of
64.1 and 64.4 percent respectively) or bounding box supervi-
sion (mloU of 62.6 and 62.8 percent respectively) is available
during training.

The rest of our paper is organized as follows. Section 2
introduces related work in network attention modeling
and weakly supervised learning. Section 3 describes the
design of our Guided Attention Inference Network and its
extensions to seamlessly integrate weak labels with stron-
ger supervisions such as bounding boxes or pixel-level
segmentation masks. Section 4 presents the experimental
results of semantic segmentation task on VOC 2012 data-
set. Section 5 describes the experiments we conducted to
demonstrate how the propose GAIN pipeline can improve
model generalization.

2 RELATED WORK

Deep convolutional neural networks (DCNNs) have achieved
great success in many areas recently [25], [26], [55], [56], [57].
Instead of just treating them as black boxes, various methods
have been proposed to explain and analyze how DNN works
from different views [6], [41], [51]. Visual attention is one of
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the efficient way which can explain the network’s decision by
highlighting the regions of images that are responsible for it.
In this section, we discuss the most relevant work on network
attention analysis, usage of attention maps in weakly-super-
vised methods especially for weakly-supervised semantic
segmentation and how network attention can help to deal
with dataset bias.

Network Attention. Visualization of model attention in
Convolutional Neural Networks (CNNs) has been
explored for network reasoning of visual recognition. Gra-
dient back propagation based methods [41], [44], [51]
interprets the gradient of the prediction score of a particu-
lar class respecting to the original input image. They visu-
alize the network attention by locate regions that are
helpful for predicting a class in such a way. [6] further pro-
poses a feedback method to capture the top-down neural
attention. According to the high-level semantic labels of
the input image, [6] uses a feedback loop in the form of
binary nodes between layers is introduced to infer the acti-
vation status of hidden layer neurons. CAM [59] adds an
average pooling layer (GAP) after the last convolution
layer of a CNN and applies a weighted sum of the last con-
volutional feature maps to obtain the attention maps. Exci-
tation Backprop [52] is proposed based on a top-down
visual attention model for human. As a novel back propa-
gation method, it can pass along signals from top to down
in the network hierarchy to locate the network attention
for any CNN architecture using nonlinearities producing
non-negative activations. The Excitation Backprop method
is also extended to explain Recurrent Neural Network
(RNN)-based models [4] to handle more complex recur-
rent, spatio-temporal dependencies. More recently, in
order to deal with the drawback of CAM [52] that needs to
change the structure of a CNN, Grad-CAM [39] extends it
to many different available CNN architectures for tasks
like image captioning and Visual Question Answering
(VQA). Grad-CAM++ is then proposed to further improve
Grad-CAM in terms of explaining occurrences of multiple
objects in one single image as well as better object localiza-
tion. Different from all these existing works that are trying
to find a reasonable way to explain the network decision,
we propose an end-to-end model to provide supervision
on the network learning through these explanations, spe-
cifically attention mechanism. We validate that our
method can guide the network to focus on the regions we
expect without changing the network structure or learning
extra parameters. The proposed guided attention learning
will then benefit the corresponding visual task.

Network Attention for Weakly-Supervised Methods. Manu-
ally producing segmentation masks or bounding box anno-
tations is a time-consuming task [5], [23]. To solve this issue,
a lot of previous research studies how to train segmentation
or detection models from weaker forms of annotation such
as image-level labels, as this form of weak supervision can
be collected very efficiently [23]. Recent works show that
learning from only image-level labels, attention maps of a
trained classification network can provide localization infor-
mation for weakly-supervised object localization [32], [53],
[54], [59], object detection [12], [49], semantic segmentation
[2], [19], [23], [50], instance segmentation [60] etc. However,
only trained with classification loss, the attention map only
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Fig. 2. GAIN has two streams of networks, S.; and S,,,,, sharing parameters. S,,, encourages the attention map to include regions contributing to the
classification decision as complete as possible. The attention map is on-line generated and optimized by the two loss functions jointly.

covers small and most discriminative regions of the object of
interest, which deviates from the requirement of these tasks
that needs to localize interior, dense and complete regions.
To mitigate this gap, [43] proposes a data augment method
by randomly hiding regions in the training image. Then the
network will be forced to seek other relevant parts when the
most discriminative part is hidden. However, it relies on a
strong assumption about the size of foreground objects (i.e.,
the size of the whole object should be bigger than that of
patches). [47] proposes an adversarial erasing (AE) method
to repetitive erasing the most discriminative regions of the
input image and discover the rest part of object. Dense
object regions are finally obtained by combining attention
maps of AE step. Similarly, [22] trains two networks that
focus on different parts of the object by using a two-phase
learning strategy. First, a fully convolutional network
(FCN) [31] is trained to locate the most discriminative
regions of the object in an image. These most discriminative
regions are then used to hide parts of feature maps of the
second FCN, which forces it to focus on the rest important
regions of the object. However, these methods require com-
bination of attention maps from multiple classification net-
works. Attention maps of a single network still only focus
on the most discriminative region. More recently, [50]
revises a standard classification network by adding multiple
dilated convolutional blocks of different dilation rates.
Varying dilation rates can effectively transfer the surround-
ing discriminative information to non-discriminative object
regions, which helps to achieve dense object localization
using only one classification network. Fundamentally dif-
ferent from these approaches, the proposed method GAIN
can provide supervision directly on network’s attention in
an end-to-end way. According to different levels of avail-
able supervision, we design corresponding loss functions to
guide the network to focus on complete regions of interest.
Therefore, using our methods, the attention maps of a single
network are already more complete and improved without
needs to change the network structure.

Attention Mechanism for Biased Data. Analyzing network
attention can also help to identify bias in datasets. [39], [46]
propose a way to find out the dataset bias by analyzing the
location of attention maps of a trained model, which helps
them to remove these bias by adding new samples to the
dataset. However, in practical applications, it is time-con-
suming to build a new dataset and sometimes it is even
hard to obtain samples that can remove all bias. How to
guarantee the generalization ability of the learned network

is still Challen(?ing. Our model can provide supervision
Authorized license

directly on network’s attention and guiding the network to
focus on the areas critical to the task of interest. Therefore,
our trained model is more robust to the dataset bias.

3 PRoPOSED METHOD—GAIN

Since attention maps reflect the areas on input image which
support the network’s prediction, we propose the guided
attention inference networks, which aims at supervising
attention maps when we train the network for the task of
interest. In this way, the network’s prediction is based on
the areas which we expect the network to focus on. We
achieve this by making the network’s attention trainable in
an end-to-end fashion, which hasn’t been considered by
any other existing works [22], [39], [43], [47], [52], [59]. In
this section, we describe the design of GAIN and its exten-
sions tailored towards tasks of interest.

3.1 Self-Guidance on the Network Attention

As mentioned in Section 1, attention maps of a trained clas-
sification network can be used as priors for weakly-super-
vised semantic segmentation methods. However, purely
supervised by the classification loss, attention maps usually
only cover small and most discriminative regions of object
of interest. These attention maps can serve as reliable priors
for segmentation but a more complete attention map can
certainly help improving the overall performance.

