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Abstract

In this paper we address the problem of traffic surveillance in an Advanced Transportation
Management System. We propose a new approach for detecting and tracking vehicles in road
traffic scenes that attains a level of accuracy and reliability which lies beyond currently available
systems. High accuracy and reliability are obtained by using an explicit occlusion reasoning step.
For that purpose we employ a contour tracker based on intensity and motion boundaries. The
motion of the contour of the vehicles in the image is assumed to be well describable by an
affine motion model with a translation and a change in scale. A contour associated to a moving
region is initialized using a motion segmentation step which is based on image differencing
between an acquired image and a continuously updated background image. A vehicle contour
is represented by a closed cubic spline the position and motion of which is estimated along
the image sequence. In order to employ linear Kalman Filters we decompose the estimation
process in two filters: one for estimating the affine motion parameters and one for estimating
the shape of the contours of the vehicles. Occlusion detection is performed by intersecting the
depth ordered regions associated to the objects. The intersection is then excluded in the motion
and shape estimation. This procedure also improves the shape estimation in case of adjacent
objects since occlusion detection is performed on slightly enlarged regions. In this way we obtain
robust motion estimates and trajectories for vehicles even in the case of occlusions, as we show
in some experiments with real world traffic scenes.



1 Introduction

In this work we address the problem of traffic surveillance in an Advanced Transportation Man-
agement System (ATMS). Automatic traffic surveillance is a prerequisite for an ATMS and hence
of increasing interest for communities which suffer from high traffic density on their highways. An
Automatic traffic surveillance system (ATSS) is just a first step in ATMS. A second step requires
the evaluation of the surveillance data and symbolic reasoning. An ATSS should therefore provide
descriptions of vehicles which are rich enough to derive higher level descriptions necessary for a de-
cision component. Such a decision component draws decisions like “stalled car in lane 2 detected”,
“high traffic with stop and go”, “accident in lane 3”, which can be transmitted to a computer in
a traffic operation center which decides on an action such as assigning a detour (i.e. [Huang et al.
93)).

One option for an ATSS is to use loop detectors embedded in the road surface. Loop detectors
are disruptive to install, subsequently expensive to maintain and ultimately provide sparse and
unreliable data. Another option is to use video camera or machine vision based surveillance.
Machine vision based traffic surveillance systems are nonintrusive and easy to install and easy to
maintain. The main problem with current machine vision based surveillance systems is, however,
that they do not provide reliable data fast enough, since they demand a high computation effort.
A video based system is said to be running in real-time, if the computation time of the system
to provide the results for a single video frame is as long as the time to acquire the image. Since
the standard NTSC frame rate is 30 frames per second, a video based system running in real-time
should be able to analyze 30 incoming frames per second!. Options to speed-up a vision based
system are either to subsample the image (use a lower pixel resolution) or to subsample the frame
rate (use only each third or fifth frame). In both cases you gain a speed-up but lose accuracy (since
you discard some information from the image or skip some frames) and reliability (the probability
of spurious results increases due to loss of information using subsampling).

1.1 Machine Vision Based Traffic Surveillance Systems

The issue in vision based traffic surveillance systems is to extract descriptions of moving vehicles
from video data which enables further symbolic reasoning about the vehicles. The video data are
usually provided from stationary cameras mounted at a location high above the road (e.g. at an
overpass or on poles beside the road (see e.g. Figure 4)), in order to cover a large field of view and
to reduce occlusions of vehicles.

In a detailed report for Caltrans, a team from Cal Poly performed a comprehensive review
of the available machine vision based road surveillance systems in 1991 ([Hockaday 91]). The
overall finding from this report indicate that while vision is a viable way to proceed, the systems
available currently are not sufficiently reliable for deployment. AutoScope, for example, is a system
that deduces traffic flow variables by counting the number of vehicles that pass virtual “tripwires”
which the user can position in the image [Michalopoulos et al. 90; Michalopoulos 91]. The system
therefore duplicates the functionality of embedded loop detectors, albeit in a non-intrusive way,
and therefore fails to exploit fully the possibilities that machine vision offers. A more sophisticated
approach is followed in Titan, where a simplistic tracker is used to form a trajectory from which
coarse traffic flow information can be deduced [Blosseville et al. 89]. The tracking process, however,
is unable to follow a vehicle that performs a lane change. Hughes Aircraft Corporation recently
released a system which is similar to AutoScope and does not use a tracker. It therefore suffers

'Handling 30 frames per second requires a bandwidth of about 7.5 MByte/sec, assuming a video image sampled
and digitized into 512 x 512 pixels with 256 grey values. Even for fast computers this is a very high bandwidth.



from the same problem as AutoScope. The most promising results can only be obtained using a
decent tracker which is appropriately initialized.

As already mentioned in the previous section, there is a tradeoff in a vision system between the
accuracy of the results and the performance of the system. The ideal case would be, of course, the
evaluation of images at video rate. While real-time tracking of single objects has been achieved
using a contour tracker on a transputer network (i.e. [Curwen & Blake 92]) multitarget tracking in
real-time has only been achieved for single points ([Rao 92]).

