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Abstract— The use of deep learning methods has dramatically
increased the state-of-the-art performance in image object local-
ization. However, commonly used supervised learning methods
require large training datasets with pixel-level or bounding
box annotations. Obtaining such fine-grained annotations is
extremely costly, especially in the medical imaging domain.
In this work, we propose a novel weakly supervised method
for breast cancer localization. The essential advantage of our
approach is that the model only requires image-level labels and
uses a self-training strategy to refine the predicted localization
in a step-wise manner. We evaluated our approach on a large,
clinically relevant mammogram dataset. The results show that
our model significantly improves performance compared to
other methods trained similarly.

Index Terms— Object localization, mammography, convolu-
tional neural network

I. INTRODUCTION

Recently, deep learning has demonstrated revolutionary
potential in various medical imaging analysis tasks such
as classification, localization, segmentation, image post-
processing, treatment planning, etc [1], [2], [3], [4], [5],
[6]. In object localization tasks, fully-supervised training
methods usually require a large number of training images
with bounding boxes (BBs) of region-of-interests (ROIs)
or pixel-level annotations [7], [8], [9], [10]. However, such
fine-grained annotations are usually not available for med-
ical images, especially for clinically relative breast cancer
dataset [11]. Obtaining the annotations usually is expensive
and time-consuming because the annotator needs months
or even years of professional training. In contrast to fully
supervised training, weakly-supervised training uses coarser
annotations, such as image-level labels [12], [13], [14],
which can significantly reduce the time and cost for annota-
tion.

Domain adaptation is one way to train an object localiza-
tion network without fine-grained labels. This approach was
proposed to deal with the scenarios in which a model trained
on a source distribution (dataset) is used in the context of a
different (but related) target distribution (dataset) [15]. Do-
main adaptation for weakly-supervised localization training
shows promising results in natural imaging settings [16]. To
use such a method, we need firstly to train a localization
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Fig. 1. Breast tumor localization example of a given input mammogram
(left), the prediction of the attention-based method (middle), and the
prediction of our method (right). The red box indicates the ground truth
tumor localization. The heatmap shows the predictedu location.

network on a source dataset with fine-grained labels. After
the model is trained well, we can use domain adaptation to
apply the pre-trained model on a different but related target
dataset without requiring fine-grained labels. However, in the
medical imaging domain, source datasets with fine-grained
labels are usually not available in the real world.

Attention mechanism, which usually refers to trainable
attention [17], [18], can be used for weakly-supervised
object localization as well. An attention map highlights the
important areas of a given image. Ideally, the highlighted
areas should be the ROIs of a given image. We can use the
attention map for object localization. However, in practice,
not all of the important areas are necessary to be ROIs. Zhang
et al. [19] proposed to use self-produced guidance (SPG)
masks for object localization of natural images. A SPG mask
is learned from an attention mask. Each pixel in the attention
mask is labeled as one out of three classes using a threshold-
ing method. Then, the SPG masks are used as auxiliary pixel-
level supervision to facilitate the training of classification
networks for object localization. Their method is the-state-
of-art weakly-supervised localization performance on the
ILSVRC [20] dataset.

Inspired by Zhang et al. [19], we propose to use the
class activation mapping (CAM) mechanism and self-training
strategies to train a tumor localization network using only the
image-level labels. More specifically, we use CAM heatmaps
to replace the attention maps in their work.

Class Activation Mapping was originally proposed for
model decision visualization [21], [22], in which the pixel
values of CAM heatmaps are associated with the contribution
to the classification decision. A higher value indicates a
higher contribution, which implies a higher possibility of the
occurrence of the object-of-interest at that location. Unlike
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Fig. 2. An illustration of our weakly-supervised self-training breast cancer
localization model: 1) an input image passes through the classification
network to extract the intermediate feature maps and CAM heatmap; 2)
the localization network is trained using a self-training strategy with the
intermediate feature maps and CAM heatmap; 3) at the testing stage,
softmax is applied on the fused CAM and localization network outputs
to find the final object location.

attention maps, CAM heatmaps are only highlighting the
most discriminative regions. The ROIs are usually much
smaller in the medical imaging domain, and the ratio of
image size to ROI size is often much higher, comparing with
the natural imaging domain. For instance, a typical full-field
digital mammogram (FFDM) size is 3328 × 4096 pixels.
However, the size of a breast tumor could be as small as
10 pixels in diameter. CAM-based methods provide a more
precise localization result than the attention-based methods
(Figure 1).

We evaluated the proposed approach on a large, clinically
relevant mammogram dataset, which was recently collected
from a comprehensive breast care center. Our experiment
results show that the proposed method significantly improves
the performance of weakly-supervised breast cancer localiza-
tion tasks.

