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Multi-view Global-Local Context Clustering
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Abstract—Breast cancer has long posed a significant threat to
women’s health, making early screening crucial for mitigating
its impact. However, mammography, the preferred method for
early screening, faces limitations such as the burden of double
reading by radiologists, challenges in widespread adoption in
remote and underdeveloped areas, and obstacles in intelligent
early screening development due to data constraints. To address
these challenges, we propose a weakly supervised multi-view
mammography early screening model for breast cancer based
on context clustering. Context clustering, a feature extraction
structure that is neither CNN nor transformer, combined with
multi-view learning for information complementation, presents
a promising approach. The weak supervision design specifically
addresses data limitations. Our model achieves state-of-the-art
performance with fewer parameters on two public datasets, with
an AUC of 0.828 on the Vindr-Mammo dataset and 0.805 on the
CBIS-DDSM dataset. Our model shows potential in reducing the
burden on doctors and increasing the feasibility of breast cancer
screening for women in underdeveloped regions.

Index Terms—Artificial intelligence, Breast cancer, Deep
Learning, Mammography, Medical imaging.

I. INTRODUCTION

BREAST cancer remains the most prevalent malignant
tumor among women worldwide [1]. In today’s global

context, annually, more than several million women are di-
agnosed with breast cancer, which constitutes approximately
25% of all cancer cases among women [2]. Recent studies have
highlighted that breast cancer has surpassed cardiovascular
diseases as a leading cause of premature mortality globally [3]
[4]. However, breast cancer is also one of the malignancies for
which prevention and treatment strategies are clearly effective
and efficacious [5].

Early detection is vital for reducing breast cancer mortality
rates [6] [7]. Early detection can also adopt less aggressive
treatment plans to improve breast retention rates and reduce
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the physical and psychological burden on patients. Early
detection can also allow for less aggressive treatment options,
reducing the physical and psychological burden on patients
[8]. Additionally, it can help in identifying high-risk individ-
uals who may benefit from preventive measures, ultimately
contributing to improved overall public health outcomes.

Mammography, a low-dose X-ray technique [9], is crucial
for early breast cancer detection, improving breast-conserving
treatment rates and reducing mortality by over 20% [10]. It
effectively identifies tumors too small to be felt, facilitating
early intervention. Studies show significant mortality reduction
in women aged 50 to 74 after 7 to 9 years, regardless of
screening frequency [11]. Its non-invasive nature and detailed
imaging enhance diagnosis and treatment planning.

However, mammography is not without its limitations,
particularly concerning the risk of misdiagnosis [12]. Double
reading has been proposed as a solution to reduce missed di-
agnoses, yet this approach significantly increases the workload
for radiologists [13]. Given that the majority of mammography
results are normal, the repetitive and resource-intensive nature
of double reading poses a substantial burden on healthcare
systems [14] [15]. Furthermore, the high costs and resource
demands associated with traditional radiologist-led mammog-
raphy screenings often restrict access to these services in less
developed regions [16].In resource-limited settings, it is crucial
to identify which interventions are most effective and feasible
in reducing overall breast cancer mortality. Some researchers
are dedicated to exploring hybrid screening methods that are
more suitable for women in impoverished developing countries
[17]. Additionally, related studies have proposed the concept
of mobile mammography services [18].

In response to these challenges, substantial efforts have
been made to incorporate computer-assisted detection systems
to alleviate the burden on radiologists [19]. The integration
of artificial intelligence (AI) for autonomous breast cancer
prevention and early detection is becoming increasingly main-
stream.

Relevant studies have initiated the development of breast
cancer detection and classification models based on deep
transfer learning [12].

Some studies have attempted to integrate digital mammog-
raphy and digital breast tomosynthesis in order to detect
suspected cancerous regions on mammography images [20].
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However, some researchers recently collected mammo-
graphic images obtained from different breast X-ray imaging
systems and investigated their performance in intelligent early
breast cancer screening tasks. They found that the effectiveness
of early breast cancer screening systems is often significantly
constrained by the quality, accessibility, and standardization
of mammographic imaging data [21] [22] [23]. Addressing
these challenges is crucial for enhancing the efficiency and
accessibility of breast cancer screening across diverse popula-
tions. In addition, the inherent complexity and high resolution
of mammography images pose substantial challenges for AI
algorithms. These images contain intricate anatomical details
that are difficult for neural networks to comprehensively
extract and integrate into a unified representation.