Performance can be increased without loosing the richness of the description by using a priori
knowledge about the scene, the objects and their motions. This enables the use of dedicated models
for shape and motion, but also reduces the applicability. A full 3D-model-based and accurate, but
computational expensive tracker has been suggested by [Koller et al. 93]. A simpler and faster but
less accurate model-based tracker for single objects has been implemented by [Worrall et al. 91]
and [Marslin et al. 91].

There is a need for a simple and fast but robust tracker. We decided to perform the tracking
in the 2D image without any specific a priori knowledge about the shape of the moving objects,
except the assumption that the image projection of the objects can reasonably be described by a
closed contour. One advantage of this approach over one based on complete models is that we gain
robustness. A model-based approach requires models for all kinds of vehicles that might appear
in the traffic domain. These models have to be parameterized since it is very unlikely that exact
models of all vehicles are available (How does one expect to have models of every kind of car, truck
and motorcycle?). We further heavily use a constraint on motion of the objects, which enables the
use of simple and fast (linear) Kalman Filter techniques for the motion estimation.

Multitarget tracking requires not only an estimation algorithm that generates an estimate of
the state of the object (target) to be tracked but also a data association component that decides
which measurement to use for updating the state of which object. According to [Bar-Shalom 90]
there are three approaches for data association:

1. heuristic — based on some simple rule or a priori knowledge
2. probabilistic non-Bayesian — hypothesis testing or likelihood function

3. probabilistic Bayesian — conditional probabilities are computed for the various possible as-
sociations

Various work has been devoted to provide solutions to the problem of data association in multi-
target tracking applications (i.e. [Chong et al. 90; Kurien 90; Rao et al. 93]). They all provide
general probabilistic solutions. In our case we can exploit some a priori knowledge given by the
scene geometry in order to solve the data association problem. Qur measurements can be corrupted
by white Gaussian measurement noise (as in a single object tracking case) and by occlusions (mea-
surements are missing or wrong due to overlayed data from another object). Our data association
approach falls therefore into the heuristic category. Using this heuristic has the advantage that we
can avoid the computational load, which emerges in using a probabilistic approach, where either
several hypotheses for each object are traced simultaneously or complex posteriori probabilities
have to be computed. But nevertheless, multitarget tracking of m objects requires not only n
times the computation load compared to the single object case, but requires also a nlogn or n?
component for data association (i.e. checking for occlusions).

There is little work on multi-object tracking application using vision sensor data. In [Irani et
al. 92] affine motion parameters are estimated and a temporal integration used to track a single
object. They do not address the problem of data association in the case of potential occlusions.
[Meyer & Bouthemy 93] explicitly handle the occlusion problem. In their work they address the



problem of linking partial spatiotemporal trajectories in the case of total occlusion using motion
coherence, but they do not address the problem of data association and shifts in the estimated
positions due to partial occlusions. Partial occlusions usually occur prior to a total occlusion and a
missing occlusion reasoning step may already affect the shape and motion estimation which causes
the motion coherence to be ineffective. [Létang et al. 93] realized that in the case of a partial
occlusion the center of gravity of a blob mask is not a reliable feature to track. They handle
the (partial) occlusion problem by tuning the measurement noise according to the change in blob
surface. In this way their tracker relies more on the motion coherence than on the measurement in
a case of an occlusion. This method is rather heuristic and not applicable in the case of an affine
motion with a change in blob surface.

Our work has been influenced by [Meyer & Bouthemy 92| and [Blake et al. 93]. [Meyer &
Bouthemy 92] use convex polygons as descriptions of moving regions. [Blake et al. 93] successfully
extended their real-time contour tracking system ([Curwen & Blake 92]) by exploiting affine motion
models. They use so-called Snakes (active contour models) as descriptions of projected objects.
Snakes have been introduced as deformable contours by [Kass et al. 88] and since then used in
different variants in various areas of computer vision with emphasize to tracking rigid and non-
rigid objects. In [Cipolla & Blake 90], real-time snakes are used to track the occluding contours
of 3D objects as seen from a camera attached to a moving robot arm. The Kalman-Filter theory
([Gelb 74]) is incorporated in the snake technique to form so-called Kalman-Snakes ([Terzopoulos
& Szeliski 92]).

The common approach for updating a snake contour associated to a rigid or non-rigid object
along the image sequence is to formulate an elastic-model approach. In such an elastic-model
approach forces are introduced based on image gradients normal to the contour in order to let
the contour fall into local greyvalue minima found in the vicinity of the current contour. These
approaches do not exploit any motion information contained in the images. Instead a motion model
is usually used to formulate system dynamic equations and to predict the contour in a subsequent
frame. Our approach for tracking contours deviates from this common snake technique in the sense
that we do not use a force model, but we explicitly exploit motion information in the image if the
object is moving.

Another important component in tracking systems is the ¢rack formation or initialization. Our
tracker is initialized by a motion segmentation step described in Section 2. From our experience with
different motion segmentation approaches using optical flow or displacement vector segmentation,
the described approach based on background image differencing yields the best results and is also
fast. In Section 3 we describe our affine motion model used in the tracking stage. We continue with
the contour extraction based on a convex polygon enclosing some sample points from the motion
segmentation. We use these polygons for a a subsequent spline approximation for the final shape
representation, as described in Section 4. Section 5 introduces the time recursive motion and shape
estimation. The occlusion reasoning step is developed in Section 6. In Section 7 we show results of
our approach with real-world traffic scenes and finally close with a conclusion in Section 8.