II. ARCHITECTURE

A. Network Overview

Given an input image at the training stage, a CAM
heatmap can be learned from a classification network. A
trimap (a pixel-level annotation for each pixel in a CAM
heatmap, in which each pixel belongs to one of three classes
in the trimap) can be derived from the CAM heatmap, which
highlights the high confident foreground (ROI/tumor) pixels,
the high confident background (non-ROI/non-tumor) pixels,
and the unknown pixels. Then, the trimap can be used as
the pseudo-pixel-level label in a self-training convolutional
neural network (CNN) localization model (Figure 2). More
specifically, we use the foreground and background pixels
in the trimap as the pseudo-pixel-level label and use the

corresponding areas in an intermediate feature map (the
output from a higher convolutional layer) as the input to
train a CNN model for the pixel-level labeling task. The
prediction of this CNN can be used to generate another
pseudo-pixel-level label (trimap) to train a new CNN model
that takes another intermediate feature map from an even
higher convolutional layer (Conv-layer) as the input. This
self-training strategy can be repeated up to K times (K
equals to the number of Conv-layers in the classification
model).

At the testing stage, the predictions of all the self-trained
CNN models were combined with the CAM heatmap. The
softmax function will be applied to find the final predicted
ROI localization.

B. CAM Heatmap Generalization

Class activation maps (CAM heatmaps) is generated using
the global average pooling (GAP) in CNN classification
networks. A CAM heatmap for a particular category indicates
the discriminative image regions used by the CNN model to
identify that category. More specifically, we first need to train
a classification network with a GAP layer. The GAP layer
follows the last Conv-layer in the network. After the GAP
layer, we will have a fully-connected network follows by A
softmax layer, which provides the classification decision of a
given image. To generate the CAM heatmap of the predicted
class, we need to: 1) get all the weights connected between
the fully-connected layer and the softmax class of which we
want to predict. If n feature maps are presented before the
GAP layer, n weights will be received. 2) We compute the
weighted sum of the n feature maps that come from the
last Conv-layer. The weighted sum generates a heatmap of a
particular class. The size of the heatmap is the same as the
feature map. Please see [21] for more details.

C. Self-Training

Self-training of a localization network includes two com-
ponents: a pseudo-label generating strategy and a CNN
model trained with the fully supervised training style. In
our study, we use the self-training strategy to train multiple
CNN models recursively. Each CNN model takes the output
of a Conv-layer as the input and predicts a heatmap. The
heatmap indicates the probability of being a tumor for each
specific pixel in the input image. The pseudo-label used in
the training of the base CNN model (the first model in the
recursive sequence) is derived from the CAM heatmap using
a thresholding method. The prediction of the base CNN
model is used to generate the pseudo-label for the next CNN
model, which trains in the same fashion.

More specifically, given an input image, I , we first feed it
to a classification network and extract the CAM heatmap, C,
and multiple intermediate feature maps, {Fi}, where i ≤ K,
K equals the number of Conv-layers in the classification
model. We generate a trimap, MC , of C using two thresholds
tf and tb. For each pixel, pj in C, if pj > tf , pj is labeled
as foreground; if pj < tb, pj is labeled as background; if
tb ≤ pj ≤ tf , pj is labeled as unknown. The foreground



and background pixels in MC are used to train a base CNN
model (CNNbase).

The CNNbase takes Fi as the input and predicts the pixel-
level label for each pixel in I . The predictions form a new
heatmap, M ′C . Ideally, the high confidence foreground and
background areas in M ′C and MC should be identical to
each other. The CNNbase also predicts binary pixel labels
of the area that was signed as unknown in MC . A new
trimap, MK−1, is derived from M ′C using the same thresh-
olding method. MK−1 is used to train a new CNN model,
CNNK−1, which takes Fi−1 as the input and predicts
M ′K−1. We repeat this process recursively until CNN1 is
trained, which uses F1 as the input and M1 as the ground
truth label.

Binary cross-entropy (Equation 1) loss is used in all the
CNN models.

BEC =− 1

N

N∑
i=1

yi · log(p(ŷi))

+ (1− yi) · log(1− p(ŷi)),

(1)

where y is the label, p(ŷ) is the predicted probability of the
given data point, and N is the number of data points.

D. Implementation

We used Inception-V3 as our classification network in this
study. We removed all the layers after the last Inception
block. Then, we added two Conv-layers of kernel size 3×3,
stride 1 with 1024 kernels, a global average pooling layer,
a fully-connected layer, and a softmax layer. We used the
output of the last Conv-layer to compute the CAM heatmap.
We extracted the outputs of the third and eighth Inception
blocks as the intermediate feature maps.

