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Geometric Camera Calibration
Using Circular Control Points

Janne Heikkild

Abstract—Modern CCD cameras are usually capable of a spatial accuracy greater than 1/50 of the pixel size. However, such
accuracy is not easily attained due to various error sources that can affect the image formation process. Current calibration methods
typically assume that the observations are unbiased, the only error is the zero-mean independent and identically distributed random
noise in the observed image coordinates, and the camera model completely explains the mapping between the 3D coordinates and the
image coordinates. In general, these conditions are not met, causing the calibration results to be less accurate than expected. In this
paper, a calibration procedure for precise 3D computer vision applications is described. It introduces bias correction for circular control
points and a nonrecursive method for reversing the distortion model. The accuracy analysis is presented and the error sources that can
reduce the theoretical accuracy are discussed. The tests with synthetic images indicate improvements in the calibration results in
limited error conditions. In real images, the suppression of external error sources becomes a prerequisite for successful calibration.

Index Terms—Camera model, lens distortion, reverse distortion model, calibration procedure, bias correction, calibration accuracy.

1 INTRODUCTION

IN 3D machine vision, it necessary to know the relation-
ship between the 3D object coordinates and the image
coordinates. This transformation is determined in geometric
camera calibration by solving the unknown parameters of
the camera model. Initially, camera calibration techniques
were developed in the field of photogrammetry for aerial
imaging and surveying. First, photographic cameras were
used, but recently video cameras have replaced them
almost completely. Also new application areas, like robot
vision and industrial metrology, have appeared, where
camera calibration plays an important role.

Depending on the application, there are different
requirements for camera calibration. In some applications,
such as robot guidance, the calibration procedure should be
fast and automatic, but in metrology applications, the
precision is typically a more important factor. The tradi-
tional camera calibration procedures, such as bundle
adjustment [1], are computationally greedy full-scale
optimization approaches. Therefore, most of the calibration
methods suggested during the last few decades in computer
vision literature are mainly designed for speeding up the
process by simplifying or linearizing the optimization
problem. The well-known calibration method developed
by Roger Tsai [2] belongs to this category. Other techniques
also based on the linear transformation, for example [3], [4],
[5], [6], are fast but quite inaccurate. The simplifications
made reduce the precision of the parameter estimates and,
as a consequence, they are not suitable for applications in
3D metrology as such.
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Due to the increased processing power of standard
workstations, the nonlinear nature of the estimation
problem is not as restricting as it was a few years ago.
The calibration procedure can be accomplished in a couple
of seconds iteratively. This gives us a good reason for
improving the accuracy of the calibration methods without
introducing a lot of extra time for computation. An accuracy
of 1/50 of the pixel size (around 1/50,000 of the image size)
is a realistic goal that can be achieved in low noise
conditions with proper subpixel feature extraction techni-
ques. The main improvements in the new calibration
procedure presented in the following sections are the
camera model, which allows accurate mapping in both
directions, and the elimination of the bias in the coordinates
of the circular control points.

In Section 2, we begin by describing the camera model
for projection and back-projection. In Section 3, the
projective geometry of the circular control points is
reviewed and the necessary equations for mapping the
circles into the image plane are presented. Section 4
describes a three-step calibration procedure for circular
control points. Experimental results with the calibration
procedure are reported in Section 5 and the effects of some
typical error sources are discussed in Section 6. Finally,
Section 7 offers concluding remarks.

2 CaAMERA MODEL

In camera calibration, the transformation from 3D world
coordinates to 2D image coordinates is determined by
solving the unknown parameters of the camera model.
Depending on the accuracy requirements, the model is
typically based on either orthographic or perspective
projection. Orthographic transformation is the roughest
approximation assuming the objects in 3D space to be
orthogonally projected on the image plane. It is more
suitable for vision applications where the requirements of
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Fig. 1. Pinhole camera model.

the geometric accuracy are somewhat low. Due to linearity,
it provides a simpler and computationally less expensive
solution than perspective projection which is a nonlinear
form of mapping. However, for 3D motion estimation and
reconstruction problems, perspective projection gives an
idealized mathematical framework, which is actually quite
accurate for high quality camera systems. For off-the-shelf
systems, the perspective projection model is often augmen-
ted with a lens distortion model.