A Dblock scheme of the complete tracker including the occlusion reasoning step is shown in
Figure 1.1.

2 Motion Segmentation

The simplest technique for separating moving objects from a stationary background is through
examining the difference between each new frame and an estimate of the stationary background.
Segmentation of moving objects in an outdoor environment also requires that the background
estimate evolve over time as lighting conditions change. Thus changes in stationary parts of the
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Figure 1: A block scheme of the complete tracker. Processes are shown in rectangular boxes while data
are shown in rectangular boxes with rounded corners.

image must be differentiated from changes due to moving objects.
We use a modified version of the moving object segmentation method suggested by [Karmann
& von Brandt 90] and implemented by [Kilger 92]. This method uses an adaptive background
model. The background model is updated in a Kalman filter formalism, thus allowing for dynamics
in the model as lighting conditions change. The background is updated each frame via the update
equation
Byi1 = Bt + (a1 (1 — My) + aaMy) Dy (1)

Where B; represents the background model at time ¢, D; is the difference between the present frame
and the background model, and M; is the binary moving objects hypothesis mask. The gains a; and
as are based on an estimate of the rate of change of the background. In a complete Kalman filter
implementation, these values would be estimated along with the background since they correspond
to elements of the error covariance. For our simulations, we found that small constant values of
a1 = 0.1 and as = 0.01 produced good results. A block diagram of the procedure is shown in
Figure 2.
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The hypothesis mask, M;, attempts to identify moving objects in the current frame. In the
original implementation this mask was obtained by thresholding the difference image. For the
image position x,

1 [Dy(x)| > Ty
0 else

My(x) = { (2)

This equation assumes that the power in the difference image is greater than 7; at locations of
moving objects. If we model the difference image as the summation of the image of moving objects
plus noise, then we know that given the spectral characteristics of the signal and noise, a filter
can be implemented to increase the power of signal over noise. Our implementation differs from
the one used in [Karmann & von Brandt 90; Kilger 92] in that we employ linear filters to increase
the accuracy of the decision process. Thus in the notation above, B; and D; represent a vector of
filtered responses instead of single images.

For the known camera geometry, we can assume that images of moving vehicles will consist
of regions of uniform color and edges almost entirely in horizontal or vertical orientations. (This
assumption may become invalid if future vehicles are radically different in appearance then con-
temporary ones). Thus a matched linear filter will have power at DC and at spatial frequencies
consistent with horizontal and vertical edges. We choose as filter kernels the Gaussian and the
Gaussian derivative along the horizontal and along the vertical directions. The Gaussian compo-
nents of all three filters reduce high spatial frequencies where we assume the power of the noise
is significant compared to the signal. The derivatives respond to edges in the two orientations we
expect in the signal. This was pointed out in [Canny 86]. In addition, the Gaussian functions are
separable and allow for an efficient computational implementation. We then threshold the mag-
nitudes of the filtered responses in order to make the moving object hypothesis for each channel.
The logical OR of the separate thresholded channels forms the complete object hypothesis mask.
Since each channel is tuned to frequencies where we expect the signal to be strong, we can use a
higher threshold than if we used a single channel which was less selective.

To demonstrate the improved prediction via filtering, we added noise to a sequence where the
locations of the vehicles had been decided by hand. The difference between the number of pixels
labeled correctly and those labeled incorrectly is plotted as a function of added Gaussian noise in



Figure 3. The three plots shown were obtained from (1) using the three Gaussian filters outlined
above, (2) A single Gaussian function for noise reduction and (3) no filtering. The thresholds for
the plots were set to 200 times the power of the filter for the three Gaussian filters, 100 times the
power for the single Gaussian and a value of 50 for the case without filters. The first two thresholds
were chosen to give the same number of correct responses on the vehicles for the two cases when no
extra noise is present. The 200 times the power threshold was the same as used in the algorithm.
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Figure 3: Plot of the number of pixels correctly labeled minus the number incorrectly labeled as a function
of added noise for the case of (1) Three selective filters, (2) Single Gaussian filter and (3) No
filtering.

An example of the difference mask obtained from our modified method compared to an intensity
alone based method is shown in Figure 4. The binary difference mask is then translated into distinct
connected objects through merging of connected regions and elimination of small regions. These
connected objects are used as the tracking initialization.

Our hypothesis of white noise is only a convenient approximation. Image sequences contain
various forms of correlated noise. In the case of shot noise, the second stage where the binary
hypothesis mask is reduced to connected components of significant size helps reduce the influence
of isolated pixel fluctuations. Also implicit in the threshold levels chosen is that changes in overall
brightness due to lighting changes or camera auto-aperture effects produce responses below the
Gaussian filter threshold.

3 The Affine Motion Model

The motion segmentation step is assumed to provide image patches due to projections of single
moving 3D objects. Now as already pointed out by other researchers, for a sufficiently small field
of view and independently moving objects, the image velocity field and change in apparent image
shape for smooth surfaces is well approximated by a linear (affine) transformation (i.e. [Koenderink



Figure 4:

Original image (upper image) and motion hypothesis images produced by an intensity differencing
method (left) and filtered differencing method (right). The filter method attempts to increase
the signal to noise ratio in the difference image and thus increase the accuracy of the motion

detection.