Traditional approaches to breast cancer detection and clas-
sification from mammography images predominantly rely on
supervised learning techniques [24] [25] [26]. These methods
typically employ object detection networks to extract feature
information from mammography images, followed by a series
of operations such as feature fusion, prediction, localization,
and classification.

Due to the influence of mammography’s feature complexity,
and breast cancer detection and classification are constrained
by the quality of object detection networks, often resulting in
issues such as missed detections and bounding box deviations.
Moreover, the scarcity of annotated data poses significant
challenges to traditional supervised learning methods in this
field.

In response to these limitations, the GMIC (Global and
Local Mammography Image Classification) [27] architecture
introduces a novel approach based on weakly supervised learn-
ing for mammography detection and classification. This frame-
work circumvents the constraints imposed by data scarcity,
offering a promising alternative to traditional methodologies.

In traditional machine learning, each sample has a distinct
label, but in multiple instance learning (MIL), samples are
grouped into “bags” with known labels, while individual
“instance” labels are unknown. A bag is labeled positive if
at least one instance is positive; otherwise, it is negative [28].
MIL enhances generalization by training on diverse examples,
reduces overfitting by exposing models to various scenarios,
and improves prediction accuracy by aggregating information
across instances. It is also effective for learning from weakly
labeled data, useful when precise annotations are costly or
difficult to obtain [29] [30].

In mammographic images, an image can be considered
a “bag” containing multiple “instances,” which are different
image regions or patches. Multi-Instance Learning (MIL)
methods allow training with bag-level labels without precise
annotations. Even if we do not know which specific instance
is the lesion area, the entire bag is labeled as positive if at
least one instance within it is positive [31] [27]. We can use
this approach to avoid being constrained by the complexity of
dataset construction. Our model draws on the concept of multi-
instance learning, specifically focusing on selecting important
patches and features.

Multi-view learning is a machine learning paradigm that uti-
lizes multiple distinct sets of features, or “views,” to improve

learning performance. Each view provides complementary
information about the data, enhancing the model’s ability to
understand complex patterns [32] [33]. Multi-view learning
is employed in various domains such as image and video
analysis, natural language processing, and bioinformatics. It
is particularly useful in scenarios where data can be naturally
divided into different perspectives [34] [35]. The primary
advantages of multi-view learning include improved gener-
alization performance, robustness to noise, and the ability
to leverage complementary information from different views.
By integrating diverse perspectives, multi-view learning can
often achieve better accuracy and more insightful models
compared to single-view approaches [32] [33]. The relevant
study introduces the concept of multi-view learning into
the classical generalized eigenvalue proximal support vector
machine (GEPSVM) to demonstrate that multi-view learning
can enhance model performance by coordinating the com-
plementarity and consistency between different views [36].
The challenges of multi-view learning include effectively in-
tegrating information from different perspectives, as data from
various viewpoints may require alignment or synchronization,
which can be complex in practical applications, particularly
when some perspectives may contain noise or misleading
information [33].

Given that mammographic images are typically captured
from different angles, such as craniocaudal (CC) and medio-
lateral oblique (MLO) views, and that the symmetry between
the left and right breasts in the same view is considered a
criterion for health in clinical diagnosis, a multi-view learning
strategy is often employed. This approach leverages the com-
plementary information from these different angles to enhance
classification performance [37] [38].

Convolutional networks, as the most common feature ex-
traction paradigm, are renowned for their ability to capture
spatial hierarchies and local patterns in data, making them
highly popular in image processing tasks [39] [40]. However,
recently, Vision Transformers (ViT) based on attention mecha-
nisms have posed a challenge to convolutional networks [41].
By employing global self-attention operations to adaptively
integrate information from patches, they have achieved im-
pressive results.

