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ABSTRACT

This study presents a novel deep learning architecture for multi-class classification and localization of
abnormalities in medical imaging illustrated through experiments on mammograms. The proposed net-
work combines two learning branches. One branch is for region classification with a newly added
normal-region class. Second branch is region detection branch for ranking regions relative to one another.
Our method enables detection of abnormalities at full mammogram resolution for both weakly and semi-
supervised settings. A novel objective function allows for the incorporation of local annotations into the
model. We present the impact of our schemes on several performance measures for classification and
localization, to evaluate the cost effectiveness of the lesion annotation effort. Our evaluation was primar-
ily conducted over a large multi-center mammography dataset of ~3,000 mammograms with various
findings. The results for weakly supervised learning showed significant improvement compared to pre-
vious approaches. We show that the time consuming local annotations involved in supervised learning
can be addressed by a weakly supervised method that can leverage a subset of locally annotated data.
Weakly and semi-supervised methods coupled with detection can produce a cost effective and explain-
able model to be adopted by radiologists in the field.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The most common type of cancer and the second leading cause
of death in women is breast cancer [1]. Nearly 40 million mam-
mography exams are performed on a yearly basis in the US alone.
Screening mammograms (MG) are the first line of imaging for the
early detection of breast cancer. These raise the survival rate, but
place a massive workload on radiologists. Although mammography
provides a high resolution image, its analysis remains challenging
because of tissue overlaps, the high variability between individual
breast patterns, subtle malignant findings (often less than 0.1% of
the image area) and the high similarity between benign and malig-
nant lesions. Suspicious lesions are often difficult to detect and
classify, even by expert radiologists. Lesions can be relatively small
with respect to the whole image and occluded in the parenchymal
tissues.

A broad range of traditional machine learning classifiers have
been developed for automatic diagnosis of specific findings such
as masses and calcifications, and ultimately breast cancer [2,3].
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Ultimately, diagnosis in mammograms is often dictated by the type
of lesion found.

Our goal is building an automatic system that can jointly detect
the lesion location (if it exists) and analyze the findings. This goal
can be achieved by training a detector from local (often referred as
instance) annotations [4,5], and then classifying the image accord-
ing to the most severe finding in the image. However, in this type
of supervised setting, training requires bounding-box annotations
for every single abnormality. This setting is tedious, costly and
impractical for large data sets. This problem is exacerbated in
mammograms that can contain tens or hundreds of micro-
calcifications spread throughout the breast. Having manual anno-
tations further increases the likelihood of inconsistency in labeling
due to a lack of consensus between radiologists [6] caused by
ambiguous lesion boundaries. This problem is often resolved by
having multiple annotators [7] that further escalates the workload.

In the weakly supervised paradigm, only global image-level tags
are provided to train a classifier. Global image labels are easily
available from retrospective clinical records often without the need
for further clinician intervention. Weak supervision, however, pro-
vides no local information on the lesion location. In an era of grow-
ing demand for XAI (explainable Al), localization can shed light on
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the model reasoning for the image classification, and help foster
trust among practitioners in the field. Hence, weakly supervised
methods which also localize abnormalities provide high value
especially in scenarios where the source of discrimination between
the classes is a priori unknown.

In this study we address the acute problem of annotation and
suggest a new network that can be trained on weakly labeled data
and is capable of localizing the lesions at test time (perform detec-
tion), in full resolution. Our network architecture is composed of
two branches (streams), one for classification and the other for
detection. In the classification branch regions are classified to
abnormality classes (e.g. benign or malignant) and a newly added
normal-region class representing healthy tissues. In the detection
branch the scores of all regions are ranked relative to one another,
for each abnormality class (resulting in a distribution over regions
per abnormality class). The classification branch classifies each
region, whereas the detection branch selects which regions are
more likely to contain a finding. The image class probability is then
obtained by aggregation of the detection and classification proba-
bilities for all regions in the image. The final abnormality probabil-
ity is then increased when a suspicious finding is contained in one
of the regions, similar to a radiologist’s inspection work flow.

The main contributions of this work are as follows: 1. A dual
branch deep learning architecture for joint image classification
and region detection via region classification branch with a newly
added normal-region class and, in parallel, region ranking branch.
2. A weakly-supervised learning method to train the proposed net-
work. 3. A semi-supervised learning method to train the proposed
network. Our method enables joint learning using weakly super-
vised data and additional fully supervised data with a novel
region-level objective function on the branches’ region-level
probabilities.

Semi-supervised datasets combine globally labeled data with a
small amount of data with explicit local annotations in addition to
the global labels. In this work, we explore the problem of training
the described network in weakly supervised and semi-supervised
setups. The results of the proposed system are illustrated in Fig. 1.

We validate our method on a large FFDM dataset of nearly 3,000
mammograms as well as the public INBreast dataset [8]. Direct
comparison of our method to previous works [9,10] and an abla-
tion study shows that our model outperforms others in classifica-
tion and, in particular, in detection.

A preliminary version of this work (with only weakly super-
vised setting) has been reported [11]. Our study include additional
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results analysis, ablation study and addition of a semi-supervised
learning method.

2. Related work

Deep learning methods promise a breakthrough on assisting
breast radiologists for early cancer detection in mammograms.
However, the bottleneck for supervised methods in Big Data is
the annotation workload which often requires expert clinicians/ra-
diologists to delineate numerous benign as well as malignant find-
ings in mammograms. Weakly supervised and semi-supervised
methods are considered an affordable compromise to this tangle.

2.1. Weakly supervised detection

Weakly supervised detection methods in deep learning have
attracted growing interest with the publish of the paper “Is local-
ization for free?” [ 12] that addressed the tedious task of local anno-
tations in images [10,13]. Recent studies and challenges in
mammography that have vast datasets (of over 0.5 million mam-
mograms) have opted for weakly labeled data [14,15].