Let us first consider a pure perspective projection (i.e.,
pinhole) camera model illustrated in Fig. 1. The center of
projection is at the origin O of the camera frame C. The
image plane II is parallel to the zy plane and it is displaced
with a distance f (focal length) from O along the z axis. The
z axis is also called the optical axis, or the principal axis, and
the intersection of II and the optical axis is called the
principal point o. The u and v axes of the 2D image
coordinate frame [ are parallel to the z and y axes,
respectiveljy. The coordinates of the principal point in [
are [ug, vo] .

Let P be an arbitrary 3D point located on the positive
side of the z axis and p its projection on II. The coordinates
of P in the camera frame C are [z,y,2]" and in the world
frame W the coordinates are [X, Y, Z]". The coordinates of p
in I are [u,v]" and they can be solved from the homo-
geneous coordinates given by the transformation

X X

u Au v v

v|iox || =F =PM , (1)
Z Z

1 A 1 1

where F is the perspective transformation matrix (PTM),

sf 0 w O
P = 0 f Vo 0 ) (2)
0 0 1 O

image frame I

object point P

A is a scale factor, s is the aspect ratio, and M is a 4 by 4
matrix describing the mapping from W to C. It is
decomposed as follows:

wo[m ]

0 1 3)

where t = [tm,ty,tz]Tdescribes the translation between the
two frames, and R is a 3 by 3 orthonormal rotation matrix
which can be defined by the three Euler angles w, ¢, and k.
If R is known, these angles can be computed using, for
example, the following decomposition [6]:

Y= sin~! g

w = atan 2| — e T8
cos @’ cos @ (4)

K = atan 2(— 21 ,Ti),
cosp’ cosy

where r;; is the entry from the ith row and the jth column of
the matrix R and atan2(y,z) is the two-argument inverse
tangent function giving the angle in the range (—,].
Because sin ¢ = sin(r — ¢), the Euler angles do not repre-
sent the rotation matrix uniquely. Hence, there are two
equivalent decompositions for the matrix R. As we can see,
(4) has singularity if r3; = +1, i.e, ¢ =7/2 or ¢ = 37/2. In
those cases, we can choose £ = 0, and w = atan2(ra,792), Or
vice versa [6]. In most situations, we could also prevent the
singularities by carefully planning the calibration setup.

The parameters t,,t,,t,,w,p, and « are called extrinsic
parameters or exterior projective parameters and the parameters
s, f,up and vy are the intrinsic parameters or interior projective
parameters of the pinhole camera model.

It is usually more convenient to express the image
coordinates in pixels. Therefore, the coordinates obtained
from (1) are multiplied by factors D, and D, that specify the
relationship between pixels and the physical object units,
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for example, millimeters. However, knowing the precise
values of these conversion factors is not necessary because
they are linearly dependent on the parameters s and f that
are adjusted during calibration.

In real cameras, perspective projection is typically not
sufficient for modeling the mapping precisely. Ideally, the
light rays coming from the scene should pass through the
optical center linearly, but in practice, lens systems are
composed of several optical elements introducing nonlinear
distortion to the optical paths and the resulting images. The
camera model of (1) produces the ideal image coordinates
[u,v]" of the projected point p. In order to separate these
errorless but unobservable coordinates from their observa-
ble distorted counterparts, we will henceforth denote the
correct or corrected coordinates of (1) by a, = [uc,vc]T and
the distorted coordinates by a; = [ug,v4] .

Several methods for correcting the lens distortion have
been developed. The most commonly used approach is to
decompose the distortion into radial and decentering
components [7]. Knowing the distorted image coordinates
a,, the corrected coordinates a, are approximated by

a. =ag+ Fp(aq, o), (5)
where
fD(ad, 6) =
ag(kird + kord 4+ karS +..)
+(2p18ava + pa(r3 + 2a3)) (1 + psrd + - - )
Da(kird + korl + ksr§ +..)
+(p1 (1] + 207) 4 2patiavq) (1 + psry + -+ -)

(6)

Ug = Ug — Uy, Vg = Vg — Vo, Tq = \/ﬂg + 1_)(21,

and 6 = [k1, ko, ..., p1,D2,. . .]T. The parameters ki, ks, ... are
the coefficients for the radial distortion that causes the
actual image point to be displaced radially in the image
plane, and the parameters p;,ps, ... are the coefficients for
the decentering or tangential distortion which may occur
when the centers of the curvature of the lens surfaces in the
lens system are not strictly collinear.