Recent work addressing the shortcomings of these two
feature extraction paradigms has significantly advanced the
field of computer vision. Individuals often divide into two
factions, each supporting either the convolutional or the Vision
Transformer (ViT) paradigm, and focusing on their respective
optimizations. Some studies have demonstrated that ResNet,
with appropriate training schemes and minor modifications,
can perform on par with ViT [42]. The relevant study employs
an asymmetric encoder-decoder architecture to randomly mask
patches of the input image and reconstruct the missing pixels,
enabling efficient and effective training of large models [43].
As the competition between these two paradigms evolves,
there is also a continuous integration of both [44]. Recent
research, inspired by Vision Transformers (ViT), has achieved
more powerful models by replacing a series of small kernels
in convolution with several large convolutional kernels.

Nonetheless, beyond convolution and attention mechanisms,
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there are more possibilities in feature extraction tasks. The
success of graph networks has also demonstrated additional
potential [45]. Related work employs an anatomy-aware graph
convolutional network (AGN) for early breast cancer screening
in mammography, achieving promising results [46]. Recent
related work directly considers the use of MLP layers for
spatial interactions in the representation of image features [47].

Although clustering, as a traditional feature extraction
paradigm, has gradually faded from prominence with the de-
velopment of deep learning [48]. The relevant study segments
the image into multiple regions by grouping a set of pixels with
common characteristics. The sparsity and simplicity required
for clustering demonstrate its satisfactory inter-pretability [49].
Additionally, it can connect representations of point clouds and
images, reflecting its remarkable generalization capability .

We propose a Weakly Supervised Multi-instance Multi-
view Mammography Classification Network, which effectively
utilizes unlabeled or partially labeled data for breast cancer
detection and classification.
• Our work is the first to apply a non-CNN and non-

attention mechanism image feature extraction method,
namely Context Clustering, to the early screening task
of mammography for breast cancer.

• Our work achieves state-of-the-art accuracy in the early
screening task of breast cancer mammography while
maintaining the lowest number of parameters.

• We propose a novel fusion mechanism that integrates
global information, feature-based local information, and
patch-based local information, placing greater emphasis
on local details compared to previous methods.

II. METHOD

Our research aims to develop a rapid and reliable breast
cancer early screening system to alleviate the burden on
medical professionals and provide screening opportunities for
women’s health in underdeveloped regions.

In this section, we describe the weakly supervised multi-
instance multi-view network architecture we propose. In the
first subsection, we formulate the steps involved in early
breast cancer screening through mammography. In the second
subsection, we provide a detailed description of the framework
we propose. In the third subsection, we provide a detailed
introduction and evaluation of the dataset used. In the four
subsection, we introduce the evaluation metrics used to assess
the effectiveness of early breast cancer screening.

A. Overall Framework

The proposed model for mammography classification can
be formulated as follows:

For each image I in the given view, we enhance all points
into 5-dimensional information points containing color and
position data to obtain the set of points S ∈ R5×w×h, where
w × h is equal with the number of points.

1) Global Information Extraction: The set S is input to the
first point clustering network to obtain global information Fg

and Saliency-map Imap:

Fg, Imap = fglobal(S) (1)

Where fglobal represents the point clustering network for
global information extraction. Fg is extracted global informa-
tion from global network. The saliency-map extracted by the
global network, denoted as Imap.

P = froi(Imap)

The P is a set of location information, representing the
positions of n example patches selected by the ROI selection
function froi:

P = {p1, p2, . . . , pn}

where pn is a coordinate representing a position, written as
(xn, yn).

With pn, we can extract n patches Ĩ from the original image
Ii and extract n feature-based local information Ffl from the
global feature information Fg .

Fn
fl = Fg(xn, yn) (2)

where Fn
fl is means n-th feature-based local information.

2) Local Information Extraction: Each selected patch Ĩn
is treated as a new image, re-enhanced based on each point
to obtain its five dimensional point set S̃n. And processed
through a second point clustering network flocal to obtain
patch-based local information Fn

pl :

Fn
pl = flocal(S̃n) (3)

where flocal represents the point clustering network for local
information extraction, similar to global clustering network
fglobal.