In general, there are two main approaches to weakly supervised
learning, known as image and region based. In image based meth-
ods based on CNN [16,17], the input to the model is the whole
image. Region inference is then obtained from feature maps after
pooling at the final CNN layer (often generating a heat map). In
region based methods e.g. [9,18], the image is first decomposed
into regions. The convolutional layers then process each region
separately. Subsequent layers then classify the regions and aggre-
gate results to a global class level.

Image based. Zhu et al. [17] proposed an image-based method
for mammogram classification based on Multi-Instance Learning
(MIL) that classifies large tiles of the image by max-pooling over
feature maps, with sparsity soft constraints. However, when using
down-sampled images, their method yielded detection maps with
a low resolution of just 6 x 6 pixels, which curtails practical use
considerably. Hwang et al. [16] also took an image-based approach
using a CNN with two whole-image classification branches that
shared convolution layers. One branch used fully connected layers,
and the second branch used 1 x 1 convolution layers, resulting in
one map per class, and then a global max pooling on each map.
Their method yielded a low AUROC of 0.65 over 332 MIAS mam-
mograms. Both of these image-level studies [17,16] addressed a
binary classification task with a small test set of 410 full-field dig-

(a) Normal

(b) Benign

(c) Malignant (d) Malignant +

Benign

Fig. 1. Illustration of the classification and localization task. The input is the corresponding mammogram and the output is the class (Normal/Benign/Malignant) and the
finding localizations. The radiologist’s local annotations are shown as contours (red for malignant and gray for benign). The class and the model’s local predictions are shown
as colored bounding boxes (Normal mammograms do not have a bounding box, Benign regions are in green and Malignant in blue). The image Malignant + Benign is a case

with additional benign finding.
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ital mammography (FFDM) mammograms [17] or using non-FFDM
(digitally scanned) images of the MIAS cohort instead.

Region based. Yan et al. [18] proposed a region-based method
for a different use-case of discriminating between local anatomies
in CT scans, using MIL in a DNN setting. Choukroun et al. [9]
recently implemented a region-based approach with the MIL para-
digm to classify the entire mammogram according to the max-
probability region, thus also providing detection in full resolution.

These methods [9,17,18] apply an implicit detection regime via
a max-pooling operation on regions or region classification
probabilities.

Dual branch architecture. Recent studies on natural images,
suggest that applying explicit data-driven detection in parallel to
classification yields improved performance [10]. In this study we
follow a region-based dual branch approach, but differ and gener-
alize the existing method [10] in two main ways: 1) We don’t use
any unsupervised region proposal in our scheme as it is commonly
unavailable in medical imaging. 2) We adapt the architecture in
[10] and extend the region classification stream to include an addi-
tional normal-region class but without any detection counterpart.
This makes it possible to handle images without any findings (ob-
jects). In addition, it reduces the false positives resulting from nor-
mal regions in detection. Also, this enable to use the network in a
semi-supervised detection setting with joint learning from weakly
and fully supervised data. The extension for handling radiology
images assessed as normal is equivalent to images without any
objects in natural images. The addition of a normal-region class
changes the probability distribution for the regions, and allows
improved classification of these specific and prevalent normal
cases in many medical use cases such as screening mammography.
Similar to [13], we further connect the branches by adding infor-
mation from the classification branch to guide the detection
branch to the most relevant regions.

Our model is capable of multi-class classification and detection
that provides localization of the abnormalities in full resolution.
We compare our method to the one described in [9] and an
approach based on [10]. We report improved performance in both
classification and detection.

2.2. Semi supervised detection

Semi supervised detection methods involve the fusion of weak
labels with a subset of data having local annotations, namely fully
labeled (also known as strongly labeled) data. There are two main
approaches to semi-supervised detection setting. The first
approach is two-stage training with a stage for fully labeled data
and a stage for weakly labeled data. The second approach involves
joint training from weakly and fully supervised data.

Two-stage approach. A large data set of fully labeled data with
lesion annotations is used to train a region based classifier. Then, at
a subsequent stage the model is modified for whole image input
(usually decomposed into regions) and fine-tuned on the weakly
labeled data to create a weakly labeled classifier [5,19,4,20]. How-
ever, these methods rely strongly on local annotations and need a
sufficiently large fully labeled dataset to initialize the model. They
are unable to train solely on weakly labeled mammograms and
often lack detection capability (except Ribli et al. [5] that uses
detection based on instance labels).

Wu et al. [21] used patch-level classifier for producing heat-
maps as additional input channels to a multi-view breast-level
classifier.

Joint training from weakly and fully supervised data. A single
model is trained jointly using weakly and fully supervised data by
combining a weakly supervised objective function with a fully
supervised objective function.

17
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Yan et al. [22] proposed a method for weakly supervised train-
ing of Fast RCNN [23] via Expectation-Maximization (EM). Focus-
ing on the detection problem, they treated instance-level (region
level) labels as missing data for weakly annotated images. Their
method alternated between two steps: 1) E-step: estimating a
probability distribution over all possible latent locations in weakly
supervised images, and 2) M-step: training Fast RCNN using esti-
mated locations from the last E-step. They proposed a semi-
supervised learning method by adding a standard fully supervised
objective function to the fully supervised images which are then
used to train the Fast RCNN network in the M-step in addition to
the weakly supervised objective function. Their method was
applied on non-medical (natural) images, and in practice, the qual-
ity of the solution depended heavily on initialization by another
method ([10], which we compare our method with). Furthermore,
their approach required thousands of Fast RCNN training iterations
at each M-step, which is computationally expensive, particularly
for large images such as mammograms.

Cinbis et al. [24] suggested a MIL approach for weakly super-
vised detection in natural images. They suggested extending their
method to a semi-supervised setting by replacing the top region
selection, obtained from MIL, with the ground-truth regions when
training from fully-supervised images.