To solve this issue, our GAIN builds constraints directly
on the attention map in a regularized bootstrapping fashion.
As shown in Fig. 2, GAIN has two streams of networks, classi-
fication stream S, and attention mining S,,,, which share
parameters with each other. The constrain from stream .5
aims to find out regions that help to recognize classes. The
stream S, is making sure that all regions which contribute
to the classification decision will be included in the network’s
attention. In this way, attention maps become more complete,
accurate and tailored for the segmentation task. The key here
is that we make the attention map on-line generated and
trainable by the two loss functions jointly.

Based on the fundamental framework of Grad-CAM [39],
we streamlined the generation of attention map. An atten-
tion map corresponding to the input sample can be obtained
within each inference so it becomes trainable in training
stage. In stream S, for a given image I, let f, be the activa-
tion of unit k£ in the lth layer. For each class ¢ from the
ground-truth label, we compute the gradient of score s cor-
responding to class ¢, with respect to activation maps of f; .
These gradients flowing back will pass through a global
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average pooling layer [28] to obtain the neuron importance
weights wi; as defined in Eq. (1).

. as¢
wyy, = GAP (8fl,k’>7 (1)

where GAP(-) means global average pooling operation.

Here, we do not update parameters of the network after
obtaining the wj, by back-propagation. Since wf; represents
the importance of activation map f; . supporting the predic-
tion of class ¢, we then use weights matrix w* as the kernel
and apply 2D convolution over activation maps matrix f; in
order to integrate all activation maps, followed by a ReLU
operation to get the attention map A° with Eq. (2). The atten-
tion map is now on-line trainable and constrains on A¢ will
influence the network’s learning

A = ReLU (conv(f,w")), (2)

where [ is the representation from the last convolutional
layer whose features have a good balance between detailed
spatial information and high-level semantics [41].

We then use the trainable attention map A° to generate a
soft mask to be applied on the original input image, obtain-
ing I'* using Eq. (3). I represents the regions beyond the
network’s current attention for class c.

e =1 (T(A) o D), 3)

where ® denotes element-wise multiplication. 7'(A) is a
masking function based on a thresholding operation. In
order to make it derivable, we use Sigmoid function as an
approximation defined in Eq. (4).

1
1+ exp(—w(A° —0))’

T(A%) = @
where o is the threshold matrix whose elements all equal to
0. w is the scale parameter ensuring 7T'(A¢); ; approximately
equals to 1 when A€ ; is larger than o, or to 0 otherwise.

I*¢ is then used as input of stream S, to obtain the class
prediction score. Since our goal is to guide the network to
focus on all parts of the class of interest, we are enforcing I*
to contain as little feature belonging to the target class as pos-
sible, i.e., regions beyond the high-responding area on atten-
tion map area should include ideally not a single pixel that
can trigger the network to recognize the object of class c.
From the loss function perspective it is trying to minimize the
prediction score of I*“ for class c. To achieve this, we design
the loss function called Attention Mining Loss as in Eq. (5).

1
Lam:_g ¢ I*Cv
n 4 ) ®)

where s°(1*“) denotes the prediction score of I** for class c. n
is the number of ground-truth class labels for this image /.

As defined in Eq. (6), our final self-guidance loss L, is
the summation of the classification loss L and Ly,,.

Lsclf = Lcl + aLamv (6)

where L is for multi-label and multi-class classification and
we use a multi-label soft margin loss here. Alternative loss

2999

functions can be use for specific tasks. o is the weighting
parameter. We use « = 1 in all of our experiments.

With the guidance of L.y, the network learn to extend
the focus area on input image contributing to the recogni-
tion of target class as much as possible, such that attention
maps are tailored towards the task of interest, i.e., semantic
segmentation. The joint optimization also prevents to erase
all pixels. We verify the efficacy of GAIN with self guidance
in Section 4.

3.2 GAIN.,,: Integrating Extra Pixel-Level
Supervision
In addition to letting networks explore the guidance of the
attention map by itself, we can also tell networks which part
in the image they should focus on by using a small amount
of extra supervision to control the attention map learning
process. Based on this idea of imposing additional supervi-
sion on attention maps, we introduce the extension of
GAIN: GAIN? ,, which can seamlessly integrate extra super-
vision in our weakly supervised learning framework.
Following Section 3.1, we still use the weakly supervised
semantic segmentation task as an example application to
explain the GAIN® ,. The way to generate trainable attention
maps in GAIN? , during training stage is the same as that in
the self-guided GAIN. In addition to L,; and L,,,, we design
Attention Loss L, based on the given external supervision.

We define L, as

L= (A4~ ™
where H¢ denotes the extra supervision, e.g., pixel-level seg-
mentation masks in our example case.

Since generating pixel-level segmentation maps is ext-
remely time consuming, we are more interested in finding
out the benefits of using only a very small amount of data
with external supervision, which fits perfectly with the
GAIN? , framework shown in Fig. 3, where we add an
external stream S?, and these three streams share all param-
eters. Input images of stream S? include both image-level
labels and pixel-level segmentation masks. One can use
only a very small amount of pixel-level labels through
stream S? to already gain performance improvement
with GAIN, (in our experiments with GAIN? ,, only
1~ 10 percent of the total labels used in training are pixel-
level labels). The input of the stream 5,; includes all images
in the training set with only image-level labels.

The final loss function, Le,—p, of GAIN® , is defined as

follows:
Lcwtfp =Ly +aLy, + wL[n ®)

where L, and L,, are defined in Section 3.1, and w is the
weighting parameter depending on how much emphasis
we want to place on the extra supervision (we use w = 10 in
our experiments).

GAIN? , can also be easily modified to fit other tasks.
Once we get activation maps f;; corresponding to the
network’s final output, we can use L, to guide the network
to focus on areas critical to the task of interest. In Section 5,
we show an example of such modification to guide the
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Fig. 3. Framework of the GAIN,;. Pixel-level (GAINZ,,) and bounding-box (GAIN?,,) annotations are seamlessly integrated into the GAIN framework
to provide direct supervision on attention maps optimizing towards the task of semantic segmentation.

network to learn features robust to dataset bias and improve
its generalizability.

3.3 GAIN’ : Integrating Bounding Box Supervision
Compared with pixel-level segmentation masks, object boun-
ding box annotations are far less expensive, taking only
around 1/15 time [29]. Cheaper and easier to define, box
annotations could also be integrated as extra supervision to
guide the learning process of the network attention maps.
They convey useful information to tell network which part of
the box content is background and which is foreground object
that they should focus on.

Following Section 3.2, we treat the bounding box as a kind
of extra supervision. Considering the difference between the
bounding box and the pixel-level segmentation mask, we
need to modify Stream S? and replace Attention Loss L, with
a new loss function Ly, to provide guidance directly on
attention maps. The input of this new stream S’ are images
with their corresponding bounding box annotations and fore-
ground priors. Ly, encourages the network to pay less atten-
tion on the regions out of bounding boxes for class ¢ when
recognizing this class, meanwhile, pay more attention on the
foreground objects within these bounding boxes. Saliency
map can be used here to represent foreground priors. To
achieve this, we define Ly, in Eq. (9).