3) Information Fusion and Attention Mechanism: The local
information Fl from all patches is fused with all feature-based
local information and all patch-based local information :

Fl = Ffl ⊕ Fpl (4)

where Operation ⊕ overlays two features.
after that processed through an attention mechanism to

enhance relevant features:

Fa = fattention(Fl) (5)

Then, the attention-enhanced information is fused with the
original global information, resulting in multi-instance fusion
information from single-view:

Ff = ffuse(Fg, Fa) (6)

4) View Fusion and Classification: Process the images
Iview from the four views (bilateral craniocaudal (CC) and
mediolateral oblique (MLO)) using the aforementioned proce-
dure to obtain single-view fusion information. This informa-
tion is then integrated for multi-view fusion, which is used for
the final binary classification, resulting in the early screening
model’s output:

Ffusion = f ′
fuse(F

lcc
f , F lmlo

f , F rcc
f , F rmlo

f ) (7)

where F lcc
f represents the fusion feature of LCC images,

other similar situations. f ′
fuse is another fusion structure
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LCC LMLO RCC RMLO

Fig. 1. Architecture of the proposed model. Images from four perspectives are enhanced into point sets and processed via a multi-level Context Clustering
module, Global Coc, to extract global information. This module includes point reducers and Context Cluster Blocks. The ROISelectModel utilizes this
global information to select patch-based images, which are processed through another Context Clustering module, Local Coc, to generate patch-based local
information. This is fused with feature-based local information derived from the Global information to produce Local information. Subsequently, Local and
Global information are combined to create single-view fusion information. Fusion information from each perspective is integrated across views and regressed
to produce the final output.

different from ffuse. In addition to integrating features Ffusion,
f ′
fuse also merges Fg and Fl from different views.

Fglobal = f ′
fuse(F

lcc
g , F lmlo

g , F rcc
g , F rmlo

g )

Flocal = f ′
fuse(F

lcc
l , F lmlo

l , F rcc
l , F rmlo

l )

Finally, Ffusion performs the final classification through
fcls.

res = fcls(Ffusion) (8)

This formulation encapsulates the entire process of the
weakly supervised multi-instance multi-view network for
mammography classification.

B. Detailed Network Structure

1) From Image to Set of Points: The scale of an image
can be expressed as (3, h, w), where 3 represents the RGB
channels, and h and w are its height and width. We enhance
each pixel by considering it as a 5-dimensional data point
containing color and positional information (r, g, b, x, y). After
this enhancement, the image can be represented as a set of
h×w 5-dimensional data points, with a scale of (h×w, 5). We
can then perform feature extraction through simple clustering.
From a global perspective, the image is viewed as a collection
of unordered discrete data points with color and positional
information. Through clustering, all points are grouped into

clusters, each containing a centroid. Since each point in the
set includes color and positional information, this clustering
implicitly incorporates spatial and image information.

2) Context Cluster Block: We employ context cluster
blocks for hierarchical feature extraction, a paradigm similar
to convolutional networks. At the beginning of each stage,
we utilize a point reducer to decrease the number of points,
thereby enhancing computational efficiency. Subsequently, a
series of context cluster blocks are used to extract deep
features and adaptively assign aggregated features to each
uniformly selected anchor point within the cluster based on
similarity, and connect and fuse the nearly points through
linear projection. Finally, we perform a point-wise averaging
operation on the output of the last layer.

As illustrated in Figure 2, the input image undergoes point
set transformation, and then, in step a, n central anchor points
are uniformly selected in the space. the method is similar to
those in SuperPixel [50] and SLIC [51].

The selected central anchor points are highlighted with red
boxes in the figure. In step b, for each central anchor point,
k neighbors are identified, indicated by arrows in the figure.
The value of k can be 4 or 8, as determined manually, and it
can also be the four neighbors in the up, down, left, and right
directions, in which case k equals 4.

Step c involves calculating the features of a central anchor
point determined by itself and its k neighboring points, illus-
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c

...

d e

Fig. 2. The figure illustrates the clustering visualization following five
steps: selecting central anchor points, identifying neighbors for each anchor,
calculating features for each anchor, performing similarity analysis based on
these anchors, and representing all clusters on the chart.

trated in the figure for the case where the number of neighbors
is 8. The calculation process is:

P x =

(
P x +

∑k
q=1 p

x
q

)
k + 1

where P x represents a x dimension of the central anchor point,
x ∈ {r, g, b, h, w}. And pxq represents the n-th neighbor point
in the x dimension, q ∈ {0, 1, 2, . . . , k}.