86]). Thus affine motion models are widely used in computer vision for motion segmentation and
tracking (i.e. [Cipolla & Blake 92; Murray et al. 93; Zheng & Chellappa 93]).

We assume that the apparent image motion u(x) at location  inside a detected image patch
can be well approximated by the following affine motion:

u(x) = A(x — zm) + ug, (3)

with @, the center of the patch, ugy the displacement of x,,, and A a rotation and scaling matrix.
Since we expect the rotation component to be small (the motion of the vehicles is constrained on a
road plane and possible rotations are only along the normal of the plane), we end up with a single
change in scale in the matrix A, which corresponds to a motion along the optical (z—) axis. Small
rotational motion components may effect the shape of the contour due to a changed aspect of the
3D object and are well captured by an appropriate process noise. Equation 3 reduces then to:

u(x) = s(x — xm) + uo, (4)

with the scale parameter s. s = 0 stands for no change in scale, while s < 0 and s > 0 stands
for a motion component along the optical axes away and towards the camera, respectively. The
same consideration concerning the affine motion holds also, of course, for local image structures
and image features.

We further tried to exploit the fact that the motion of road vehicles can be locally approximated
by a pure translational velocity V on a ground plane. From this assumption it is possible to derive
some motion invariants expressed in the affine motion parameters s and ug in order to state the
system dynamic equations for predicting the parameters in subsequent frames. The appropriate
prediction of these affine motion parameters turns out to correspond to first derivatives of their
estimates. These first derivatives are known to be noisy in the case of noisy measurements and thus
uncertain estimates. As a result the predictions can be wrong and may destabilize the estimation
process. We obtained the best results using the simple assumption of constant displacement wg
and constant scale parameter s. Small changes in these parameters are well captured by process
noise. This is a known procedure of not trying to estimate model parameters which are expected
to fall into the range of the noise. The best tracking results are obtained if these parameters
are removed from the system dynamic equations (motion model) and their associated (physical)
meaning included in the process noise.

As an additional measurement of the affine motion parameters s and ug we tried to estimate
them using a constrained affine optical flow estimation inside each image patch provided from the
motion segmentation step. This would also provide an additional test for motion segmentation by
rejecting those areas which are not consistent with the average affine motion parameters inside an
image patch. It turns out that optical flow estimation using a differential method is too sensitive to
vibrations of the camera and provides no reliable results for large image motion as in they appear
in the lower part of the image.

4 Contour Extraction and Shape Estimation

For a contour description we exploit motion and greyvalue boundaries. A discrimination of grey-
value boundaries is performed by simply thresholding the spatial image gradient, already estimated
in the motion segmentation step. Significant motion areas are obtained by thresholding the time
derivative. An initial object description is then obtained by finding a convex polygon enclosing all
the sample points of the locations that passed this first test for greyvalue boundaries and motion
areas. Figure 4 shows an image section with a car (a), the detected image patch covering the



image of the car (b), and the image locations with well defined spatial gradient and time derivative
constituting the sample points. The convex polygon enclosing all these sample points of ¢) is shown
in d).

For a time recursive shape estimation, a convex polygon is not suitable, since the number of
vertices may and will change along the image sequence with new measurements. This problem may
be solved be using a fixed number of vertices, i.e. from the first measurement, as done by [Meyer
& Bouthemy 92], but this is a rather ad-hoc method and requires sophisticated distance measures
of polygons ([Cox et al. 89]). A better solution is provided by snakes, spline approximation to
contours [Kass et al. 88; Curwen & Blake 92; Bascle & Deriche 93]. Splines are defined by control
points, for which a constant number can be selected. This makes the shape estimation quite easy
by estimating the location and motion of a fixed number of control points.

We use a closed cubic spline approximation of the extracted convex polygon as a final shape
description of the moving vehicles. We use 12 control points which approximate the polygonal
contour by 12 segments (spans) of cubic order. It is not sufficient to use the vertices of the polygon
as sample points for the spline approximation, since these vertices have unequal distances and would
give rise to oscillations at contour locations with sparse sample points as opposed to locations with
dense sample points. To obtain smooth contours, we therefore use equidistant sample points along
each polygon. The locations of the control points are obtained by a least squares between these
equidistant sample points along the contour of the polygon and the (uniform) spline segments
([Bartels et al. 87]). The details can be found in Section A.2. The spline approximation of the
contour for the previous example is given in Figure 4 e).

5 Recursive Shape and Motion Estimation

As already mentioned in Section 1 we decompose the estimation process into two linear Kalman
Filters: one for the motion estimation and one for the shape estimation. The measurements we use
are the positions {X;,Y;}i—1..n of the n control vertices that approximate the convex polygon by
cubic spline segments. For a concise description we define the following vectors:

= (X17Y17"'7XTLJY7L)
= (u,v,s).

(5)

Z stands for the state vector of the vertices and £ for the state vector of the affine motion parame-
ters. The covariance matrices associated with these state vectors are: II, the covariance for = and
7, the covariance for £. We furthermore indicate the time ¢; with an index k to each variable.

