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Robust and Efficient Detection
of Salient Convex Groups

David W. Jacobs

Abstract—This paper describes an algorithm that robustly locates salient convex collections of line segments in an image. The
algorithm is guaranteed to find all convex sets of line segments in which the length of the gaps between segments is smaller than
some fixed proportion of the total length of the lines. This enables the algorithm to find convex groups whose contours are partially
occluded or missing due to noise. We give an expected case analysis of the algorithm’s performance. This demonstrates that salient
convexity is unlikely to occur at random, and hence is a strong clue that grouped line segments reflect underlying structure in the
scene. We also show that our algorithm’s run time is O(n’log() + nm), when we wish to find the m most salient groups in an image
with z line segments. We support this analysis with experiments on real data, and demonstrate the grouping system as part of a

complete recognition system.

Index Terms—Grouping, perceptual organization, convexity, proximity, nonaccidental properties, robust, efficiency, recognition.

1 INTRODUCTION

N this paper, we consider grouping (or perceptual organiza-

tion) as a bottom-up process that clusters image features
into higher level organizations, each likely to come from a
single object. Two significant questions arise in grouping.
First, which features should we cluster together? Second,
how can we locate these clusters efficiently? We approach
the first problem by looking for nonaccidental properties. In
this approach, we group together features that have some
property that is frequently shared by features originating in
a single object, but that is unlikely to arise at random. In
particular, we consider convexity, which is a common char-
acteristic of object parts and object faces. We show that con-
vex sets of line segments with relatively small gaps rarely
occur at random. We then show that this contributes to a
solution to the second problem; the very fact that these
groups are rare enables us to find them efficiently.

It has long been recognized that grouping is a difficult
problem, which perhaps explains its relative neglect. Marr
[41] said: '

The figure-ground “problem” may not be a single problem, be-
ing instead a mixture of several subproblems which combine to
achieve figural separation, just as the different molecular inter-
actions combine to cause a protein to fold. There is in fact no
reason why a solution to the figure-ground problem should be
derivable from a single underlying theory.

Marr recommended focusing on problems that have a
“clean underlying theory,” instead. These more manageable
problems included shape-from-shading, edge detection,
and object representation. More recently, Huang [23] has
stated:
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Everyone in computer vision knows that segmentation is of the
utmost importance. We do not see many results published not be-
cause we do not work on it but because it is such a difficult prob-
lem that it is hard to get any good results worthy of publication.

While grouping has proven a difficult problem, it de-
serves attention because even partial progress can be quite
valuable. For example, a grouping system can focus and
improve a search for an object by a recognition system by
collecting together features that are more likely to come
from a single object than are a random collection of fea-
tures. Many recognition systems now exploit simple
grouping techniques. By extending our understanding of
grouping, we extend the domain in which recognition is
feasible. Also, groups of features are more distinctive than
individual features, and are more readily matched between
images. Hence, grouping can help in solving the correspon-
dence problem in stereo or motion.

One approach to perceptual organization is to identify
common properties of image groups that originate in a sin-
gle object or process, and that occur relatively infrequently
in groups generated by a random process. We describe the
past work that has developed this approach in Section 2. In
this paper we combine proximity and convexity as group-
ing clues, forming what we call salient, convex groups. We
present an algorithm that finds all collections of convex line
segments where the length of the line segments accounts
for at least some fixed proportion of the length of their con-
vex hull. The salience of a group is therefore measured by
the percentage of the convex boundary that is identified as
a brightness discontinuity. By taking account of the gap
between the end of the group and its beginning, this sali-
ence measures also has the effect of enforcing a closure con-
straint on the groups that it finds. We show that a random
process is unlikely to produce such groups. At the same
time, salient convex groups can be very useful in domains
in which objects frequently have convex faces or parts. And
in such domains, salient convexity will be a strong clue that
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a group of lines originate in a convex part of a single object,
as we will discuss.