After computing the features for all central anchor points,
a similarity analysis is conducted between all points in the
point set and each central anchor point’s features in step d.
Each point is assigned to the cluster of the central anchor
point with which it has the highest similarity. The steps for
the similarity analysis is conducted by computing the pairwise
cosine similarity matrix between a point and set of central
points:

f(Pi, P
′
j) =

Pi · P ′
j

|Pi||P ′
j |

where f(Pi, P
′
j) is pairwise cosine similarity compute. Pi is

i-th central anchor point, i ∈ {0, 1, 2, . . . , n}. P ′
j is j-th point

in the image point set.
Finally, in step e, all clusters are combined, resulting in the

desired clustering outcome for the entire image.
Since each point contains both feature and positional in-

formation, the calculation implicitly emphasizes the point’s
distance (locality) and feature similarity. Each point is then
assigned to the most similar center, resulting in c clusters.
During this process, clusters may contain varying numbers
of points. In extreme cases, some clusters may contain zero
points, rendering them redundant.

3) ROI Selection Module: Firstly, the dimensions of the
region of interest mapping are required to be consistent with
the dimensions of the saliency-map.

hcrop = hpatch × hmap ÷ hI

wcrop = wpatch × wmap ÷ wI

where hpatch and wpatch are user-defined for the patch image
size. hmap and wmap are the size of the saliency-map. hI and

wI are the size of the original image data. hcrop and wcrop are
dynamically adjusted based on the original image and saliency
map scales. Subsequently, the saliency-map is normalized and
divided into regions with a height of hcrop and a width of
wcrop regions for greedy ROI search. In each iteration, the
algorithm greedily identifies each region and selects the one
with the largest total weight, as determined by average pooling,
among all current regions. The coordinates of this region are
added to a list, and a mask flag is applied to the region to
prevent redundant selection. The coordinates of these regions
will be mapped to the size of the original image to obtain
patch-based images.

Figure 3 visualizes the patch-based images selected by
the ROISelectModule, along with the patches’ positions on
the source image and their comparison with the locations of
suspicious lesions.

4) Attention Module: In our model, we use two different
attention mechanisms to separately fuse multi-instance and
multi-view information.

Similar Multi-instances information fusion: After the
global network, the ROI select module to choose k patch-based
images, a number set manually. This implies not all patch-
based images carry beneficial information, and some may
be redundant. Considering and integrating all the information
from these patch-based images could significantly impair our
network. Therefore, an attention module is added before
integrating local and global information, allowing the model
to learn how to filter out irrelevant local information.

The attention mechanism receives feature representation of
patch-based images Fl, shaped as (batchsize, k, dim), where
batchsize and k are manually set parameters; the former
defines the batch size during training, while the latter specifies
the number of patches required for multiple instance learning.
The size of dim varies depending on the model.

First, we use a neural network layer with simple linear
transformations fweights and softmax function to compute
attention weights Watt.

Watt = softmax(fweights(Fl))

Fa = Fl ⊙Watt

where ⊙ represents the stationary point multiplication algo-
rithm. Subsequently, the attention weights Watt are multiplied
pointwise with the feature representation of patch-based im-
ages Fl is performed to obtain the final implicit representation
Fa.

Multi-view information fusion: In multi-view learning,
not all information from each view is necessarily classified
as malignant. However, If a single view exhibits malignant
characteristics, the instance should be classified as malignant.
Therefore, we introduce an attention mechanism to enable the
model to autonomously filter out irrelevant view information,
enhancing classification accuracy.

The attention mechanism processing is largely consistent
with multi-instance fusion attention. However, in multi-view
attention, this attention module processes not only the Fa fused
by the multi-instance attention module but also Fg and Fl. This
is because all three features are considered in the loss function
for loss calculation.