The plant equation for the control vertices can be derived from the affine motion model (Eqn. 4)
by integration to give:

™

A — A

+ ot
X k1 = X, g+ 86( X, — Cg) + ug, (6)
with i € {1,...,n}. Ck = (Cyg,Cy,x) denotes the center of all n control vertices. Here we adopt
the usual dynamical systems notation (see, e.g., [Gelb 74]), where & k41 denotes a prediction from

time t;, to time tj,; before an update and ) : is the update at time ¢;. Using the definition (5)
we can put Eqn. 6 into matrix form,

Epp = Ey + Hiép, (7
with,
I, (Xi,-Cy)
Hy=| : : : (8)

o+
I, (‘Xn,k - Ck)
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d) e)

Figure 5: a) An image section with a moving car. b) the moving object mask provided by the motion seg-
mentation step. ¢) the image location with well defined spatial gradient and temporal derivative,
used as sample points to define d), the convex polygon enclosing these points of ¢). e) the final
contour description by cubic spline segments approximating the polygon of d).

5.1 Motion Estimation

The parameters for the motion estimation are the affine motion parameters £ = (u, s). The plant
equation for the motion parameters is simply:

- At
ki1 =& + 9)

with a white Gaussian process noise g, with covariance Qx: g5, ~ N (0, Q).
As a measurement vector we use the positions of the control vertices:

Zy, = (X3,Y7,..., X2, Y7, (10)
the z and y The measurement equation reads as:

Zy, = hi(&) + v = Hi€y, + vp, (11)

where each measurement is assumed to be corrupted by a white Gaussian noise vy with known
covariance matrix Rg : vx ~ N(0,Rz ;).
et ety

oh
Since we have a linear measurement function hyg (&) with % — H, we can use the simple

29

. . . At . . . .
(linear) Kalman Equations to obtain the state update &, with associated covariance matrix update
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7 ([Gelb 74]):

A4 _ 14—
& = m (HkTRE}ka-l-(Wk) lﬁk), 12
’ 12
—1 _ N
™ = H{Rg Hp+(m,)™"

5.2 Shape Estimation

The second linear filter applies to the shape estimation, i.e. tracking the n control points of the
splines describing the contour of the moving vehicles. The state vector comprising the control
points is defined in Eqn 5. As a measurement vector we use the same Zj, (10) of Section 5.1. The
measurement function is identical to the state vector itself, so we have again simple linear update
equations:

1 _ N1 AT .

By = I (RZ,Z+(O;)7'5y), with 13)
-1 1 _—1

my - = = Tk

5.3 Initialization

A very important issue is the initialization of a tracker. The stability of the tracker depends from
the quality of the initialization data. In the case of a motion model with constant velocities, the
tracker can be initialized after the second appearance of an object. For that purpose initial values
for ug of an object according to the affine motion model are derived by discrete time derivatives of
the objects center locations C, in the first two frames. As an initial value for the scale parameter
s we set s = 0, since this parameter is usually very small;

u, = Cp—Cp (14)
s = 0 (15)

In order to identify segmented image patches from the motion segmentation step as projections
of the same object during the initialization frames (the motion segmentation step provides only
unique labels for an image patch in one frame and the label of the patch associated to the same
object might change in the next frame), we identify the label number of the image patch associated
to the same object in the next frame by finding the largest overlapping region of two patches in
subsequent frames. This is actually a simple nearest neighbor approach in the context of data
association for tracking ([Rao 92]).

5.4 Tracking Procedure

After the initialization step (usually after the second appearance of an object) we switch to the
tracking mode, where we use the predicted contour as a mask for finding sample points providing
a new contour as a measurement. The mask is the area defined by the predicted contour of the
object expanded by factor of about 5% in order to allow the contour to increase after a not optimal
initialization. The motion segmentation step is thus only necessary during the initialization, which
is usually performed for objects coming into the field of view and has therefore to be performed
only in the lower part of the image. Initialization is performed full automatically without any user
interference. The procedure is as follows:

1. Look for new blob labels that do not significantly overlap with the contour of an object
already to be tracked.

2. Analyze all new found labels.

12



3. Move a object after the second appearance from the initialization list into the tracking list.

4. Analyze all objects in the tracking list by handling different occlusion cases as described in
Section 6.

6 Occlusion Reasoning

We are interested in extracting tracks of moving vehicles. These tracks are obtained by connecting
the center of contours along the image sequence. Any contour distortion will therefore generate an
artificial shift in the trajectory. In order to avoid those artificial shifts and to get reasonable tracks
from the contours, we use an occlusion reasoning step.