We present an algorithm for finding salient convex
groups that has several desirable qualities. First, the algo-
rithm is simple and we demonstrate that it is efficient, on
average. Second the algorithm is robust to noise and occlu-
sion because it allows for gaps to appear in groups. Third
the algorithm is robust to clutter, because it finds all image
groups that meet a simple test of salience. Since salience is
measured by the overall properties of a group, the presence
of extraneous lines cannot divert the system into connecting
lines that appear good locally, but do not lead to groups
with strong overall salience. :

In addition, we determine analytically and experimen-
tally the likelihood of salient convexity occurring by
chance. For realistic situations this likelihood is low. Conse-
quently, for images of a wide variety of objects, the group-
ing system we describe will reliably find groups that come
from a single object, while producing groups unlikely to be
due to a random process.

Our analysis and experiments on real data also show
that precisely because salient convex groups are unlikely to
occur at random, they can be found efficiently using a sim-
ple, backtracking search. We show that the expected time
required to find the m most salient convex groups in an im-
age containing n line segments is o’ log(n) + mn). This
leads to a grouping algorithm that is efficient and robust in
practice. We demonstrate this by showing the performance
of the algorithm on a number of real images. We also show
a sample application of the algorithm to object recognition.

2 RELATIONTO PAST WORK

We will emphasize three aspects of past work on perceptual
organization. First, we describe previous uses of nonacci-
dental properties as grouping clues. We describe how our
current work derives from and differs from these ap-
proaches. Second, we consider past efforts at making
grouping systems efficient. Third, we describe the role that
convexity has played in a variety of approaches to image
understanding.

The use of nonaccidental properties in grouping has
been developed theoretically by Witkin and Tenenbaum
[58], Binford [5], Kanade [32], Lowe [38], and Richards and
Jepson [49]. These authors argue that the visual system is
sensitive to properties commonly produced by a single ob-
ject or process, and rarely occurring at random. They show
how this approach can explain a number of well-known
Gestalt grouping phenomena, including grouping due to
symmetry, parallelism, smooth continuation, and proximity
(see Kohler [35] for a discussion of the Gestalt work. For
more recent consideration of these ideas, see Kubovy and
Pomerantz [37]).

Lowe in particular has contributed to this approach by
showing how to derive probability distributions that reflect
the strength'of grouping clues. Lowe, for example, shows
that parallel image lines are relatively likely to come from a
single object. This derivation assumes that objects tend to
contain parallel lines, and that lines coming from different
objects have random relative orientations. One must allow

for noise in detecting these properties, and so, for example,
nearly parallel lines are grouped together in Lowe’s system.
The presence of noise, however, implies that nonaccidental
properties like parallelism indicate that a grouping is likely,
but not certain, to be correct. Because these types of clues
are probabilistic, one expects to achieve better performance
by combining many clues together, and this seems to be the
experience of many researchers (Lowe [38], Jacobs [26],
Shashua and Ullman [53], Denasi et al. [13], Sarkar and
Boyer [50], Mohan and Nevatia [42], [43], Williams [57], and
Nitzburg and Mumford [44]). For additional computational
work that uses Gestalt grouping clues, see Reynolds and
Beveridge [48], Parent and Zucker [45], and Trytten and
Tuceryan [55]. .

Lowe [38] also stressed the importance of grouping to ob-
ject recognition. He pointed out that by grouping together
features that are likely to have been all produced by a single
object, one can intelligently order one’s search for that object.
Others have also explicitly used grouping, or the formation of
more complex features, to speed up recognition systems
(Jacobs [25], ]26], Califano and Mohan [8], Clemens [10], Sy- -
eda-Mahmood [54], Burns .and Riseman [7], Huttenlocher
and Wayner [24], and Wayner [56]). The interaction be-
fween grouping and the computational complexity of rec-
ognition is treated more theoretically by Grimson [17] and
Clemens and Jacobs [11]. ' ;

Most past work on contour grouping has focused on
using a small set of properties identified by Gestalt psy-
chologists: proximity, symmetry, parallelism, collinearity
and smooth continuation (although Williams [57] has ex-
plored the role of topological constraints in grouping). Work
in computer vision has stressed that there is zero probabil-
ity that a perfect instance of any of these properties will
occur as a result of some appropriate, uniformly distributed
random process. For example, lines positioned by a uniform
random distribution have zero probability of being parallel,
or having a common end point. Convexity differs from
these properties in that lines positioned with a uniform
random distribution have a non-zero likelihood of being
convex. As we will show, convexity provides only some
probabilistic information about the correctness of a group.
Since in practice, nonaccidental properties also provide only
probabilistic grouping information, the difference is one of
degree rather than kind.