6

Vindr-Mammo CBIS-DDSM
AUC ACC F1 score AUC ACC F1 score Params

Single-View Res [37] 0.727± 0.02 0.783 0.619 0.719± 0.02 0.591 0.558 1477025
Single-View Swin-transformer 0.731± 0.02 0.651 0.594 0.724± 0.02 0.601 0.599 14184625
GMIC [27] 0.793± 0.02 0.624 0.518 0.778± 0.02 0.712 0.705 22487298
Multi-View res [37] 0.740± 0.02 0.753 0.567 0.731± 0.02 0.676 0.630 6128546
MaMVT [38] 0.770± 0.02 0.918 0.647 0.749± 0.02 0.649 0.649 30730082
Multi-View GMIC [52] 0.797± 0.02 0.637 0.521 0.781± 0.02 0.719 0.699 22686871
Mammo-Clustering(ours) 0.828 ± 0.02 0.919 0.694 0.805 ± 0.02 0.709 0.709 9805459

TABLE I
PERFORMANCE OF EACH MODEL ON TWO DATASETS

5) Embedding Module: The embedding module in the
model primarily aligns feature-based local information Ffl

with patch-based local information Fpl before their integration.
Here, we employ a trainable MLP to align the scales. We de-
signed relevant ablation experiments to verify its effectiveness.

6) Maxpooling Module: We employ max-pooling to fold
and align global information Fg , facilitating better integration
with local information fused through the attention module.

C. Loss Function

We chose a composite loss function to achieve targeted
optimization of different components.

Ltotal = α · Lglobal + β · Llocal + γ · Lfusion + δ · Lmap

After the multi-view fusion module, we retain not only
the fused information for regression but also intermediate
features such as global information, local information, and
saliency maps. These features are used to compute a composite
loss function for precise optimization of each part of the
network.And we determine the sensitivity of the loss function
to different types of data through component analysis.

Lglobal is calculated using the global information obtained
from multi-view fusion and the ground truth values. The
loss function chosen here is BCELoss. And Lmap will be
calculated from the saliency-map, it is the weighted average
intensity of the saliency-map under the L1 norm. The Lglobal,
combined with Lmap, indicates the quality of the Global
Network and further to determining the adjustment magnitude
for the Global Network to enhance the accuracy of locating
patch-based images. BCEWithLogitsLoss function is used for
both Llocal and Lfusion. Llocal represents the quality of the
local network, calculated from local information and ground
truth values, determining the adjustment magnitude for the
Local Network to enhance the feature extraction capability
of the Local Network. Lfusion represents the model’s final
classification error, driving the overall model training. The
weights α, β, γ, and δ represent the proportion of each loss,
all manually set.

III. EXPERIMENT AND RESULT

A. Datasets

1) Vindr-Mammo: The Vindr-Mammo [53] dataset is a
large-scale, annotated collection of digital mammographic im-
ages aimed at advancing breast cancer detection and diagnosis
through machine learning. It includes thousands of images
sourced from diverse populations, with detailed annotations

such as lesion types, BI-RADS categories, and precise lesion
locations. This dataset is designed to support the development
of robust AI models by providing a wide variety of cases,
including both normal and abnormal findings, thus enhancing
the generalizability and accuracy of diagnostic algorithms.

2) CBIS-DDSM: The CBIS-DDSM (Curated Breast Imag-
ing Subset of the Digital Database for Screening Mammogra-
phy) [54] dataset is a widely used resource in the field of breast
cancer research. It comprises digitized film mammograms,
which have been meticulously annotated with information
such as lesion boundaries, types (e.g., calcifications, masses),
and pathology-confirmed labels (benign or malignant). The
dataset also includes patient metadata and additional clinical
information, making it an invaluable tool for training and
validating computer-aided detection and diagnosis systems. Its
comprehensive nature and established use in the research com-
munity make it a benchmark for evaluating the performance
of mammography-based AI models.

Vindr-Mammo CBIS-DDSM
benign malignant total benign malignant total

train 3614 385 3999 629 660 1289
test 904 96 1000 185 146 331
total 4518 481 4999 814 806 1620

TABLE II
THE COMPOSITION OF DATA FOR THE TWO DATASETS.