The localization network contained two CNN models, one
for each intermediate feature map. Each of the CNN models
had three Conv-layers, followed by a sigmoid layer. The first
Conv-layers of the two CNN models had 288 and 768 3× 3
kernels, respectively. The second Conv-layers of both CNNs
contained 512 1 × 1 kernels, and the third Conv-layers of
both CNNs had one 1×1 kernel. The weights of the second
and third layers were shared between the two CNNs.

The model was implemented in PyTorch and trained with
batch size 8. The initial learning rate was 0.001. SGD
optimizer with a momentum of 0.9 was used in training.
We chose the thresholds tf = 0.6 and tb = 0.1. We trained
and tested the network on an Nvidia GTX 1080 GPU card
with 8GB of memory.

III. EXPERIMENTS

A. Dataset

We use the UKy dataset (a large, clinically related mam-
mogram dataset) for this study. The dataset contains FFDM
images for 779 positive cases and 3018 negative cases. All
the mammography data were retrospectively collected from
patients seen at a comprehensive breast imaging center in the
United States from Jan 2014 to Dec 2017. All patients had
mammograms in either craniocaudal (CC) view, mediolateral

TABLE I
LOCALIZATION PERFORMANCES.

Model STL FCNWSL Ours
Loc. AP 0.43 0.26 0.52

oblique (MLO) view, or both. Each image was reviewed by
specialized breast radiologists. All the positive cases were
proved with biopsy, and the negative cases were confirmed
with more than two years of follow-up. The dataset contains
cases with co-existing conditions, such as a prior benign
biopsy and surgery.

The images also contain common foreign bodies, such as
clips, markers, and pacemakers. The images were acquired
with Hologic devices in 12-bit DICOM format at the reso-
lution of 3328× 4096 and downsampled to 832× 832. Data
augmentation was applied to all the positive images through
a combination of reflection and rotation. Each original image
was flipped horizontally and rotated by each of 90, 180,
and 270 degrees. In total, 4175 positive images and 12072
negative images are used in the training stage. The dataset
is randomly split into the training and validation sets on the
patient-level with a 4 : 1 ratio.

The training and validation sets were used for the clas-
sification model training. We manually annotated the ROIs
of additional 138 positive images with bounding boxes for
testing. These images were held out during the training stage
and only used in the testing stage.

B. Result

We used STL [23] and FCNWSL [24] as the base-
line models in this study. STL was specifically designed
for breast cancer localization. FCNWSL was an extension
of [12] on medical related tasks. The CAM-based weakly-
supervised training methods were used in both models.

We evaluated our model on localization AP, which has
been widely used in weakly-supervised object localization
tasks [12], [13], [24], [23]. We calculated localization AP
in the following way: if the predicted location lies within
the ground truth bounding box of the same class or within
a tolerance distance (d), the example is considered as true
positive; otherwise, it is a false positive prediction. In our
experiment, only the positive class is considered for local-
ization AP since there is no ROI on the negative class. We
chose d to be equal to 12 pixels, which is the mean of [24],
[23].

Table I shows localization AP for the three models. Our
model achieves 0.52 localization AP, which surpasses STL
by 20.93% (0.43 localization AP). FCNWSL only achieved
0.26 localization AP, which is only 50% of our model.

Figure 3 shows the prediction results of our model. The
testing images are on the left, and the predicted heatmaps are
on the right. The red boxes are the ground truth bounding
boxes of the malignant tumors, which indicates the ground
truth localization. We used the center pixel of each heatmap
as the final predicted localization. If the pixel lies in the



Fig. 3. Breast tumor localization examples generated with our method.
The red boxes are the ground truth bounding boxes. The heatmaps show
the predicted locations.

ground truth bounding boxes or within 12 pixels, we consider
the prediction as true positive.

The figure shows that our model is able to predict correct
locations for both mass and calcification cases. The figure
also demonstrates that our model has the ability to work
in very challenging cases, such as cases with prior surgery
history (the top left example in the figure).

IV. CONCLUSION

We proposed a novel weakly-supervised breast cancer
localization network. The proposed method only requires the
image-level labels for training. No fine-grained annotation,
such as bounding boxes or pixel-level labels, are needed
in the training process. The model uses CAM to generate
a pseudo-pixel-level label to train a localization network
gradually in a self-training fashion. The evaluation result on
a large clinically relevant mammogram dataset shows the
proposed method has significantly improved the performance
in object localization. We believe the proposed model is not
only limited to breast tumor localization. It should be easily
transferred to other medical imaging localization tasks with
minor changes. We believe this work will serve as a strong
baseline for future researchers.
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