Liw =23 ([0~ B)o &~ 2P+ [BFo (A -5}, O

where B¢ is a matrix generated based on the bounding box
annotation for class c. Elements of B° equal to 1 if they are
within any bounding box belongs to class ¢ and equal to 0
otherwise. B3° is then resized to be of the same size as that of

the attention map A.. O is a matrix with all elements equal
to 1 and Z is a matrix with all elements equal to 0. S is the
resized saliency map for current image. O, Z and S all have
the same size as that of the attention map A°. ® denotes ele-
ment-wise multiplication.

Again, we are interested in finding out the benefits of using
only a very small amount of data with bounding box supervi-
sion, which fits perfectly with the GAIN', framework.
GAIN? , is obtained by replacing stream S? with stream S”.
The three streams still share all parameters. A very small
amount of bounding box annotations through stream S’ can
already help to improve the performance with GAINm (in
our experiments with GAIN? ,, only 1~ 10 percent of the total
labels used in training are bounding box labels).

The final loss function L,y of GAIN? , is defined as
follows:

Lcwt—bboz = Lcl + aLam + a)LbbU’ij (10)

where L, and L,,, are defined in Section 3.1, and o is the
weighting parameter depending on how much emphasis
we want to place on the bounding box supervision (we use
o = 10 in our experiments which is the same as Eq. (8)).

4 SEMANTIC SEGMENTATION EXPERIMENTS

To verify the efficacy of GAIN, following Sections 3.1, 3.2 and
3.3, we use the weakly supervised semantic segmentation
task as the example application. The goal of this task is to clas-
sify each pixel into different categories. In the weakly super-
vised setting, most of recent methods [22], [23], [47] mainly
rely on localization cues generated by models trained with
only image-level labels and consider other constraints such as
object boundaries to train a segmentation network. Therefore,
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Fig. 4. Structure of the weakly-supervised semantic segmentation
framework using fully convolutional network (Deeplab [8] here) as the
backbone network. Image-level labels and localization cues obtained
based on attention maps of GAIN provide guidance on the training of
this segmentation network, which is achieved by optimizing two loss
functions jointly. No ground-truth pixel-level annotations are used during
the training process of this semantic segmentation network.

the quality of localization cues is the key of these methods’
performance.

Compared with attention maps generated by state-of-the-
art methods [31], [39], [59] which only locate the most discrim-
inative areas, GAIN guides the network to focus on entire
areas representing the class of interest, which can improve the
performance of weakly supervised segmentation. To verify
this, we first adopt our attention maps to SEC [23], which is
one of the state-of-the-art weakly supervised semantic seg-
mentation methods. SEC defines three key constraints: seed,
expand and constrain, where seed is a module to provide locali-
zation cues C to the main segmentation network N such that
the segmentation result of N is supervised to match C'. Fol-
lowing SEC [23], our localization cue ¢¢ € {0, 1} for each class
c at location z is obtained by applying a thresholding opera-
tion to attention maps generated by GAIN: for each per-class
attention map, all pixels with a score larger than 20 percent of
the maximum score are selected. We apply [30] several times
to get background cues and then train the SEC model to gen-
erate segmentation results using the same inference proce-
dure, as well as parameters of CRF [24]. According to cues
generated by our different GAIN models with different kinds
of supervision, we denote the segmentation results as GAIN-
SEC, GAIN? ,-SEC and GAIN? ,-SEC accordingly.

In addition to using the existing weakly-supervised
semantic segmentation framework for evaluation, we also use
a framework similar to [33], [47], [50] to further investigate the
benefit of our improved attention maps. As shown in Fig. 4,
the framework is built upon Deeplab backbone segmentation
network [8] and supervised by two loss functions jointly. One
the one hand, due to the improved quality of attention maps
of GAIN, they could act as pseudo ground truth to provide
guidance on the training of this weakly-supervised semantic
segmentation framework. In particular, we obtain localization
cue (¢ € {0, 1} for each class c at location x based on attention
maps of GAIN following the same way as SEC [23]. Then we
define the segmentation loss L., as follows:

Ly = ZJ(SE(I)J;)’ (11)

where s¢ () is the prediction of the segmentation network of
class ¢ at localization z for a input image /. ¢ is the
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corresponding localization cue obtained by GAIN. J(-) is
the pixel-wise cross entropy loss.

On the other hand, we add a Global Average Pooling
layer (GAP) at the last layer of the segmentation network to
get the class prediction score for a input image. Based on
the understanding that a segmentation network should also
have the ability to classify the image well, we use a multi-
label classification loss L. to constrain the learning of the
network. The final loss function L,,_, is defined as follows:

Ly—s=Lg+ Lseg- (12)
The trained network then generates segmentation results for
evaluation.

4.1 Dataset and Experimental Settings

Datasets and Evaluation Metrics. We evaluate our results on
PASCAL VOC 2012 image segmentation benchmark [13],
which has 21 semantic classes, including the background.
The whole dataset is split into three sets: training, valida-
tion, and testing (denoted as train, val, and test) with 1,464,
1,449, and 1,456 images, respectively. Following the com-
mon setting [7], [23], we also use the augmented training set
provided by [15]. The resulting training set has 10,582
weakly annotated images which we use to train our models.
We compare our approach with other methods on both the
val. and test sets. For the evaluation metric, we use the stan-
dard one for the PASCAL VOC 2012 segmentation—mean
intersection-over-union (mloU).

Implementation Details. We use VGG [42] pretrained from
the ImageNet [10] as the basic network for GAIN to generate
attention maps. We use PyTorch [1] to implement our models.
We set the batch size to 1 and learning rate to 107°. We use the
stochastic gradient descent (SGD) to train the networks and
terminate after 35 epochs. For the concern about max-min
optimization problem, we have not observed any issue with
convergence in our experiments with various datasets and
projects. Our total loss decreases around 90 and 98 percent
after 1 and 15 epochs respectively. For the weakly-supervised
segmentation framework, following the setting of SEC [23],
we use the DeepLab-CRFLargeFOV [7], which is a slightly
modified version of the VGG network [42]. Implemented
using Caffe [20], DeepLab-CRFLargeFOV [7] defines the
input size as 321 x 321 and produces segmentation masks
with size of 41 x 41. Our training procedure is the same
as [23] at this stage. We run the SGD for 8,000 iterations with
the batch size of 15. The initial learning rate is 10~ and it
decreases by a factor of 10 for every 2,000 iterations. For the
details about our own weakly-supervised semantic segmenta-
tion network described in Section 4, we still use the input size
of 321 x 321. The parameters of back-bone network DeepLab
[8] are initialized by ResNet-101 [16] pre-trained on ImageNet
[10]. We set the starting learning rate as 0.0005, multiplying
it by 0.1 every 2,000 iterations. We use a mini-batch of 10,
momentum of 0.3 and weight decay of 0.0005 to train the net-
work with 20,000 iterations.