Computational efficiency is a second important issue in
perceptual grouping. Approaches have spanned a wide
spectrum from efficiently computing simple local relation-
ships between image features to more complex algorithms
that attempt to integrate more global image information.

Lowe’s system, SCERPO, provides an example of simple
and efficient computation of pairwise relationships. It
groups together pairs of lines that are parallel, collinear, or
nearby. SCERPO then forms larger groups by finding chains
of features connected by these pairwise relations. The sys-
tem has low complexity, but the decision about what lines
to group together rests essentially on the relationship be-
tween just two lines. As another example, Cox, Rehg, and’
Hingorani [12] describe a system that uses a Bayesian ap-
proach to finding smooth curves, based on ideas from tar-
get tracking. This method makes smdothness decisions
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based on the recent history of a curve. Huttenlocher and
Wayner [24] also use local relationships in forming convex
groups. They begin with each side of each line segment as a
convex group, and then extend a group by adding the near-
est neighbor that will preserve its convexity. By only mak-
ing the best local extension to each group, they guarantee
that the output will be linear in the size of the input, and
they produce an efficient algorithm. This can, however,
make their algorithm sensitive to small local perturbations
in the image.

Other approaches have attempted to efficiently integrate
more global information into grouping. For example, a hier-
archical approach can be used that makes local decisions at a
variety of scales, allowing for the integration of information
from more spatially separated parts of the image. Boldt,
Weiss, and Riseman [6] take this approach in detecting collin-
ear groups, while Dolan and Riseman [14] and Saund [51]
apply hierarchical methods to cocircularity detection. Mohan
and Nevatia [43] integrate several gestalt grouping clues,
using a hierarchical algorithm. Mahoney [40] uses parallel
processing to gain efficiency in an algorithm that extracts
smooth, connected curves. Other researchers have used
methods such as convolution or relaxation to integrate
smoothness information (Zucker [60], Finkel and Sajda [16],
Heitger and Van der Heydt [19], Hérault and Horaud [20],
and Guy and Medioni [18]). Other network approaches in-
clude Hopfield nets (Mohan and Nevatia [42]) and Bayes nets
(Sarkar and Boyer [50]). Typically these systems are not able
to formulate and then optimize a simple measure of the value
of a group. Rather, clever methods are used to find groups
that bear a strong, though heuristic relationship to some
clearly desirable grouping criteria, or heuristic optimization
techniques such as gradient descent are used.

In contrast, Shashua and Ullman [53] find the image
curve that will explicitly optimize a cost function based on
the total curvature and number and size of gaps in a curve.
This is computed using dynamic programming, in a net-
work. The system requires O(N kn”) computation, where the
image is of size n’, the system represents k discrete orienta-~
tions at each pixel (k = 16 in their experiments), and the
system finds a curve of length N. From this, they can extract
the most salient curve in the image. In related work, Hu,
Sakoda, and Pavlidis [22], and Alter [1] use shortest path
algorithms to find globally optimal curves.

Our system differs from these approaches in that we find
all groups that satisfy a global grouping criteria. For exam-
ple, our salience criteria is scale independent, unlike the
cost functions of the above systems. It appears to be diffi-
cult to optimize interesting scale-indepenident cost func-
tions with dynamic programming. Alter {1} contains a dis-
cussion of this problem, and of other limitations of Shashua
and Ullman’s system.

Third, we point out that convexity and closure are sig-
nificant cues in human and machine vision. Elder and
Zucker [15] and Kovacs and Julesz [36] provide evidence
that closure plays a significant role in human perceptual
organization, and this cue has been used in the grouping
systems of Mohan and Nevatia [43] and Zerroug and Ne-
vatia [59].