In the medical domain, an approach based on Faster RCNN [25]
was taken by Shin et al. [26], and was applied to breast Ultrasound
(US) images. They also proposed semi-supervised training, but
based on combination of Faster RCNN [25] and MIL. However, in
breast US, only the field of view with suspicious masses were con-
sidered (and not calcifications or images without any abnormality).
Unlike mammograms, a lesion in an US captures a relatively large
area of the image. Mammography therefore appears to be a greater
challenge in that there are more types of lesions with a signifi-
cantly lower signature.

Li et al. [27] proposed a semi-supervised classification and
detection method for chest X-ray images. In their model, the input
image is processed by CNN. Then, there is max pooling or interpo-
lation on the feature maps to get patch grid, which is then pro-
cessed by a fully-convolutional recognition network, resulting in
patch scores for multiple categories. Then, they have global predic-
tions based on MIL criterion. They define the global positive prob-
ability by the complement of the joint probability of all the patches
being negative, assuming patches probabilities are independent of
each other. They combine a fully supervised loss function on the
fully supervised images and a weakly supervised loss function on
the weakly supervised images.

We follow the joint training approach. In our approach, the local
annotations are used as auxiliary data, and our model can be
trained with a small fully annotated dataset, mostly relying on
weak labels. Given the high cost of annotation in many medical
domains, we believe that this approach can provide a competitive
edge.

3. A dual branch weakly supervised detection methodology for
mammograms

In this section we propose a deep network architecture that
classifies mammogram regions into three different classes: normal
tissue, benign, and malignant findings using labels at the image
level (also known as weak labels).

We first decompose the image into regions that are fed into the
network. The network has two branches: a classification branch
that computes local probabilities of malignant, benign and normal
for each region, and a detection branch that ranks regions relative
to one another for the malignant class and, independently, for
the benign class. The branches are then combined at a subsequent



R. Bakalo, J. Goldberger and R. Ben-Ari

layer to obtain an image-level decision for the presence of malig-
nant and/or benign findings. The proposed weakly supervised net-
work architecture is depicted in Fig. 2, and the algorithm is
summarized in Table 1.

Region extraction. Given a mammography image, we first per-
form pre-processing to compute feature representations for
regions within the breast. To this end, we used a sliding window
of 224 x 224 overlapping regions (with a 112 x 112 stride) within
the breast region excluding the axilla (using a method similar to
[28]).

Due to the relatively small training dataset, we employ a two-
stage deep neural network architecture. In the first stage, we apply
a transfer learning approach by using the pre-trained VGG128 net-
work [29], trained on the ImageNet dataset [30]. In our model, we
extract CNN codes from the last hidden layer as 128D feature vec-
tors per region. Then, we process each region separately by a fully
connected (FC) layer. Formally, an image x, is first decomposed into
m regions denoted by ry, ..., such that ¢(r;) € R'? is the feature
vector representation of the i-th region.

Classification branch. We first compute a local decision for
each region separately. Each region is classified, in this study, as
normal (N), benign (B) or malignant (M) using a softmax layer:

exp(w/ (1))
e am EXP(W (1))’

Pas(clri) ce{N,BM}, i=1,..

.,m

(1)

such that wy, wp and wy, are the parameters of the classifier. Note
that the same classification parameters are used for all the regions
in the image.

Detection branch. In parallel, we compute the relevance of
each region for the global image-level decision. We perform a sep-
arate detection process for each type of abnormality - one for
malignant regions and one for benign regions. The normal class
has different characteristics. These regions are prevalent in all
types of mammograms, similar to the “background” in natural
images. Therefore, the normal class is not associated with a detec-
tion scheme (see Fig. 2). This is a novel extension to previous mod-
eling in [10]. In [10] the image-level class set and the region-level
class set are the same and are used in both branches. The detection
result is a distribution for the malignant class and a distribution for
the benign class. Each such distribution is over all the regions in
the image implemented by a softmax operation. Formally, let z,

Malignant

FC5

Input
image x

Region
Extraction

Ve

Rank

. IM
Pdet

Region
Selection

M
DPcls

Fca
3

F — fully supervised malignant images
(F = @ in weakly-supervised setting)

{ W - weakly supervised images
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be a hidden random variable representing the localization of class
¢ findings in the image. Then, given an image x, the probability of
z. =i in the c distribution is:

__ exp(ul¢(ri))

=S expurgry)” ©C BME

Dt (ilX) i=1,...,m 2)

such that up and uy, are the parameter-sets of the benign and malig-
nant detectors, respectively. Note that p..(ilx) is equivalent to the
ranking of the i-th region in image x relative to the other regions
in x for class c.

Image level decision. Given the region-level classification
results and the region detection distribution, we can now evaluate
the image-level classification. Let (y,,,y;) be a binary tuple indica-
tor whether an image contains a malignant and/or benign finding,
respectively. Note that this type of tuple labeling allows for tagging
images of class N by (0, 0) and those with both M and B findings by
(1,1). The posterior distributions of y,, and y; given mammogram
image x are obtained as a weighted average of the local (i.e. region-
level) decisions:

PO =11%) = > Piec(ilX)pes(clr), ¢ € {B,M}.

i=1

3)

Comparison to previous dual-branch approach. Since in
many medical applications such as mammography, the most
prevalent cases are normal without any findings, we extended
the method in [10] by adding a normal-region (N) class to the clas-
sification branch. Note that in our new scheme the normal class is
only added to the classification branch and not to the detection
branch or to the image-level class set (see Fig. 2). This is a novel
generalization to previous modeling in Bilen et al. [10]. In oppose
to Bilen et al. [10], by allowing classification of regions to normal,
we can handle “clean” images without any findings. Normal
images in our model are then discriminated by having a low prob-
ability for both M and B findings. The probability for an image to be
normal can then be obtained via the joint probability
p(ym = 0,y = Ox).