4.2 Comparison with State-of-the-Art
We compare our methods with other state-of-the-art weakly
supervised semantic segmentation methods with image-level

labels. Following [47], we separate them into two categories.
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TABLE 1
Comparison of Weakly Supervised Semantic Segmentation
Methods on PASCAL VOC 2012 segmentation val. Set and
segmentation test Set

Methods Training Set val. test

(mIoU) (mlIoU)

Supervision: Purely Image-level Labels

CCNN [34] 10KW 353 35.6
MIL-sppxl [35] 700K W 35.8 36.6
EM-Adapt [33] 10KW 38.2 39.6
DCSM [40] 10KW 44.1 45.1
BFBP [38] 10KW 46.6 48.0
STC [48] 50K W 49.8 51.2
AF-SS [36] 10KW 52.6 52.7
CBTS-cues [37] 10K W 52.8 53.7
TPL [22] 10KW 53.1 53.8
WebS-i2 [21] 10K W 53.4 55.3
PRM [60] 10KW 53.4 -
MEFF [14] 10KW - 55.6
AE-PSL [47] 10K W 55.0 55.7
SEC [23] (baseline) 10KW 50.7 51.7
GAIN-SEC (ours) 10K W 55.3 56.8
GAIN (ours) 10KW 59.4 59.6
Supervision: Bounding box annotations

(# Implicitly use bounding box annotations)

BoxSupp [9] 10K W + 10K B 52.3 -
WSSLy, [33] 10KW + 10K B 52.5 54.2
WSSLg [33] 10KW + 10K B 60.6 62.2
GAIN' ,-SEC# (ours) 10K W +200 B 56.8 57.6
GAIN! ,-SEC# (ours) 10KW + 14K B 58.0 59.2
GAIN!_ # (ours) 10K W + 200 B 61.1 61.6
GAIN?_ # (ours) 10KW +1.4K B 62.6 62.8
Supervision: Image-level Labels

(@ Implicitly use bounding box and pixel-level annotations)
GAINZ_‘,Q-SEC@ 10KW +100B + 100 P 57.8 59.3
GAIN?f,-SEC@ 10KW +732B+732P 59.0 60.2
GAINZf,@ 10K W + 100 B + 100 P 61.7 62.8
GAIN'”.@ 10K W + 732 B+ 732 P 63.2 63.6
Supervision: Image-level Labels

(* Implicitly use pixel-level annotations)

MIL-seg* [35] 700K W + 14K P 40.6 42.0
TransferNet* [17] 27K W + 17K P 51.2 52.1
AF-MCG* [36] 10KW + 14K P 54.3 55.5
GAIN? ,-SEC* (ours) 10K W + 200 P 58.3 59.6
GAIN? ,-SEC* (ours) 10KW + 1.4K P 60.5 62.1
GAIN? ,* (ours) 10K W +200 P 62.2 61.9
GAIN,,* (ours) 10K W + 14K P 64.1 64.4

“W” denotes image-level labels, “B” denotes bounding box annotations and
“P” denotes pixel-level labels. Implicitly use pixel-level supervision is a
protocol we followed as defined in [47], that pixel-level labels are only used in
training priors, and only weak labels are used in the training of segmentation
framework, e.g., SEC [23] in our case. Implicitly use bounding box super-
vision is a similar protocol.

For methods that purely use image-level labels, we compare
our GAIN-based SEC (denoted as GAIN-SEC in the Table 1)
and GAIN with SEC [23] AE-PSL [47], TPL [22], STC [48],
MEEFF [14], PRM [60] etc. For another group of methods,
implicitly using pixel-level supervision means that though
these methods train the segmentation networks only with
image-level labels, they use some extra technologies that are
trained using pixel-level supervision. Our GAINY ,-based

ext
SEC (denoted as GAIN? ,-SEC in the table) and GAIN? , lie in

ext
this setting because it uses a very small amount of pixel-level
labels to further improve the network’s attention maps and
doesn’t rely on any pixel-level labels when training the

SEC segmentation network. Other methods in this setting like
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AF-MCG [59], TransferNet [17] and MIL-seg [35] are included
for comparison. For methods that use both image-level labels
and some amount of bounding box annotations, BoxSupp [9],
WSSL, [33] and WSSLg [33] are included for comparison. The
supervision of our method is a kind of implicitly using bound-
ing box supervision. Different from directly using a large
amount (10K) bounding box annotations to train the semantic
segmentation network, our GAIN? ,-SEC and GAIN’ , only
use a small amount of bounding box labels to train the locali-
zation cues. None of these annotations are used to train the
semantic segmentation network in the next step. Table 1
shows results on PASCAL VOC 2012 segmentation val. set and
segmentation test. set.

Among the methods purely using image-level labels, our
GAIN-based SEC achieves the performance with 55.3 and
56.8 percent in mloU on these two sets, outperforming the
SEC [23] baseline by 4.6 and 5.1 percent. Furthermore, GAIN
outperforms AE-PSL [47] by 0.3 and 1.1 percent, and outper-
forms TPL [22] by 2.2 and 3.0 percent. These two methods are
also proposed to improve attention maps to cover more areas
of the class of interest. Compared with them, our GAIN
makes the attention map trainable without the need to do iter-
ative erasing or combining attention maps from different net-
works, as proposed in [22], [47]. In addition to using the
existing weakly-supervised semantic segmentation frame-
work SEC to evaluate the quality of our improved attention
maps, we also show the performance of our proposed frame-
work using attention maps as input cues. GAIN achieves 59.4
and 59.6 percent in mloU, which further validates the benefit
of our improved attention maps.

Our framework also supports to plug in different levels of
extra supervision to provide guidance on attention learning
of a network. When using bounding box as extra supervision,
our GAIN?,, based SEC further improves performance upon
SEC as well as GAIN based SEC because of better attention
maps. Based on attention maps using 200 randomly selected
bounding box annotations as well as 10K image level weak
labels, GAIN? ,-SEC performs 56.8 and 57.6 percent on the
val. and test sets of VOC 2012. When the number of available
bounding box annotations increases to 1.4K, GAIN? -SEC
can achieve 58.0 and 59.2 percent in mloU on the two sets.
When using our semantic segmentation framework with
improved attention maps, GAIN’ , performs 61.1 and 61.6
percent with 200 bounding box annotations on VOC val. and
test sets, and the performance improves to 62.6 and 62.8 per-
cent when the number of bounding box annotations increases
to 1.4K. All these bounding box annotations are only used
during the attention learning process, none of them are used
to train the semantic segmentation model in the next step.
This setting helps to validate that the extra supervision can
help to further improve the attention maps and guide the
attention learning of the network. Besides, for the segmenta-
tion task, compared with other methods that use 10K image-
level labels and 10K bounding box annotations, our methods
achieve better performance, but rely on less bounding box
annotations (only 200 or 1.4K bounding box annotations).

By implicitly using pixel-level supervision, our GAIN? -
based SEC achieves 58.3 and 59.6 percent in mloU when
we use 200 randomly selected images with pixel-level
labels (2 percent data of the whole dataset) as the extra
supervision. It already performs 4 and 4.1 percent better
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Fig. 5. Qualitative results of attention maps generated by Grad-CAM [39], the proposed GAIN, GAIN?,, and GAIN?,,. Here, GAIN? , uses 200 ran-

domly selected (2 percent) bounding box annotations and GAIN?