B. Evaluating Indicator

In breast cancer early screening models, several evaluation
metrics are commonly used to assess the performance of the
classification models. Here are the definitions and significance
of each metric along with their respective formulas:

1) AUC (Area Under the Curve): AUC means the area
under the receiver operating characteristic (ROC) curve. The
ROC curve uses the true positive rate for mammography
benign-malignant classification as the y-axis and the false
positive rate as the x-axis. It provides an aggregate measure
of performance across all possible classification thresholds. A
higher AUC value indicates a better model performance, with
1 representing a perfect model and 0.5 a random guess.

AUC =

∫ 1

0

TPR
(
FPR−1(x)

)
dx

where TPR(t) is the true positive rate at threshold t, and
FPR(t) is the false positive rate at threshold t



7

a b c d

Fig. 3. Figures a to d provide a visualization of patch-based images extracted by the model. The green box on the mammography indicates the location of
the suspicious lesion, while the blue box represents the patch-based images selected by the model. We can observe that the model’s extracted patch-based
images perform exceptionally well, and the magnified images clearly show calcifications and masses.

2) ACC (Accuracy): Accuracy is the proportion of true
results (both true positives and true negatives) among the total
number of cases examined. It gives a straightforward measure
of how often the classifier is correct.

ACC =
TP + TN

TP + TN + FP + FN

where TP , TN , FP and FN represent the numbers of true
positives, true negatives, false positives, and false negatives,
respectively.

3) F1 Score: The F1 Score is the weighted average of
Precision and Recall. This score takes both false positives and
false negatives into account. It is particularly useful when the
class distribution is uneven.

F1 Score = 2 · Precision ·Recall

Precisionn+Recall

The F1 score reaches its best value at 1 (perfect precision and
recall) and worst at 0.

These metrics collectively provide a comprehensive evalu-
ation of the performance of breast cancer screening models,
helping to understand their strengths and weaknesses in vari-
ous aspects of classification.

C. Comparative Experiment

In this study, we evaluated several models on two datasets:
Vindr-Mammo and cbis-ddsm. The performance metrics con-
sidered were AUC, ACC, and F1 score.

1) Vindr-Mammo: For the Vindr-mammo, ours model
achieved the highest performance across all metrics, with
an AUC of 0.828 ± 0.02, ACC of 0.919, and F1 score of
0.694. For single-view task models, the GMIC with a Global-
local structure achieves an AUC of 0.793, significantly out-
performing ResNet and Swin-Transformer, which had AUCs

of 0.727 ± 0.02 and 0.731 ± 0.02, respectively. For multi-
view task models, our model achieves an AUC of 0.828,
significantly surpassing other models. Multi-View GMIC also
showed competitive performance with an AUC of 0.797±0.02,
validating the effectiveness of the Global-local architecture,
but its ACC and F1 score were lower at 0.637 and 0.512.

2) cbis-ddsm: On the cbis-ddsm dataset, the ours model
again demonstrated superior performance with an AUC of
0.805 ± 0.02, ACC of 0.709, and F1 score of 0.709. Multi-
View GMIC, which had an AUC of 0.781 ± 0.02 and an F1
score of 0.699, obtained the highest ACC on this dataset. In
this dataset, the advantages of the Global-Local architecture
are more pronounced, with ResNet and Swin-Transformer
showing significant disadvantages in AUC.

3) Model Complexity: In terms of model complexity, mea-
sured by the number of parameters, the ours model had
98.05 million parameters. Other smaller networks often cannot
achieve the accuracy of our model and show a significant gap.
This is efficient compared to the MaMVT with 30.73 million
parameters and the Multi-View GMIC with 22.68 million
parameters, considering the performance gains achieved.

4) ROC curve: The ROC curve in figure 4 provides insights
that cannot be obtained from tables alone. Analyzing the ROC
curve, we observe that most models, except ours, exhibit a
concave shape in the middle. This is due to class imbalance
in the data, further validating the effectiveness of our model’s
architecture.

Overall, our model offers a robust and efficient approach,
achieving state-of-the-art performance on both datasets, sur-
passing the second-best AUC by over 0.02, with fewer param-
eters. The Global-Local architecture proves effective for both
multi-view and single-view models. Additionally, the multi-
view learning approach enhances model performance.
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Vindr-Mammo：

CBIS-DDSM:

a

c

b

d

Fig. 4. Figures a and b compare the ROC curves of our model with other Single-view and Multi-view architectures on the Vindr-mammo dataset. Figures c
and d present the ROC curves comparison on the CBIS-DDSM dataset.