This extension is also important for reducing the false positives
in detection (localization) resulting from normal regions, as shown
in Section 5, since normal regions gain high probability for local
class N and low probabilities for M and B (instead of expected uni-
form probabilities over M and B when the N class is not used [10]).

Detection Branch

Masked softmax

regions

L et (9)

over

£ £

B
Ddet

p(vz =1x) LW (11)
| p(ym = 1]x)

B N
Pcls

Softmax
over
local classes

Aggregate region
probabilities

Multi-task
Objective

Pcls

i
LCls

(8)

Fig. 2. Architecture overview. The novel elements are in red. Our new scheme has an additional class in the classification branch (pf;) with no associated detection and a
region selection model connecting the branches. FC blocks show fully-connected layers with the corresponding output size. There are two FC layers in the “Conv. and FC
layers” block from the pre-trained VGG. Layer FC3 is shared between branches, FC4 is for the classification branch, and FC5 is for the detection (ranking) branch. £%, £;,, and

£ corresponds to Egs. 8, 9 and 11 respectively.
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Table 1
The proposed weakly supervised detection method.

Neurocomputing 421 (2021) 15-25

Input data: an image x decomposed into m regions ry,...,rn each represented by 128 features computed by a VGG network.

Algorithm:
o Region level classification into classes C = {N,B,M}:

_ exp(w] p(r)
Ddec EXP(Wy (1))’

e For c € {B,M}:
- Mask Computation:

P (clri) ceC

h(i) is a binary value indicating whether region i is one of the k regions with the highest probability of being classified as c.

- Selected regions ranking:

Pmask det(l‘x> - Z}”ll hc(]) exp(u}d)(r]))

- Image level decision:

m
Py =1fx) = prnask—det(i‘x)pc]s (clry)
i1

In addition, this modified architecture enables the use of a fully
supervised loss on the classification branch for the extension to a
semi-supervised detection setting in Section 4.

Region selection. So far the detection branch’s decision has
solely been based on the features that were extracted from the
image regions. It makes sense to use the classification decision
results to guide the detection process. For example, if a region is
clearly classified as malignant, it is likely that the malignancy
detection will favor this region. Since the classification branch
includes an additional class for normal regions, the suspicious
regions in the B and M classes can be used to guide the detection
branch and create a soft alignment between the branches. We for-
malize this intuition by a region selection step. Now, let
Das(M|r1), ..., pas(M|r) be the region probabilities of being classi-
fied as malignant. In the malignant detection process, we only con-
sider the k regions with the highest probability of being classified
as malignant and only apply the softmax operation on these
selected regions. Let hy(i) be a binary value indicating whether
region i has been selected for the malignancy detection process.
We can apply the same selection criterion to the benign detector.
Thus, each detector’s ranking is conducted solely on the relevant
regions according to the classification branch. In the modified
detection branch we replace the softmax over regions by a masked
softmax:

__ he(i)exp(uZ ¢(r7)

=/ e Ul B, M},
ST el explug oy < < EM

i=1,....m

(4)

This paradigm guides the M detector to focus on the most prob-
able malignant regions in malignant mammograms. However, if
the image is normal or contains a benign finding, the model will
concentrate on regions that were most probably and erroneously
classified as malignant (hard negatives). This process, which is
applied similarly to the benign class is equivalent to hard negative
mining. In the experimental section we compare network architec-
tures with and without masked detectors and show that applying
region selection yields superior performance.

Training. Assume we are given a set of n weakly labeled mam-
mography images {x(1),...,x(n)}. Each image x(t) consists of
regions {r;(t),...,rn(t)} and is associated with a binary tuple label
(yu (1), yp(t)) that indicates whether the image contains at least one
malignant and/or one benign finding respectively. A normal case
will have a (0, 0) label whereas a mammogram with both M and
B finding will be labeled (1, 1). The network provides soft decisions
for each image x(t) regarding the values of y,(t) and yg(t). The

p?nasl(—det (1|X)
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objective function that we maximize in the network training step
is the following likelihood function:

LO)= Y > logp(y(t)x(t); 0) (5)

ce{M B} t=1

such that 0 is the parameter-set of the model (which includes the
fully connected layer ¢ and the parameters w and u) and the prob-
ability p(y.(t)|x(t); ) is defined in Eq. (3).

4. Semi supervised detection methodology
4.1. Approach overview

In this section, we extend our weakly supervised setting to a
novel semi-supervised approach. In a semi-supervised setting, we
assume that part of the weakly labeled data has been subjected
to local annotations, thus generating a subset of fully-labeled data.
This local annotation can take the form of contours around lesions
or simply bounding boxes. We demonstrate our model on M vs.
B U N. To reduce the annotation workload, let us assume that the
malignant class has a fully-labeled subset in which only the malig-
nant findings are locally annotated (note that malignant images
can still include benign findings).

We make use of different ratios of local annotations in the
malignant class (25-100%) to present the impact of these annota-
tions on performance. Due to the rarity of malignant findings with
respect to benign ones, the annotated set only captures 2.5-10% of
all the lesions in the cohort, therefore demanding a low workload
for annotation.

Our dual-branch approach differs from previous approaches
[22,26,27] in architecture and objective function. Our semi-
supervised method is different from previous methods by having
a region ranking branch in the architecture. In addition, previous
methods [22,26,27] added a fully-supervised objective function
on the region classification in fully-supervised images subset. In
our method, we add a fully-supervised objective function on the
region classification, and, in addition, we add a fully-supervised
objective function on the detection (ranking) branch’s region prob-
abilities of the fully-supervised images subset.