An occlusion reasoning step is feasible if locations and extensions of other objects in the envi-
ronment are known. In the case of tracking multiple objects we have to analyze the objects in an
order according to their depth (distance to the camera), a common procedure in computer graphics
to remove hidden surfaces. The depth ordered objects define the order in which objects are able
to occlude each other. Our depth ordering procedure exploits the fact that the motion is assumed
to be constraint on the ground plane. To prove the correct performance of this procedure we first
assume that the z-axis of the camera is parallel to ground plane y. = —h, where h is the height
at which the camera is mounted above the road. The image coordinates for an object moving
on the ground plane are then (z/,7)T = (f%, f’z’—z)T = (% —fz—hc)T which states that the larger
the distance (the larger z.) the smaller the y component in the image. The same consideration
holds in a general case where the camera is rotated along an axis parallel to the ground plane by
an inclination angle o towards the ground plane. In this case we have to distinguish between the
camera coordinates T, = (¢, Ye, z.)” and the world coordinates €, = (Tw,Yw, 2w)’ (see Figure 6).
Let the ground plane be the x,,-2z,, plane. For the y component of the image coordinate we get

y = % = ftand. (16)

C

According to angles assigned in Figure 6 we find § = v — a with v = arctan % and finally

y' = ftan(arctan L a), (17)
Zw
which is a monotonic function for || arctan % —af| < § and thus proves the assumption that in the
case of a planar motion a depth ordering of the object can be obtained by simply considering their
y-coordinate in the image.

The occlusion reasoning step also improves robustness in cases which we call near occlusion.
These are cases where objects come very close to each other or where objects move very close next
to each other so that the contours of the object will interfere and the contour estimation process
will be confused by the presence of other object. Knowledge about the other contour provides now
the means to avoid image data from another object to be considered in the contour estimation of
the object under investigation. For that purpose we remove the image areas covered by all other
objects in the contour estimation mask?.

The occlusion reasoning procedure is as follows:

1. Sort the objects in the tracking list by their y-coordinate of the center of the predicted contour.

2A mask is a binary image which states at which locations in the (sub)image the pixels are allowed to contribute
to the contour estimation.

13
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Figure 6: The camera geometry to clarify the proof that a depth ordering of objects on a plane can be
determined by the y component of their image location.

2. Look for overlapping regions of the predicted contours and decide in the case of an overlapping
region — according to the y-position — if the object is occluded or if the object occludes
another object.

3. Analyze all objects in the tracking list by handling the different occlusion cases: In the
case that the object under investigation occludes another object, we remove the image area
associated of the other object in the contour estimation mask but keep the overlapping part;
in the case of the object under investigation being occluded by another object, we remove the
area associated of the other object and use the predicted contour in this region as the new
measurement to update the motion and shape parameters.

This process is illustrated in Figure 7 with an example in Figure 8.

7 Results with Real World Traffic Scenes

In order to validate our approach we conducted several experiments. Due to lack of space we
present here the result of tracking cars in two image sequences only. For both sequences we used
the following parameters: ¢ = 1.0 for first derivative of Gaussian for convolution; as threshold
for the spatial and temporal derivatives inside an image patch we used 7, = 2.0 and 7 = 20.0,
respectively. For the affine motion estimation we set:

30.0 0.0 0.0 3-107% 0.0 0.0
m=1| 0.0 30.0 00 |, Qi = 00 3-100% 0.0 (18)
0.0 0.0 30.0 0.0 0.0 1-10°8
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Contour of
Object 2

Contour of object 1

Serachmask for Searchmask for

object 1 —————= / object 2

Searchmask for contour points Searchmask for contour points
while analysing object 2 while analysing object 1 ... .

Figure 7: The upper figure shows the (filled) intersection polygon of convex polygons associated to two
objects. These dashed contours represent the search area for finding contour points and is about
5% enlarged compared to the polygon describing the contour of the object in order to ensure
that also an expansion of the objects size is possible. The lower left image shows the final mask
for finding the contour of object 2 which is assumed to be occluded from object 1, since object
1 has a lower position. The lower right image shows the final mask for finding the contour of
object 1.

as an initial covariance for £ = (u,v,s), and process noise covariance, respectively. In the shape
estimation we assume independent measurement noise with v = 0.4 pixel for each vertex and a

start covariance with
10.0 --- 0.0

Mo=1| = + |, (19)
0.0 --- 10.0
As a process noise for each vertex we set w = 0.001. The number of control vertices was always set

to n, = 12.
As a first experiment we evaluated an image sequence of 84 frames recorded from an overpass
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Figure 8: In order to elucidate the occlusion reasoning in detail we generated an artificial occlusion in an
image sequence. The occlusion is represented by a grey square. The upper image shows the
(artificial) occluding object by dashed lines. The occluding contour is shown in thick lines, while
the contour estimate of the object to be tracked is shown by thin lines. The vectors represent
the trajectory of the object. The lower left image shows the same lines overlayed in the image
including the occlusion while the lower right image shows the lines overlayed to the original image
without occlusion in order to compare the result.

of a divided 4 lane freeway. The left columns of Figure 9 and Figure 10 show a few images of
the sequence with the overlayed contour estimates of the cars. The right columns of Figure 9 and
Figure 10 show the contour estimates with the tracks. In this image sequence we have some near
occlusion and a partial occlusion. The contour estimate in the upper left part of the image captures
two cars. This is due to the fact that the images of these cars are already overlapping from the
start of the image sequence. Initialization should only be done in the lower part of the image where
there is a low probability of an occlusion.