P+ uses 200 randomly selected (2 percent) pixel-level labels as extra supervision to

guide the attention learning process. The proposed methods can obtain much better attention maps that cover more complete regions of interest by

guided attention learning with different levels of guidance.

than AF-MCG [59], which relies on the MCG generator [3]
trained in a fully-supervised way on the PASCAL VOC.
After the pixel-level supervision increases to 1,464 images
for our GAIN? ,-based SEC, the performance jumps to
60.5 and 62.1 percent. When we use the improved attention
maps as localization cues to train our own semantic seg-
mentation model, GAIN? , performs 62.2 and 61.9 percent
on the VOC 2012 wval. and fest sets using 200 rando-
mly selected pixel-level labels during the guided atten-
tion learning. The performance improves to 64.1 and
64.4 percent more extra annotations. Similar to the previous
experiment that uses bounding box annotations, none of
the pixel-level annotations are used to train the semantic
segmentation model in order to validate the improvements
are from better attention maps.

We show qualitative results of attention maps generated
by GAIN-base methods in Fig. 5, where GAIN covers more
areas belonging to the class of interest compared with the
Grad-CAM [39]. With only 2 percent of the pixel-level
labels, the GAIN? , covers more complete and accurate
areas of the class of interest as well as less background areas
around the class of interest (for example, the sea around the
ships and the road under the car in the second row of Fig. 5).

Fig. 6 shows some qualitative results of semantic seg-
mentation, indicating that GAIN-based methods help to
discover more complete and accurate areas of classes of
interest.

Ground Truth Image SEC (baseline)  GAIN+SEC GAIND +SEC  GAINE +SEC

Fig. 6. Qualitative results on PASCAL VOC 2012 segmentation val. set.
They are generated by SEC (our baseline framework), GAIN-based
SEC, GAIN! -based SEC and GAIN -based SEC. Here, GAIN? -
based SEC is based on attention maps generated by GAIN , that uses
200 randomly selected (2 percent) bounding box annotations during
training. GAIN?,,-based SEC is based on attention maps of GAINZ , that
uses 200 randomly selected pixel-level labels as extra supervision to
guide the attention learning process. No extra supervision is used during
the training of semantic segmentation network, SEC here.
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TABLE 2

Comparison of Weakly Supervised Semantic Segmentation Methods on Pascal VOC 2012 segmentation val. Set
Methods b.g. plane bike bird boat bott. bus car cat chair cow table dog hors. moto. pers. plant sheep sofa train tv = mloU
Supervision: Purely Image-level Labels
CCNN [34] 68.5 180 254 202 363 468 47.1 480 158 379 21.0 445 345 462 407 304 363 222 388 369 353
MIL-sppxl [35] 772 373 184 254 282 319 4l1.6 481 50.7 127 457 146 509 441 392 379 283 440 196 37.6 350 36.6
DCSM [40] 76.7 451 24.6 408 230 348 61.0 51.9 524 155 459 327 549 486 574 518 382 554 322 42.6 39.6 44.1
BFBP [38] 792 601 204 507 412 463 62.6 492 623 133 49.7 381 584 490 570 482 278 551 296 54.6 266 46.6
STC [48] 845 680 195 605 425 448 684 640 648 145 520 228 58.0 553 578 605 40.6 567 230 571 312 49.8
AF-SS [36] - 618 268 477 279 502 676 59.6 775 248 519 305 673 528 629 557 379 614 320 509 541 516
CBTS-cues [37] 858 652 294 638 312 372 696 643 762 214 563 298 682 606 662 558 308 66.1 349 488 471 528
AE-PSL [47] 834 711 305 729 416 559 63.1 602 740 180 665 324 717 563 648 524 374 691 314 589 439 55.0
TPL [22] 828 622 231 658 21.1 431 711 662 761 213 59.6 351 702 588 623 661 358 699 334 459 456 53.1
SEC [23] (b.L) 824 629 264 616 27.6 381 666 627 752 221 535 283 658 578 625 525 325 626 321 454 453 507
GAIN-SEC 86.9 693 297 640 49.1 514 658 678 734 220 574 200 687 604 639 681 342 631 300 63.6 524 553
GAIN 87.6 767 339 745 585 617 759 729 786 188 708 141 687 696 695 713 415 665 164 702 487 59.4
Supervision: Bounding box annotations
(# Implicitly use bounding box annotations)
GAIN’ -SEC-1# 86.8 715 30.1 645 430 519 726 69.7 752 237 613 344 694 615 654 682 361 655 325 63.7 462 568
GAIN'’ -SEC-2# 878 718 303 664 513 529 741 721 764 236 613 318 718 631 652 697 343 628 322 680 511 580
GAINY  -1# 885 774 353 727 570 624 745 719 779 194 725 172 739 718 719 729 446 722 228 693 565 61.1
GAIN?  -2# 89.1 781 344 710 643 723 832 753 834 144 731 162 763 708 694 725 438 760 232 709 572 62.6
Supervision: Image-level Labels
(@ Implicitly use bounding box and pixel-level annotations)
GAIN"/-SEC-1@ 868 715 301 645 430 519 726 697 752 237 613 344 694 615 654 682 361 655 325 637 462 57.8
GAIN!/-SEC-2@ 88.1 725 29.1 666 524 542 761 716 763 237 633 390 721 643 656 703 347 647 344 682 522 59.0
GAIN'-1@ 882 768 357 732 585 631 729 732 782 205 718 194 743 725 704 732 451 734 232 689 568 61.7
GAIN!’,-2@ 893 778 362 731 656 715 827 764 856 163 754 174 748 723 71.6 702 453 781 240 723 579 63.2
Supervision: Image-level Labels
(* Implicitly use pixel-level annotations)
MIL-seg* [35] 79.6 502 21.6 409 349 405 459 515 60.6 126 512 11.6 568 529 448 427 312 554 215 388 369 420
TransferNet* [17] 853 685 264 698 367 49.1 684 558 773 62 752 143 698 715 61.1 319 255 746 338 49.6 437 521
AF-MCG* [36] - 553 270 620 306 567 728 649 795 267 593 314 730 577 639 674 361 680 346 517 381 543
GAIN?,-SEC-1* 878 728 304 669 443 497 715 695 771 227 633 453 713 649 657 698 345 657 330 659 51.3 583
GAIN?, -SEC-2* 889 737 322 69.1 542 527 755 740 79.8 243 647 461 735 648 665 723 353 675 335 683 545 60.5
GAINY, -1* 889 786 365 760 602 670 768 743 81.1 250 725 162 753 727 714 744 400 727 205 70.1 559 62.2
GAINY, -2* 89.7 826 360 759 639 659 809 749 830 235 761 179 775 754 726 760 401 757 259 734 589 64.1

GAIN? ,-SEC-1 and GAIN?

ext ext

and GAIN?,,-SEC-2 represent GAIN.

ext ext

-SEC-2 represent GAIN®

ext

GAIN, {:.’L‘L/ ext

More Discussion of the GAINY,,. We are interested in
finding out the influence of different amount of bounding
box annotations or pixel-level labels on the performance.
Following the same setting in Section 4.1, we add more
randomly selected bounding box annotations or pixel-
level labels to further improve attention maps and adopt
them in the SEC [23] as well as our weakly-supervised
semantic segmentation framework. From the results in
Tables 3 and 4, we find that the performance of the
semantic segmentation model improves when more extra

TABLE 3
Results on PASCAL VOC 2012 segmentation val. Set with the
Proposed GAIN? ,-based SEC and GAIN , Implicitly Using
Different Amount of Bounding Box Supervision for the
Attention Map Learning Process

based SEC implicitly using 200 and 1464 pixel-level labels respectively. GAL
implicitly using 200 and 1464 combinations of bounding box and pixel-level annotations with a half-and-half ratio respectively. “-1” and “-2” after GAIN®
GAIN.?, also represent for amount of annotation, which is the same as corresponding SEC-based version.

based SEC that implicitly using 200 and 1464 bounding box annotations respectively. GAIN?,,-SEC-1

ext

2 _SEC-1 and GAIN"",-SEC-2 represent

ext ext

ext’

annotations are provided to train the network that gener-
ates attention maps. Again, there are no pixel-level labels
used to train the weakly-supervised semantic segmenta-
tion framework.