4.2. Semi-supervised detection objective function

Although local annotations on a large scale are commonly out of
reach [15], in this section we examine the effect of engaging with a
small set of locally annotated data combined with a large set of
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weakly labeled data. We assume that the training set contains two
distinct sets, one with weakly and one with fully labeled images.
We denote W as the set of indices of the weakly-labeled images
(these can be malignant, benign or normal) and F as the set of
indices of the fully-labeled images; namely, mammograms where
lesions have been locally annotated. For each fully labeled image,
X, we are given a set M, of malignant regions. We next describe
how we transform the pixel-level information (i.e. contour annota-
tions) into the region-level labels based on the intersection
between our extracted regions and the malignant lesion. To this
end, we define a soft version of Intersection over Union (IoU) called
the Intersection over Minimum (IoM). This measure computes the
ratio between the area of the intersection with respect to the min-
imum size between the i-th region r; and the lesion area:

[rinc|

IoM(i. ©) = i lan

(6)
where c is the annotated domain. In our setting the region size is
fixed and the lesion scale can vary by a factor of 10. This definition
therefore allows a positive region to cover a small lesion or alterna-
tively be located within a large finding. We define the local label of a
region as malignant (M) if the region has oM > o with a ground-
truth (GT) malignant finding, and define the label as either benign
or normal (BN) if the region has an empty intersection with all the
GT malignant findings. We set « = 0.5. Formally, the label of region
r;, denoted by y;, is defined as follows:

M 3Jce My st IoM(i,c) = «

Yi=
BN VceMy rinc=g

(7)

Non-malignant regions with IOM < « are ignored during train-
ing. In practice, we achieved better performance when ignoring
those regions during training compared to labeling the regions as
BN.

In order to engage the local annotations, we propose two sepa-
rate and novel objective functions that are imposed directly on the
region classification and detection probabilities. In the fully super-
vised objective of the classification branch, we compute the log
likelihood according to the region true classes (as M or BN) as:

) =Y > logpes(vi(t)[ri(t))

teF i

L0

8)

where t goes over all the fully labeled images, and i goes over the
labeled regions in each image. The probability of a region to be clas-
sified as malignant, p,,(M|ri(t)), is defined in Eq. (1), and
Pas(BN|ri(t)) is the complement probability (i.e., the probability of
being classified as either benign or normal).

In the fully-supervised objective of the detection branch, we
want to concentrate on the malignant regions. We therefore define
the detection branch objective as:

Zlog <.yz M. (ix(t) )

teF

This demanding regions with high overlap over M-lesions to
have high M-probability. This soft constraint alters the weakly
supervised decisions toward manually labeled regions. The trained
model eventually relies on discriminative power and similarity to
the annotated regions as the source of malignancy when making
its decisions.

Without loss of generality, we assume the fully-supervised
objective is applied on the malignant images in {x(t) : t € F}. Our
final fully supervised objective is then obtained as:

L7(0) = 21 LE(0) + L1, (0).

)

Det

1

(10)
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We set 4; = f/m; where my is the total number of regions in the
train data that have a region-level label. For simplicity, we set g = 1.

The weakly supervised part, £, is defined in a similar way as in
Section 3, Eq. (5). In the semi-supervised setting, this objective is
defined over the weakly labeled training subset for the M class
and over all the images for the B class:

£Y(0) = Zlogp Ym(DIx(t); 0)

tew

4 EZ log p(ys(t)[x(t); 0)
t=1

Wi

(11)

In order to prevent redundancy in the training samples we avoid
using the fully labeled images also as weakly labeled samples, since
they were shown to degrade performance in Shin et al. [26].

The fusion of the weakly and fully supervised settings can now
be achieved by maximizing the following multi-task objective:

L£(0) = £7(0) + J2L7 ()

where £ denotes the weakly supervised part and £” denotes the
fully supervised part.

(12)

5. Experimental results
5.1. Experiment setup

Dataset. We conducted experiments on a large screening data-
set, named IMG, with full field digital mammography (FFDM). The
cohort was acquired from different Hologic devices and 4 different
medical centers (with approximately 3 K x 1.5 K image size). From
this proprietary dataset we excluded images containing artifacts
such as metal clips, skin markers, etc., as well as large foreign bod-
ies (pacemakers, implants, etc.). Otherwise, the images contain a
wide variation in terms of anatomical differences, pathologies (in-
cluding benign and malignant cases) and breast densities that cor-
responds to what is typically found in screening clinics. The dataset
was composed of 2,967 mammograms with normal images as well
as various benign and suspiciously malignant findings. In terms of
the global image BI-RADS (Breast Imaging Reporting and Data Sys-
tem), we had 350, 2,364, 146 and 107 corresponding to BI-RADS
1,2,4 and 5 captured from 65, 693, 81 and 62 individuals respec-
tively. Note that our BI-RADS 1 (Normal category) did not contain
any suspicious findings, or confidently benign ones. Since a mam-
mogram can contain findings with different BI-RADS categories,
the global image BI-RADS was set by the most severe finding in
the image (max operation), and the global patient BI-RADS was
set by the max global image BI-RADS for that patient in a specific
study, according to clinical guidelines.

Mammograms with global BI-RADS of 3 were excluded from our
IMG dataset since these intermediate BI-RADS are commonly
assigned based on other modalities (e.g. ultrasound) and compar-
ison to prior mammograms [31] which are often unavailable. How-
ever, our data set included BI-RADS 3 findings that were not the
most severe ones in the image. In terms of breast composition,
20% were “almost entirely fatty”, 48% had a “scattered fibroglandu-
lar density”, 27% were “heterogeneously dense” and 5% were “‘ex-
tremely dense”. With respect to the dominant pathologies, our
data set included 4525 calcifications (micro and macro) and 926
masses.