Other distortion models have also been proposed in the
literature. For example, Melen [6] used a model where P in
(2) was augmented with terms for linear distortion. This is
useful if the image axes are not orthogonal, but in most
cases the CCD arrays are almost perfect rectangles, and
hence, the linear distortion component is insignificant (less
than 0.01 pixels [8]). In the calibration method proposed by
Faugeras and Toscani [5], the geometric distortion was
corrected using bilinear transformation in small image
regions.

For camera calibration, it is favorable to find a
transformation from the 3D world coordinates to the real
image coordinates. This enables us to use a least-squares
technique as an optimal estimator of the camera para-
meters. Directly applying (1) and (5) implies that we first
need to correct the distortion and then estimate the camera
parameters of (1). An obvious problem is that the distortion
coefficients are not usually known in advance and due to
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strong coupling, they cannot be reliably estimated without
knowing the other camera parameters.

In the literature, there are several solutions to overcome
this problem. Tsai [2] and Lenz and Tsai [9] decomposed
the camera model into linear and nonlinear parts where the
parameters are decoupled. However, only radial distortion
can be used and the solution is not optimal. Weng et al. [10]
suggested an iterative scheme where the parameters of the
distortion model and the projection model are fixed, in turn,
and estimated separately. A commonly used approach in
photogrammetry [7] is to perform a full-scale optimization
for all parameters by minimizing the sum of squared errors
between the corrected image coordinates and the synthetic
coordinates given by the camera model. In practice, this
means that (6) is evaluated with noisy observations, which
may deteriorate the calibration result. In order to minimize
the error between the observed and model coordinates, the
distorted image coordinates should be expressed in terms of
their undistorted counterparts. For this, we need an inverse
distortion model. As can be easily noticed, there is no
analytic solution for the inverse problem, and thus, we need
to approximate it. Melen [6], for example, used the
following model:

a; =~ a.— Fp(a.0). (7)

The fitting results given by this model are often satisfactory,
because the distortion coefficients are typically small values
causing the model to be almost linear. It should be noticed
that the optimal distortion coefficients in a least squares
sense are different for (5) and (7).

Another solution is to create the following recursion
based on (5):

ad%ac—fD(ad,lS) %ac_j:D(aC_]:D(adab‘)a(s)

8
zac—.7-'D(ac—fD(aC—fD(ad,ﬁ),é),é)%---. ()

The error introduced when substituting a; with a, on the
right-hand side gets smaller for each iteration. In practice, at
least three or four iterations are required to compensate for
strong lens distortions. This means that the distortion
function Fp is evaluated several times in different locations
of the image, which makes this technique less attractive.
In order to avoid extensive computation, we can take a
first order Taylor series approximation of Fp about a,:

a. =~ aq + Fp(a.8) + D(a.)(as — a.), (9)
where
D(ar) = |5 (a.8) 5 Foled) (10)
ou ov a—a,
Solving a; from (9) yields
a;~a.— (I+D(a)) ' Fp(a,é). (11)

The elements of D(a.) are small (<< 1) which makes it
possible to use the following approximation:

1
Bl di(ap) + de(a:) +1

Qg ~ A,

Fpla.,6) =a, — Fp(a.b),

(12)



where dy;(a.) and dy(a.) are the upper left and lower right
elements of D(a.), respectively. If only two radial distortion
coefficients k; and k;, and two decentering distortion
coefficients p; and p; are used, the approximation of the
inverse distortion model becomes

1
 4kyr? 4 6kyrl 4 8p10. + 8patic + 1

‘7:*D(a(:76) ‘7_—D(aca6)a

(13)

where r. = \/u2 + v2. If necessary, extending this model
with higher order terms is straightforward.

By replacing u = u. and v = v, in (1) and combining it
with (12), we obtain a forward camera model which converts
the 3D world coordinates to distorted image coordinates.

Using a backward camera model, we can transform the
distorted camera coordinates to lines of sight in the
3D world coordinate system, or to the intersections of these
lines with a known 2D plane. Let us assume that we have a
2D plane IT' with a coordinate system H, whose origin is at
hy = [Xo, Yo, ZO]T, and it is spanned by the 3D vectors h; =
[X1, Y1, Zl]T and hy = [X5, Y5, ZZ]T. The transformation from
the corrected image coordinates a, = [u,, v] produced by
(5) on the plane II' can be expressed as

,\{Xﬂ = (FH) ! h} (14)

where ) is a scale factor, xy = [XH,YH]T are the back
projected coordinates in H and

_|hy hy hy
H*{o 0 1]

Due to the approxi atio ae



