Detailed quantitative results for weakly supervised
semantic segmentation experiments including IoU scores
for each class of Pascal VOC 2012 segmentation val., test set
are shown in Tables 2 and 5. We also evaluate performance
on VOC 2012 seg. val. and seg. test datasets without CRF as
shown in Table 6.

TABLE 4
Results on PASCAL VOC 2012 segmentation val. Set with our
GAIN? ,-based SEC and GAIN? , Implicitly Using Different

Amount of Pixel-Level Supervision for the Attention
Map Learning Process

Method Training Set val. (mloU)  Method Training Set val. (mloU)
10K weak + 200 pixel 56.8 10K weak + 200 pixel 58.3
10K weak + 400 pixel 57.1 10K weak + 400 pixel 59.4
b * P *
GAINy,,-SEC 10K weak + 900 pixel 573 GAINc;-SEC 10K weak + 900 pixel 60.2
10K weak + 1464 pixel 58.0 10K weak + 1464 pixel 60.5
10K weak + 200 pixel 61.1 10K weak + 200 pixel 62.2
10K weak + 400 pixel 61.4 10K weak + 400 pixel 62.6
b P
GAIN,,, 10K weak + 900 pixel 622 GAING 10K weak + 900 pixel 63.3
10K weak + 1464 pixel 62.6 10K weak + 1464 pixel 64.1
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TABLE 5

Comparison of Weakly Supervised Semantic Segmentation Methods on Pascal VOC 2012 segmentation test Set
Methods b.g. plane bike bird boat bott. bus car cat chair cow table dog hors. moto. pers. plant sheep sofa train tv mloU
Supervision: Purely Image-level Labels
CCNN [34] 70.1 242 199 263 186 381 51.7 429 482 156 372 183 430 382 522 40.0 338 360 21.6 334 383 356
MIL-sppxI [35] 747 388 19.8 275 21.7 32.8 40.0 50.1 471 72 448 158 494 473 366 364 243 445 210 315 413 358
EM-Adapt [33] 763 371 219 41.6 26.1 385 50.8 449 489 167 408 294 471 458 548 282 300 440 292 343 46.0 396
DCSM [40] 781 438 263 498 195 403 61.6 53.9 527 13.7 473 348 503 489 690 497 384 571 340 38.0 40.0 45.1
BEBP [38] 80.3 575 241 669 317 43.0 67.5 48.6 56.7 12.6 509 42.6 594 529 650 448 413 51.1 337 444 332 480
STC [48] 852 627 21.1 580 314 550 68.8 63.9 637 142 57.6 283 630 598 67.6 617 429 610 232 524 331 51.2
AF-SS [36] - 580 28.0 474 250 575 67.8 558 77.1 209 548 355 682 573 731 586 402 582 39.5 44.1 551 52.7
CBTS-cues [37] 857 588 30.5 67.6 247 447 748 61.8 737 229 574 275 713 648 724 573 370 604 428 422 50.6 537
TPL [22] 834 622 264 718 182 495 66.5 63.8 734 190 56.6 357 693 613 717 692 391 663 448 359 455 53.8
AE-PSL [47] 853 669 322 778 39.1 592 635 614 73.1 173 609 364 702 568 759 528 387 685 346 51.2 485 557
SEC [23] (b.L) 835 564 285 641 236 465 70.6 58.5 71.3 232 540 280 681 621 70.0 550 384 580 399 384 483 51.7
GAIN-SEC 88.0 67.0 30.0 663 414 604 66.8 651 71.7 255 587 224 723 658 68.0 720 399 641 334 622 52.7 56.8
GAIN 882 79.3 337 679 505 625 76.0 722 77.6 203 658 195 726 73.0 752 714 424 728 214 615 48.6 59.6
Supervision: Image-level Labels
(# Implicitly use bounding box annotations)
GAIN! -SEC-1# 875 663 315 63.6 357 558 737 648 72.7 275 615 360 721 660 715 709 435 64.6 400 58.6 473 57.6
GAIN' -SEC-2# 883 675 31.8 67.0 44.1 586 74.0 67.0 746 27.0 622 345 729 677 717 708 429 671 386 635 51.8 59.2
GAIN?  -1# 89.0 804 343 695 488 604 752 73.6 765 202 750 270 774 738 755 744 476 740 283 63.0 49.5 61.6
GAIN? -2# 894 822 332 745 512 700 81.7 76.6 814 160 729 207 753 753 766 731 462 751 259 705 517 62.8
Supervision: Image-level Labels
(@ Implicitly use bounding box and pixel-level annotations)
GAIszt-SEC-l@ 88.1 674 314 66.1 365 578 726 662 757 269 632 431 734 668 706 71.1 447 67.1 39.7 622 54.0 59.3
GAIN’’-SEC-2@ 885 715 30.3 67.7 422 583 742 663 748 282 648 395 732 700 718 713 451 690 414 636 527 60.2
GAIN'’-1@ 895 829 362 747 506 654 759 771 792 181 709 285 77.6 733 756 739 455 762 26.6 658 544 62.8
GAIN'? 2@ 90.0 834 358 727 526 653 81.1 762 80.0 215 70.7 271 78.0 76.6 789 744 436 773 260 726 519 63.6
Supervision: Image-level Labels
(* Implicitly use pixel-level annotations)
MIL-seg* [35] 787 48.0 212 31.1 284 351 514 555 528 7.8 562 199 538 503 400 386 278 51.8 247 333 463 40.6
TransferNet* [17] 85.7 70.1 27.8 73.7 373 448 714 538 73.0 6.7 629 124 684 737 659 279 235 723 389 459 392 512
AF-MCG* [36] - 579 294 604 29.0 581 702 623 79.6 235 571 375 751 60.7 764 678 402 71.0 403 440 39.6 555
GAIN? ,-SEC-1* 884 69.2 314 643 372 572 722 664 746 267 63.0 451 744 681 713 719 460 671 412 619 53.0 59.6
GAIN? -SEC-2* 89.7 72.0 33.1 723 456 59.9 744 67.7 791 275 633 469 745 69.6 727 741 457 704 433 67.0 55.6 62.1
GAIN? ,-1* 89.2 789 352 731 521 641 763 747 785 225 723 198 775 765 751 744 442 739 275 639 505 61.9
GAIN? 2% 899 845 352 69.6 543 627 81.8 769 805 249 735 328 775 754 771 754 480 765 338 729 495 64.4

ext”™

GAIN® ,-SEC-1 and GAIN®

ext ext

and GAIN?,,-SEC-2 represent GAI

ext

-SEC-2 represent GAIN®

ext

ext

based SEC implicitly using 200 and 1464 pixel-level labels respectively. GAL

based SEC that implicitly using 200 and 1464 bounding box annotations respectively. GAINY, ,-SEC-1

ext

*_SEC-1 and GAIN"%,-SEC-2 represent

ext ext

implicitly using 200 and 1464 combinations of bounding box and pixel-level annotations with a half-and-half ratio respectively. “-1” and “-2" after GAIN®,,,
GAIN?,,, GAIN®?, also represent for amount of annotation, which is the same as corresponding SEC-based version.