In our test scenario, we split the mammograms into the follow-
ing three global labels: BI-RADS 4 & 5 were defined as malignant
(M), BI-RADS 2 were defined as benign (B) and BI-RADS 1 as normal
(N). We included all types of suspiciously malignant abnormalities
in the M class such as mass, calcification, architectural distortions
etc. This discrimination in data classes creates a specific challenge,



R. Bakalo, J. Goldberger and R. Ben-Ari

demanding the model to distinguish between images with very
similar types of lesions, such as malignant versus benign masses
or different types of micro-calcifications that are often ambiguous
even for expert radiologists. BI-RADS-based class separation is fre-
quently used (e.g, [15,19,32-36]) often because of the lack of
pathological results in the dataset and the need to construct a large
positive set. In Shen et al. [19], the authors claimed that although
the INbreast dataset includes pathology results, they use BI-RADS
assessments for class labels, due to “lack of reliable pathological
confirmation”. In a similar way, they defined all images with BI-
RADS 1 and 2 as negative and BI-RADS 4, 5 and 6 as positive.

Our second test bed used for our weakly supervised model, was
composed of the INbreast (INB) publicly available FFDM dataset
[8]. This small dataset has 410 mammograms from 116 cases and
was split into 100 positive (global BI-RADS 4,5,6) and 310 negative
(global BI-RADS 1,2,3) mammograms. Note that in this case we
included BI-RADS 3 to enable comparison with previous methods
in literature. We conducted a random patients split on the INbreast
images with 50% for train and 50% for test.

Implementation. We implemented our model in the Ten-
sorFlow framework using the Adam optimizer for training, with a

learning rate of 107*, dropout of 0.5,l,-regularization and a
batch-size of 256 images. This included all the regions from each
image (on average approx. 200). We initialized the weights of the
shared fully connected (FC) layer with a normal distribution [37].
The weights of the FC layers in the branches were initialized with
zero mean and 10~* STD normal distribution. For the number of
selected regions we chose k = 10 (other values were tested but
yielded lower performance). We set J, =1 in our semi-
supervisded experiments, and we discuss other values in Sec-
tion 5.3. To enlarge and balance the training set, we used augmen-
tations by adding rotations of 7 x 45°, left-right and up-down flips
and 6 image shifts.

Evaluation Procedure. Our evaluation on IMG dataset was
based on 5-fold patient-wise cross-validation, where at each train
and test iteration, all the images from the patient under test were
strictly excluded from the training set. To this end we randomly
split the dataset into 5 folds according to patient IDs, maintaining
a similar distribution over breast composition and lesion types in
the folds. All the performance values were based on the average
over random split, 5-fold cross validation.

Compared Models. As our model outputs two probabilities per
image (p(y. = 1]x), Eq. (3)), we can create 2D probabilities maps
and conduct multi-class classification. However, to compare our
results to previous methods and as an instance of a practical use
case, we evaluated system performance on two binary classifica-
tion tasks by joining two ‘“nearby” classes; namely, M with B or
B with N. To this end we used p(y,, = 1|x) scoring for M vs. BUN
(M vs. BN) and max{p(yy, = 1|x),p(yz = 1|x)} scoring for M U B vs.
N (MB vs. N). For performance measures, in addition to AUROC,
we also report two other practical measures as used in [14]. The
partial-AUC ratio (pAUCR) associated with the ratio of the area
under the ROC curve in a high sensitivity range ([0.8,1]) represents
the AUROC in a more relevant domain for clinicians. In addition, we
report the specificity extracted from the ROC curve at sensitivities
of 0.85 and 0.90 that represent an average operation point (OP) for
expert radiologists, as reported in [38].

5.2. Classification results

We compare of our model’s performance to several baselines.
We then discuss the impact of the fully labeled data engaged with
our multi-task loss. For evaluation, we present our results on the
two binary classification tasks, M vs. BN and MB vs. N. In addition
to the proposed Cls-Det-RS model, we implemented three baseli-
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nes, 1) Max-Region [9] presenting a region classification only
approach with max over regions, 2) the DB-Baseline presenting a
dual-branch approach equivalent to Bilen et al. [10] and 3) the
Cls-Det as our approach without region selection.

Weakly-supervised setup. Table 2 presents performance for
the two binary classification tasks. Considering purely the weakly
labeled dataset, our method (Cls-Det-RS) outperformed the DB-
Baseline and Max-region [9] on all measures and in both classifica-
tion scenarios. The results of the model without the region selec-
tion (RS) showed that in average, the addition of region-selection
indeed improved performance. We further conducted a breast level
analysis by considering both views of the same breast. To this end
we assigned the max probability between the views to the specific
breast. The results exhibited similar performance to the single
mammogram processing.

Train and test on the small public data set of INB yielded AUROC
of 0.73. Note that this result is without using an external fully
labeled data set in oppose to [4,5]. This result shows the perfor-
mance of our model when trained on a very small data set. It is fur-
ther comparable to AUROC 0.74, reported in [33] when trained on
single MG, yet used fully supervised data.

Semi-supervised setup. Next we analyze the performance of
our semi-supervised model. In order to reduce the demand for
local annotations, we only considered local annotations for the
malignant findings in our setting. We opted for the classification
task of M vs. BN as commonly considered in previous works
[16,17,33]. We further evaluated the impact of the ratio of the fully
supervised train set as a measure of the cost effectiveness of the
annotation workload. The results for our semi-supervised setting
(Cls-Det-RS) are shown in Table 2. The classification performance
improved as more localized regions are used. This continued up
to 100% utilization of the local annotation (fully supervised).

5.3. Detection results

Although the train process begins without any labels on regions,
the impact of each region can be scored after the training process

by:

d*(ri) = pas(Clri)PGe(ilx), c€{B,M}, ie{l,....m} (13)
The top k regions for each class (B/M) can now be visualized and
compared to the radiologist’s annotations as the source of malig-
nancy or benign class of the image. Fig. 3 shows several examples
with localization in the test set, overlaid with the radiologist’s anno-
tations (used only for validation). As observed, the method is cap-
able of separately highlighting multiple types of abnormalities
such as benign and malignant lesions without having an instance
level annotation.