The second image sequence captures a similar scene of about 96 frames with a divided 4 lane
freeway, going slightly uphill. This sequence is also recorded from an overpass but with a slightly
different view angle. The left columns of Figure 11 and Figure 12 show again some intermediate
images of the sequence with the overlayed contour estimates. The right columns of Figure 11 an
Figure 12 show the contour estimates with the tracks. Due to a slightly different view angle and
less traffic we have only near occlusions.
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Frame #20

IR

Frame #40

Figure 9: The left column shows frame #0, #20, and #40 of the image sequence with the overlayed
overlayed contour estimates of the cars. The right column shows the contour estimates with
their tracks, starting from frame #0.
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Frame #60

Figure 10: The same like Figure 9 for frame #60 and #380.
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Frame #40

Figure 11: The left column shows frame #0, #20, and #40 of the image sequence with the overlayed
overlayed contour estimates of the cars. The right column shows the contour estimates with
their tracks, starting from frame #0.
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Frame #60
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Frame #80

Figure 12: The same like Figure 11 for frame #60 and #80.
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8 Conclusion

In this paper we addressed the problem of traffic surveillance in an Advanced Transportation
Management System (ATMS). We propose a machine vision based surveillance system. For that
purpose we designed a system for robust detection and tracking of multiple vehicles in road traffic
scenes. The system provides tracks and shape description of vehicles which are suitable for further
evaluation with symbolic reasoning in a traffic surveillance system. As is typical for a surveillance
system, the recording camera is assumed to be stationary, mounted, i.e., on a bridge or a pole beside
the road, in order to cover a large field of view and to reduce occlusions of vehicles. Running on a
Sun SparcStation 10, the performance reaches about 5 seconds per frame for simultaneously tracking
of about 10 vehicles (this is including reading images from disc and producing graphical output).
A (near) real-time implementation on a special hardware using C-40 Digital Signal Processors is
under investigation.

Reliable trajectories of vehicles in a highly cluttered environment such as in highway scenes
with heavy traffic are obtained by considering an occlusion reasoning step. The new contribution
of this work consists of an occlusion reasoning step which solves the problem of data association
for a multitarget tracking application exploiting a priori knowledge about constraint motion: the
assumption of moving objects on a flat road allows to compute a depth order of the image regions
associated to the moving objects. According to the depth order we know which object can occlude
other objects. Since the occlusion reasoning step is performed on slightly enlarged areas representing
the image of a moving vehicle, this procedure also improves the shape estimation while tracking
adjacent vehicles in the image (where the contour estimation might be corrupted by the presence
of the other object).

In order to get robust results and reduced noise sensitivity, we exploit a certain amount of a
priori knowledge about the objects and the motion: the objects are assumed to be well describable
by convex contours and the motion is expected to be predominantly translational on a plane. We
describe the contour by a closed cubic spline (known as snakes) and use an affine motion model
for the innovation of the contour. The tracker is based on two simple Kalman Filters, estimating
the affine motion parameters and the control points of the closed spline contour of the vehicles.
As measurements we take the control points of a spline contour approximating a convex polygon,
obtained by greyvalue and motion boundaries.

The initialization of the tracker is performed by a kind of image differencing between a contin-
uously updated background image and a newly acquired image. Update of the background image
is based on the motion estimate. Trajectories of the moving vehicles are derived from the motion
of the center of the control points of the closed spline contour. In the case of a partial occlusion,
the center of the control points does not provide a reliable feature for the trajectory of an object,
since the contour will be corrupted by wrong contour measurements. We solve this problem by an
explicit occlusion reasoning step. Occlusion detection is performed by detecting overlapping regions
enclosed by a closed spline contour. Overlapping areas are then specifically analyzed in the motion
and shape estimation dependent on the type of occlusion: the object can be occluded by another
object, or the object can occlude another object. Since the recording cameras are assumed to be
mounted high above the road, we do not expect any total occlusion. But this approach should
also be able to track vehicles during total occlusion without any additional recovering step with
a linkage of the trajectories after reappearance of the vehicle. Appropriate experiments are under
investigation.

We have demonstrated and validated the concept of vision based road surveillance system of
the next generation. These surveillance systems provide much more accurate and reliable results
than systems currently available. We are currently moving the implementation of the prototype
(running on a single Sun SparcStation) to a heterogeneous system consisting of a Sun SparcStation
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as a host and special purpose hardware. We do not expect this system to run in real-time, but we
gain a better experimental set-up to perform a large quantity of experiments and to design some
concepts to improve the performance. A second advantage will be that we gain some experience
in implementations on multi-processor system which allows to move this implementation easily on
upcoming multi-processor system which are supposed to be much faster. We expect that a full
real-time system can be obtained with multi-processor systems of the next generation. At this
stage field experiments are possible.
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A Appendix

A.1 Convex Hull of Points in a Pixmap

As opposed to finding the convex hull of general points in two dimensions we can exploit the fact
that points in a pixmap are already sorted by x and y coordinates. We can therefore devise an
algorithm which is much simpler than one in the general case (cf. Figure 13). We start from the
first scanline and look for the leftmost and rightmost point in each scanline. Let p;—» = (z;—2, ¥i—2)
and p;—, = (x;—1,¥i—1) be the latest two points associated to the convex hull and let the selected
leftmost /rightmost point of the current scanline be p; = (z;,¥;). Then remove p;_, as a vertex of
the convex hull, if

< 0 for p; on the left side
Di { >0 for p; on the right side (20)
with
Ti—2 Yi-2 1
Di=|zi1 yi1 1], (21)

z; yi 1

which actually determines the orientation of the three points ([Preparata & Shamos 85]).