5 GUIDED LEARNING WITH BIASED DATA

In this section, we design two experiments to verify that our
methods have potentials to make the classification network
robust to dataset bias and improve its generalization ability
by providing guidance on its attention.

5.1 Experiment on Boat Recognition

The attention map can be used to identify bias in datasets
[46], we take an example from our observations to explain
it. We find that the classification network (like Grad-CAM
[39]) trained on Pascal VOC dataset always focuses on the
sea and water regions instead of boats when predicting
there are boats in an image. It means that there exists bias in

TABLE 6
Semantic Segmentation Results without CRF on
PASCAL VOC 2012 segmentation val. and test Sets

Methods Training Set val.  fest
SEC [23] w/o0. CRF 10K weak 448 454
GAIN-SEC w/o. CRF 10K weak 50.8 51.8
GAIN? ,-SEC w/0.CRF 10K weak + 1464 bbox 52.1 52.8
GAIN? ,-SEC w/0. CRF 10K weak + 1464 pixel 54.8 55.7

Numbers shown are mloU.

the Pascal VOC dataset that ships always appear together
with the water in most cases. Therefore, the model learns to
detect water rather than the pattern or characteristics to rec-
ognize the boats themselves, which limits the generalization
ability of the learned model. Though we can build a more
balanced dataset based on the observations, our GAIN and
GAIN? , provide another way to make the model learn to be
robust to the bias without the need to rebuild the dataset.
Experimental Setting Details. To verify this, we construct a
test dataset, namely “Biased Boat” dataset, containing two cat-
egories of images: boat images without sea or water; and sea
or water images without boats. We collected 50 images from
Internet for each scenario, resulting in 100 images in total. For
models, we use the VGG [42] pretrained from the Image-
Net [10] as the basic network for Grad-CAM (basic classifica-
tion network), our GAIN and GAIN?,,. We use the stochastic
gradient descent to train the networks and terminate after 35
epochs on the training set of Pascal VOC provided by [15]
which includes 10,582 images. For our GAIN? ,, a small
amount of data in the training set have both image-level and
pixel-level labels. Following the settings in Section 4.1, we
provide 200, 400 and 1,464 randomly chosen pixel-level labels
to train our GAIN? , separately. In these randomly chosen
images, there are 9, 23 and 78 images including the boat class,
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TABLE 7
Results Comparison of VGG with Our GAIN and GAIN? , Tested

on the Biased Boat Dataset for Classification Accuracy

Test set VGG GAIN GAINY,, (# of PL)

9 23 78
VOC val. 83% 90% 93%  9B% 94%
Boat without water 42% 48% 64% 74% 84%
Water without boat 30% 62% 68% 76%  84%
Overall 36% 55% 66%  75%  84%

PL labels denotes pixel-level labels of boat used in the training which are ran-
domly chosen.

which is used to represent different GAIN? , models. The
quantitative results are reported in Table 7 including the accu-
racy on the whole bias dataset as well as for each scenario. We
also show qualitative results in Fig. 7. Attention maps are
shown when there is boat being recognized.

Discussion and Analysis. From the results it can be seen that
with VGG training on VOC 2012, the network is having trou-
ble predicting whether a boat is in the image in both of the
two scenarios with 36 percent overall accuracy. In particular it
generates positive prediction incorrectly on images with only
water 70 percent of the time, indicating that “water” is consid-
ered as one of the most prominent feature characterizing
“boat” by the network. Using GAIN with only image-level
supervision, the overall accuracy on our Biased Boat dataset
has been improved to 55 percent, with significant improve-
ment (32 percent higher in accuracy, almost half the error
rate) on the scenario of “water without boat”. This could be
attributed to that GAIN is able to teach the learner to capture
all relevant parts of the target object, in this case, both the boat
itself and the water surrounding it in the image. Hence when
there is no boat but water in the image, the network is more
likely to generate a negative prediction. However with the

=~

VGG:

V,ﬁo Boat

No Boat

GAIN
(ours):

GAIN,,,
-#9
(ours):

——
==

No Boat

GAIN,,,
-#23
(ours):

GAIN,.,

-#78

(ours): =
Boat Boat
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help of self-guidance, GAIN still is unable to decouple boat
from water due to the biased training data, i.e., the learner is
unable to move its attention away from water. That is the rea-
son why only 6 percent improvement on accuracy is observed
in the scenario of “boat without water”. On the other hand
with GAIN? , training a with small amount of pixel-level
labels, similar levels of improvements are observed in both of
the two scenarios. From Table 7 it can be seen that with only 9
pixel-level labels for “boat”, GAIN? , obtained an overall
accuracy of 66 percent on our Biased Boat dataset, a 11 percent
improvement compared to GAIN with only self-guidance. In
particular significant improvement is observed in the scenario
of boats without water (16 percent increase on accuracy com-
pared to GAIN, about 30 percent reduction of error). With 78
pixel-level labels for “boat” used in training, GAIN? , is able
to obtain 84 percent of accuracy on our Biased Boat dataset and
performance on both of the two scenarios converged. The rea-
sons behind these results could be that pixel-level labels are
able to precisely tell the learner what are the relevant features,
components or parts of the target objects hence the actual
boats in the image can be decoupled from the water. This
again supports that by directly providing extra guidance on
attention maps, the negative impact from the bias in training
data can be greatly alleviated.

5.2 Experiment about Recognizing the Orientation
of an Industrial Camera

The second experiment is designed for a challenging case to
further verify the model’s generalization ability. This indus-
trial application aims to recognize the orientation of the cam-
era. We define two orientation categories for the industrial
camera which is highly symmetric in shape. As shown in
Fig. 8, only the texture such as the location of the gap and
small markers on the surface of the camera are critical to dis-
tinguish their orientations.

Boat Boat No Boat No Boat

Fig. 7. Qualitative results generated by Grad-CAM [39], our GAIN and GAIN? , on the Biased Boat dataset. -# denotes the number of pixel-level labels
of boat used in the training which were randomly chosen from VOC 2012. Attention map corresponding to boat shown only when there are boats

recognized.
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Training Testing

(a) Testing Set 1 Grad-CAM:

I
I
I
IP
o | 4
\| !
I

GT: Class 2 GT: Class 2
Class 2 Predict: Class 2 Predict: Class 2

(b) Testing Set 2 Grad-CAM: GAINy (ours)

p—

Class 2 GT: Class 2
Predict: Class 1

GAINgxt(ours)

=

Training Set

GT: Class 2
Predict: Class 2

I
Class 2 |
I

Fig. 8. Datasets and qualitative results of our toy experiments. The criti-
cal areas are marked with red bounding boxes in each image. GT means
ground truth orientation class label.