We further evaluated our localization performance by a quanti-
tative measure. Targeting the localization as the system’s self-
explanation tool, we used a less strict measure than the standard
intersection over union (IoU) for correctness of our localization
outcome. We follow the weak localization as intersection over
the minimum area between the region and the lesion (IoM) as
defined in Eq. (6) (also used in [39]). This measure allows explana-
tion of an outcome when a specified region contains a true type of
lesion or vice versa. Since our region size is relatively small and
fixed, this setup will not allow over-sizing of the localization area
(see examples in Fig. 3). Unlike previous methods of [16,17] we for-
mally asses the accuracy of our localization results by Eq. (13).

For an image classified as ¢, we consider all the regions with
d“(r;) over a certain threshold. Correct localization per lesion is
obtained if oM > 0.5. We present the free-response receiver oper-
ating characteristic (FROC) localization accuracy for class

c € {M,B} using d(r;) > Threshold. The detection sensitivity in
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Table 2
Binary classification performance compared to previous methods in weakly, semi and full supervised settings.

Method AUROC PAUCR Spec @ Sens

0.85 0.90
M vs. BN: Weakly-supervised methods
DB-Baseline [10] 0.709 + 0.020 0.251 + 0.05 0.37 0.27
Max-Region [9] 0.699 + 0.047 0.235 + 0.10 0.36 0.24
Cls-Det 0.710 + 0.026 0.280 + 0.06 0.42 0.31
Cls-Det-RS 0.728 + 0.036 0.275 £ 0.10 0.40 0.27
MB vs. N: Weakly-supervised methods
DB-Baseline [10] 0.826 + 0.01 0.347 + 0.03 0.51 0.37
Max-Region [9] 0.817 + 0.02 0.323 + 0.07 0.48 0.35
Cls-Det 0.832 + 0.02 0.355 + 0.06 0.51 0.36
Cls-Det-RS 0.841 + 0.02 0.367 + 0.05 0.55 0.38
M vs. BN: Semi-supervised methods
SS Cls-Det-RS.25 0.731 + 0.029 0.305 + 0.108 0.40 0.31
SS-Baseline-RS.5 0.740 + 0.022 0.316 + 0.126 0.43 0.30
SS Cls-Det-RS.50 0.745 + 0.032 0.313 +£ 0.119 0.46 0.33
SS Cls-Det-RS.75 0.745 + 0.026 0.320 + 0.109 0.42 0.33
M vs. BN: Fully-supervised (on M class) method
SS Cls-Det-RS 1.0 0.751 + 0.026 0.316 + 0.078 0.47 0.32

The bold is used to indicate the best result in the column.

Fig. 3. Localization success in the weakly labeled setting. True malignant and benign lesions are annotated in red and gray respectively. Top 3 - M (blue) and B (green) regions
are shown. Note the correlation between the radiologist’s annotation and the model’s predictions for each class. The top 3 images on the left are normal images without
findings, where no bounding boxes were predicted. The 3 right hand images in the top row show cases of only benign findings. The lower 3 left hand images only have
malignant findings, and the 3 right hand images have both malignant and benign findings. Note the agreement between the ground truth location and class of the finding with
our predictions, without having any instance annotations in the training set. Best viewed in color.

the FROC is the fraction of images in the True-Positive set with at
least one correct localization. The results show that the region
selection yielded the best performance with relatively low False
positive per image (FPPI).

Weakly-supervised setup. Fig. 4 shows the detection perfor-
mance as FROC. Performance for MB vs. N is shown on the left.
Although at low FPPI, DB-Baseline (dotted black curve) and our
model (Cls-Det-RS, dashed orange curve) are comparable, at high
detection sensitivity our model shows slightly improved perfor-
mance. However, our model clearly outperforms Max-Region [9]
(dotted red curve).

Fig. 4 right plot depicts FROC curves for detection of the malig-
nant lesions (BI-RADS 4 & 5). In this set-up, we first compare our
weakly supervised model to several baselines and then show the
impact of our semi-supervised network with various ratios of fully
labeled data. In particular, the detection performance in our
weakly supervised model (dashed orange) is compared with the
DB-Baseline [10] (dotted black) and the Max-Region method [9]
(dotted red). In this scenario of detecting malignant lesions, the
DB-Baseline shows poor results. Although the Max-Region shows
improvement over DB-Baseline, our model clearly outperforms
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both. In addition, our model with region selection (Cls-Det-RS,
dashed orange), outperforms our model without region selection
(Cls-Det, dashed blue).

Semi-supervised setup. The right plot in Fig. 4 shows that
including local annotations in our semi-supervised model (SS-
Cls-Det-RS) improves detection. The green lines indicate results
when using different ratios of fully labeled data (wider curves indi-
cate higher fully labeled ratio in training). The wide cyan line
stands for full supervision on the M class. The detection sensitivity
further improved when more locally annotated mammograms
were used. However, the influence of local annotations plateaus
approaching the 75% ratio (SS-Cls-Det-RS 0.75), presenting similar
performance to the fully-supervised method (SS-Cls-Det-RS 1). The
performance drop in M vs. BN compared to MB vs. N (right vs. left
plot in Fig. 4), indicates the model’s difficulty in distinguishing
between benign and malignant lesions, as often is the case with
radiologists.