D. Ablation Experiment

1) Different Information Fusion Method: This ablation
study aims to demonstrate the effectiveness of our proposed
weakly supervised architecture on mammography.

AUC ACC F1 score
Single-view Coc 0.762± 0.02 0.711 0.627
Multi-View Coc 0.783± 0.02 0.815 0.658
Ours(mv+gl) 0.828 ± 0.02 0.919 0.694

TABLE III
PERFORMANCE OF DIFFERENT INFORMATION FUSION METHODS ON THE

VINDR-MAMMO

The table clearly demonstrates the superiority of our archi-
tecture, achieving the highest AUC as well as optimal ACC
and F1 scores, indicating its balance in mammography tasks.
mv represents a multi-view learning approach, and gl refers
to our proposed weakly supervised framework.

2) Different Local Information: We identified two distinct
sources of local information: patch-based local information
and feature-based local information. Moreover, this feature-
based local information has been overlooked in existing work.

This ablation study aims to verify the effectiveness of the
mechanism integrating feature-based local information with
patch-based local information.

AUC ACC F1 score
patch-based local information 0.810± 0.02 0.873 0.678
feature-based local information 0.806± 0.02 0.895 0.659
ours 0.828 ± 0.02 0.919 0.694

TABLE IV
PERFORMANCE OF DIFFERENT LOCAL INFORMATION ON THE

VINDR-MAMMO

We found that focusing on only one type of local informa-
tion doesn’t yield better results. The AUC for patch-based local
information is 0.810, and for feature-based local information,
it’s 0.806. However, combining both achieved the best result,
with an AUC of 0.828.

IV. DISCUSSION

Figure 5 reveals that lesions in mammography predomi-
nantly appear in clustered forms. The Coc feature extraction
paradigm utilizes clustering of point sets based on color
and location information, making it adept at identifying the
shape and position of such lesions. This paradigm offers
simplicity, resulting in excellent interpretability and gener-
alizability. Therefore, we believe that the Coc network has
a strong capability to learn the prior structure of lesions in
mammography images.

Single-View GMIC Multi-View GMIC Ours
MDR 0.291 0.277 0.177

TABLE V
THE PERFORMANCE OF DIFFERENT MODELS IN TERMS OF MISSED

DETECTION RATE.

We introduce an additional evaluation metric, the missed
detection rate (MDR):

MDR =
Nmiss

Ngt

MDR is defined as the percentage of the number of unrec-
ognized suspicious lesion areas Nmiss relative to the total
number of suspicious lesion areas Ngt. Because, in clinical
practice, we are more concerned about lesions being unde-
tected, i.e., false negatives, rather than false positives.
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a b c d

Fig. 5. From figure a to d, the left half of each image shows the original mammogram with annotated suspicious lesions, while the right half presents our
contextual clustering visualization, akin to a CNN heatmap and a VIT attention map, with the suspicious lesion locations also outlined. This figure clearly
shows that our Context Clustering approach effectively identifies and groups suspicious lesion areas in mammography.

From Table V, we can see that our model achieved the
lowest missed detection rate of 0.177, surpassing other model
with rates close to 0.1, demonstrating its potential. The other
two models, like ours, are weakly supervised methods capable
of identifying lesion locations using only classification labels,
making them suitable for comparison.

V. CONCLUSIONS

In this study, we developed a novel weakly supervised
multi-view model for early breast cancer screening using
mammography images. Unlike conventional feature extraction
paradigms such as CNNs and Transformers, our approach
employs a context clustering-based method. This strategy
allows for the integration of feature-based local information
with patch-based local information, enhancing the model’s
ability to capture nuanced image details. Furthermore, by
incorporating multi-view mammography image features, our
model effectively leverages complementary information from
different perspectives. This comprehensive approach addresses
the limitations of single-view analysis and improves diagnostic
accuracy. The model’s performance was rigorously evaluated
on two publicly available datasets, Vindr-Mammo and CBIS-
DDSM, where it achieved state-of-the-art accuracy, demon-
strating its potential as a robust tool for early breast cancer
detection.
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