Experimental Setting Details. We collect two datasets that
have different viewpoints and backgrounds. One is divided
into two sets: Training Set and Testing Set 1. There are 350
images for each orientation category in the Training Set result-
ing in 700 images in total for training. Testing Set 1 includes
100 images sharing same distribution with the training set.
For Testing Set 2, there are still 50 images per orientation, but
the background and viewpoint are different from Testing Set 1
and Training Set. We train VGG-based classification networks
[42] without attention guidance (like Grad-CAM [39]) and our
GAIN?,, on the Training Set. GAINE , has two streams classifi-
cation stream S,; and external stream Sg . The input images of
stream S” include both the image-level labels and bbox labels.
Here manually drawn bounding boxes (20 for each classes
taking up only 5 percent of the whole training data) on the
critical areas are used as external supervision. These bound-
ing boxes are then converted to pixel-level masks to guide the
network focus on the critical areas.

Discussion and Analysis. At testing stage, though the Grad-
CAM can correctly classify (close to 100 percent accuracy) the
images in the Testing Set 1 where the camera viewpoint and
background are very similar to the Training Set, it only gets
random guess results (close to 50 percent accuracy) on Testing
Set 2 where images are taken from a different viewpoint with
different background. This is due to the fact that there is
severe bias in Training Set and the learner fails to capture the
right features (critical area as noted in Fig. 8) to separate the
two classes. On the contrary, using GAIN? , with a small
amount of images with bounding-box labels, the network is
able to focus its attention on the area specified by the bound-
ing box labels hence better generalization is observed when
testing with Testing Set 2. Although the camera viewpoint and
scene background are quite different, the learner can still cor-
rectly identify the critical area on the camera in the image as
shown in the last column second row in 8. Hence it correctly
classifies all images in both Testing Set 1 and Testing Set 2.

GT: 90 deg GT: 180 deg

GT: 270 deg

Training |
(office) |

Testing
(machine)

Fig. 9. Example images of the data used in the coarse orientation
classification of an industrial workpiece.
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TABLE 8
Performance Comparison between the DenseNet [18]
and DenseNet-based GAIN? ,

Method training set classification
accuracy (%)

DenseNet [18] 6,118 weak 42.30

GAIN?, 6,118 weak + 60 bbox 58.96

GAIN? , 6,118 weak + 120 bbox 73.00

All the methods are trained with office data but evaluated on 2059 in-machine
testing data.

5.3 Experiment about Coarse Orientation Detection
of an Industrial Workpiece

We use this experiment as an example to demonstrate that
GAIN?,, can improve the generalization ability of the trained
model. In this experiment, our task is to classify the input
image of a particular industrial workpiece into one of the four
coarse orientations (i.e., 0, 90, 180, and 270 degrees). We are
given 6,118 training images acquired in an office environ-
ment. However, the trained model needs to be deployed in
the factory and tested on 2,059 in-machine testing images.
Fig. 9 displays some example images in the training and test-
ing datasets, showing clear difference between these two
datasets in terms of scale, viewpoint, background, etc.

In our implementation, we change the base network archi-
tecture of the GAIN?,, from VGG to the DenseNet [18] and
compare the classification accuracy of the adapted GAIN?,,
with that of a DenseNet [18] trained with image-level labels.
The result is summarized in Table 8, where GAIN’ , shows
better accuracy and generalization ability compared with the
DenseNet by using about 1~2 percent of extra bounding box
annotations. Table 8 also shows that using more bounding
box annotations with GAIN? , achieves better performance,
which is consistent with Table 1. Fig. 10 displays some exam-
ple attention maps corresponding to the three methods in
Table 8, showing that using extra and more bounding box
annotations can guide the attention of the network to focus
more on the workpiece, regardless of the correctness of pre-
diction. Tables 1 and 8 together support that GAIN? , outper-
forms the comparable methods regardless of the tasks
(classification and segmentation) and the base network archi-
tecture (VGG and DenseNet).

GT: 0 deg GT: 90 deg GT: 180 deg GT: 270 deg

DenseNet

predict: 270 deg

GAINZ,,
60 bbox

predict: 0 deg predict: 90 deg predict: 90 de predict: 90 deg

GAINZ,,
120 bbox

predict: 270 deg

predict: 0 deg predict: 90 deg predict: 180 deg

Fig. 10. Some example attention maps corresponding to the three meth-
ods in Table 8. These attention maps show that using extra and more
bounding box annotations encourages the network to predict based on
the workpiece instead of the background.
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6 CONCLUSIONS

In this paper, we propose a framework that can provide guid-
ance directly on the attention maps of a deep convolutional
neural network. The network is guided to focus on the
regions we expect without changing the network structure or
learning extra parameters. This is achieved by making the
attention maps not an afterthought, but a first-class citizen
during end-to-end training. We validate the effectiveness of
the proposed method considering two main roles of these
maps. First, when serving as localization priors for tasks
like weakly-supervised semantic segmentation, our attention
maps can be guided by self supervision or available extra
supervision during training, which leads to improvement by
covering more complete regions of class of interest. Extensive
experiments on the PASCAL VOC 2012 benchmark demon-
strate that the proposed method confidently outperforms the
state of the art without the need for recursive processing
during run time.

Since attention maps are related to the network’s response
given specific patterns and tasks it was trained for, providing
guidance on attention maps can be understand as a regulariza-
tion for the network learning. As one benefit of this we are able
to control the network attention explicitly and can put manual
effort in providing minimal supervision of attention rather
than re-balancing the dataset when the network suffers from
dataset bias. While it may not always be clear how to manually
balance datasets to avoid bias, it is usually straightforward to
guide attention to the regions of interest. We design several
experiments using data from standard benchmark as well as
real industrial application to validate this idea. We observe
that our explicit guided attention model can help to improve
the generalization performance.

In the future it may be illuminating to deploy our method
on other tasks related to localization, such as weakly-super-
vised object detection, object localization, sound-to-visual
localization, action localization etc. Besides, constraints based
on the principle that learning concepts by focusing on right
regions are implemented in this work, which are helpful to
improve the generalization ability of the network. Based on
our exploration for the relationship between network decision
and its attention, we expect more future work can attempt to
formulate different constraints on this relationship according
to the requirements of specific tasks. Our insight and frame-
work have already inspire several further explorations in other
applications. [58] extends our GAIN framework to Siamese
network and adopts our Attention Mining Loss L, to the per-
son re-identification module, helping the network generate
complete attentive regions in person images. Experiments
show a complete attention map can help to improve the perfor-
mance of person re-identification. [45] validates that a com-
plete attention map can help to improve the model’s
robustness to adversarial attacks. [11] demonstrates that penal-
izing the changes in classifier’s attention maps helps to retain
information of the base classes, as new classes are added,
which can help to boost the performance of incremental
learning.
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