Setting the value of /,. The parameter A, controls the balancing
between the fully supervised images and the weakly supervised
images (that contain both benign and malignant images). We
found that the classification and localization result are insensitive
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Detection Performance: Malignant vs Benign & Normal
Weakly-, Semi- and Fully-Supervised Settings
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Fig. 4. FROC for detection performance at an operation point of 0.85 sensitivity in classification. Left: MB vs. N for the weakly-supervised setting. Right: M vs. BN, comparing
weakly-, semi- and fully- supervised settings. Baselines: Max-region [9], DB-Baseline[10]. SS-Baseline-RS.5: our semi-supervised approach with 50% fully-supervised data
when the fully-supervised objective is only on the classification branch. Weakly supervised proposed methods with and without region selection: Cls-Det, Cls-Det-RS.
Proposed semi-supervised methods: SS-Cls-Det-RS with various ratios of fully supervised data (indicated by green line with increasing width as a function of the fully-

supervised data ratio). Fully-supervised method: SS-Cls-Det-RS 1. Best viewed in color.

to the values of 4, in a range of roughly 0.1 — 1. Increasing 4, yields
lower performance in the benign class without improving the clas-
sification performance of the malignant class and with slight
improvement in the localization of the malignant class (e.g. for
J2 =5, we get 0.72 MB vs. N AUC, and for 4, = 10, this decreases
to 0.65 AUC). As decreasing 2,, we get a slightly worse classification
performance of M vs. BN and worse performance in the localiza-
tion. Fig. 5 shows FROC of our semi-supervised approach, SS-Cls-
Det-RS, with 50% fully-supervised data for various values of /.

The impact of loss on the detection branch. To this end, we
ran our model with loss solely on the classification branch (similar
to [22]). We trained our model with 50% fully labeled data, without
the detection loss in Eq. (10) (setting £}, (0) = 0). The resulting
FROC (SS-Baseline-RS.5 - dotted pink curve) appears in Fig. 4-
right. Comparison to our model (SS-Cls-Det-RS.5 - green) indicates
a significant drop of FROC in this baseline, and points to the contri-
bution of our novel detection loss.

095
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Fig. 5. FROC of M vs. BN detection performance at an operation point of 0.85
sensitivity in classification for several values of /,.
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5.4. Further analysis on classification results

In this subsection, we presents a visual analysis of the classifi-
cation results of our weakly supervised method, and multi-class
classification results.

Using our multi-label probability output we plot each sample in
a probability plane representing the global prediction results of the
images. In this plane, each image is a 2D point with coordinates as
p(yy = 11x) and p(ys = 1|x) probabilities. Fig. 6 shows the global
probability plane on a train and test set color coded by the true
class. Blue normal (N) images (without any finding) are mostly
located near the origin, with low p(y,, = 1|x) and p(y; = 1|x) show-
ing approximately zero probabilities for malignancy and benign.
Green represents images with only benign findings (B). Those are
likely concentrated around (0,1) with low p(y,, = 1]x) and high
p(¥z = 1]x). Red points represent malignant images without benign
findings. Those are emerged at the right side of the plot with high
p(yu = 1]x) and low p(yg = 1|x). Finally, black points, representing
malignant mammograms that also include benign findings, are
more likely located in the top-right corner with high p(y,, = 1|x)
and high p(y; = 1|x).

6. Conclusion

In this work, we proposed a method for multi-class classifica-
tion of mammograms and detection of abnormalities in weakly
and semi-supervised settings. We addressed the problem of fusion
between weak labels and local annotations in the dataset via a
novel objective function. As local annotations are prohibitively
expensive in the medical domain, our semi-supervised approach
allows reaching nearly fully labeled data performance with a frac-
tion of local annotations. The new model relies mainly on weakly
labeled data and therefore can run without any local annotations
is the dataset.

We demonstrate our method on a large dataset, and compare
our approach with various measures, to several baselines and as
well as direct comparison to a previously published method. The
results show improvement in AUROC, with a significant perfor-
mance boost in partial AUC and a practical operation point. Locally
annotating only 5% of the data yielded a 10% increase in specificity
(at 0.85 sensitivity) that is estimated to lead to yearly 3.6 million
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Fig. 6. Global probabilities plane for the train and test set. The figure shows the probability of at least one malignant or benign finding appearing in the mammogram. The
samples are color coded to depict prediction accuracy, N-Normal, B-Benign, M-Malignant and MB-Benign and Malignant findings present in the mammogram. Best viewed in

color.

fewer false positives in screening mammography [38]. Our method
can learn solely from image-level labels, and utilize possibly exist-
ing local annotations as bounding boxes around lesions.

A major feature of our system is the localization of the image
level decision. This makes system decision interpretable to
physicians who obtain the automatic decision. We evaluated
our localization performance quantitatively, in full resolution.
The results compete favorably with a previous weakly super-
vised method and significantly improve in our semi-supervised
approach. In the era of Big Data, the combination of large weakly
labeled data sets with partially local annotations can provide a
cost-effective solution for future decision support systems in
medical imaging.

Possible applications suggest second reader in screening mam-
mography and other imaging domains. System explanation based
on lesion localization and category should encourage trust among
radiologists and is necessary in cases where a quick over-rule is
needed if the system decision was found to be wrong.

Our method was evaluated, based on BI-RADS assessment by
radiologists. We opted for this setting in order to have a large
dataset of approximately 3 K mammograms, as pathologies were
not available for all of our high BI-RADS exams. BI-RADS 4 and 5
have positive predictive values of approx. 35% and over 95%
respectively and are particularly rare in the population. There
are several recent works trained and tested on large FFDM mam-
mogram datasets with pathologies such as [4,5] which used the
DREAM Challenge dataset, or [40]. Unfortunately, these datasets
are not publicly available and cannot be used by other research-
ers for benchmarking. We believe that our scenario based on BI-
RADS assessments can provide a valid platform for comparison
between different methods and baselines. We tested our method
and all compared methods on the same data setting to allow for
fair comparison.

Our method was limited to analyzing each view separately,
without bilateral breast comparison as conducted by radiologists.
We intend to use this additional information in our future work
to extract correlations between image views and dissimilarities
between breast sides.

Combining the proposed approach with end-to-end training of
the backbone network is applicable with larger datasets. End to
end training as well as using multiple scale and aspect ratio regions
constitute interesting future research directions that are beyond
the scope of this work.
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