A.2 B-Spline Approximation of Convex Polygons

The contour of a moving object is provided by the convex hull enclosing all candidate contour
points inside the object’s mask. This convex hull is represented by the vertices of the associated
convex polygon. Since the number of these vertices can change along the image sequence while
the object may move and change its scale and shape, the vertices do not provide an appropriate
set of features to track. For this reason we represent the tracking contour by a closed cubic spline
approximation to the convex polygons. Splines can be represented by fixed number of so-called
control points which define the shape of the spline contour.
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Figure 13: The upper left figure (a) shows the leftmost pixel p; and the rightmost pixel q; of a scanline
with the last two pixels associated to the left side of the convex polygon: p;_2 and p;—;. The
right figure (b) shows the two cases for p; giving D; a positive value (clockwise order of the
points — full line) or a negative value (counterclockwise order of the points in the triangle —
dashed line). The lower figure (c) shows the final convex polygon.

A uniform B-Spline of degree k (which is order k — 1) represented by M control points can be
written as ([Bartels et al. 87]):

M-1 M-1
Q) = ( e ) — Y ViBtw) = 3 ( 4 )B]’-“(u), 0<u<M-1  (22)
i=0 =0 J

The B;“(u) are shifted copies of the so-called Blending-functions {bf(t),---,b%_;(t)} with0 <¢ < 1.
They make sure that the support of each span is only along k£ subsequent control points:

bfnuf.t for j<int(u)<j+k
Bf<u>={0t<> 0t sy (23)

with t = w —int(u), 0 < ¢t < 1. int(u) is the integer value of parameter u. For cubic splines (k = 4)
we find (see e.g. [Bartels et al. 87)):

1
4 _ 1.3
b(e) = ot

1
bi(t) = E(1+:’>t+3t2—31&3)
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1
by(t) = s(4- 6t2 — 3t3)

1
bi(t) = g(1—38t+ 3t2 — t3)

(24)

The curve parameter u generates the spline contour as it runs from 0 to M — 1. For closed
contours we find:

Q(0) = Q(M —1). (25)
For a B-Spline of degree k& a span of the curve is defined for each k& subsequent control points
{V;, Vj41, -+, Vjyr—1}. The convention is that each span is obtained by varying the curve param-

eter u from one integer value to the next integer value, e.g. the first span ranges from 0 < u < 1.
For an open spline curve we obtain M + 1 — k spans whereas we obtain M spans for a closed spline,
since the control points are used cyclic to generate the curve (Vp_,1; = Vj).

Our task is now to fit a B-Spline curve with M control points {V;};o,... m—1 to P sample points
{P}i=o,...,p—1. The sample points are not the vertices of our polygon but equidistant points along
each segment of the polygon. In this way we do not approximate a spline to the vertices but to the
polygon defined by the vertices. Next have to parameterize the spline curve in an appropriate way
in order to associate a certain location on the curve to each sample point. We follow the approach
in [Bartels et al. 87] for fitting an open spline to sample points and denote the parameter associated
to sample point P; as 1; and use the following parameterization, which is better than using simple
uniform splines (equidistant ;)3:

G = 0
P, - P; Pl
Giy1 = ai+Mw, with  §= > |P;i— Pl (26)
=1

As an objective function to minimize we define the following residual error as the sum of
distances between the sample points and the spline curve (the coordinates of the control points are
V; = (X;,Y;)T and the coordinates of the sample points are P; = (z;,y;)7):

P-1
R = Y Q) - Pyl

=0
P-1 M-1 2

= S|V (BE@:) + BEoy(@) + Y V;BE (@) - P (27)
i=0 ||j=0 j=3
P—-1|M-1 . 2

= Vj f(az) - P;
i=0 || j=0

with . .

- B¥(4;) + BY, 5s(4;)  for 0<;5<2

B (i) = g\ JHMA™ =J = 9
(%) { B*(w) else 2<j<M-1 (28)

which reflects the fact the support of a closed spline curve is cyclic in the control points as opposed

to splines with open ends.

3A correct distance measure would be to use the normal distance of P; to the spline curve. This results, however,
in a non-linear minimization method which is hard to solve.
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Differentiating (27) with respect to the control points yields the following linear system of
equations:

M—-1 (P-1

Z { f(ai)Bf(ai)}Xj - S B w) = 0,

i for 0<I<M-—-1  (29)
> { f(ﬁi)sz(ﬁi)}Yj - T wBl@) = o,

=0 =0

We can put Equation 29 in concise matrix equations by defining the following vectors and
matrices:

X = {Xj}’
Y = {Y},
C = {&} with §= Z%Bz
0<jl<M-1 (30)
D = {n} with n= Zysz Us),
I .
Si = Y By(a)Bf (),
=0 Y,
and we obtain the following matrix equations:
A-X-C = 0,
A'Y-D = 0, } (31)

which we solve using a LU decomposition ([Press et al. 86]).
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