Kanisza and Gerbino [33] have shown that convexity can
play a strong role in human judgements of figure and back-
ground, stronger, in fact, than symmetry. Kellman and
Shipley [34] also discuss the significance of inflexion points
in perceptual organization, which is related to the convexity
of connections. Jacobs [25], [26] presents an analysis of con-
vexity and proximity as grouping clues that is in many
ways complementary to the one presented here. That work
considers the effectiveness of these cues in grouping pairs
of already formed convex sets of edges. The work described
here is more robust and practical, because it provides a
method of finding convex chains of line segments in the
presence of noise. However, the previous work provides a
more thorough analysis of proximity as a grouping clue,
and treats the orientations of groups of lines in general, not
just orientations that are mutually convex. Kalvin et al. [34]
describes a 2D recognition system that uses convex curves
to index into a library of objects, for recognition. Jacobs [25],
[26] also describes a system that combined several convex
portions of the image to find enough information to index
into a library of objects. This system demonstrated that
grouping using convex parts could speed up recognition by
a factor of several hundred to a thousand. Based on the
work in Jacobs [25], [26], Huttenlocher and Wayner [24],
and Wayner [56] use convexity as a grouping method, fol-
lowed by an indexing method of object recognition. Basri
and Jacobs [2] describes a recognition method that depends
explicitly on matching convex regions of images to convex
components of objects.

A variety of authors have proposed more general ap-
proaches to recognition that rely on finding the parts of ob-
jects. Hoffman and Richards [21], for example, suggest di-
viding objects into parts at concave discontinuities. And
Biederman [4] suggests performing recognition using the
invariant qualities of an object’s parts and their relations.
These parts tend to be convex. In fact, in implementing a
version of Biederman’s work, Bergevin and Levine [3] rely
on convexity to find the parts of an object.

Convexity may be useful for other types of matching
problems, such as motion analysis or stereo. Mohan and
Nevatia [42], for example, perform stereo matching be-
tween groups of line segments that form partial parallelo-
grams in each image. This reduces the combinatorics of
matching. Sawhney [52] uses convexity and proximity as
clues for forming groups to track in motion sequences. Such
structure is likely to come from a single object face, which is
necessary to the tracking method used.

To summarize, the novelty of the work presented here
lies in three areas. First, we present a concrete derivation
that shows how to interpret convexity within the frame-
work of nonaccidental properties. Second, we present a new
approach to efficiently implementing grouping methods.
The efficiency of our approach comes not from making local
grouping decisions, but from the fact that our grouping
criteria are unlikely to be met by random groups. Third, we
present a robust tool that may be of value in a number of
approaches to image understanding that require finding
convex regions of images.
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3 PRECISE STATEMENT OF THE PROBLEM

The system begins with line segments that we obtain by
running a Canny edge detector [9] (in the experiments
shown, ¢ = 2), and then using a split-and-merge algorithm
based on Horowitz and Pavlidis [46] to approximate the
edges to within three pixels, by straight lines.

We call a line segment “oriented” when one endpoint is
distinguished as the first endpoint. If J, is an oriented line
segment, then I, is its first endpoint, and [, is its second.
The image contains 7 line segments, and so it has 2n ori-
ented line segments. A set of oriented line segments is con-
vex if for each oriented line segment, all the other line seg-
ments are on the same side of the oriented line segment as
its normal, where we define the normal as lying to the right
when we traverse the line segment from the first endpoint
to the second.

Let 5, be a cycle of oriented line segments: (I, I, ... 1)
(i.e., [; follows 1,). We define L, to be the length of I, and we
define G, to be the distance (or gap between [, and J,
(where I ,is1,). We then let:

G, =G,
i=1

Ll,n = i Li’
i=1

We define the salience fraction of a convex group to be:
L

Ln

Ll,n + Gl,n

1,1

n+1

(see Fig. 1) and we say that S, is valid if and only if connect-
ing the line segments in sequence would create a convex
polygon with a salience fraction greater than some fixed
threshold, k.

J

2,1
|1,2

l1,1

Fig. 1. The thick lines represent the lines in a group. The thin lines
show the gaps between them. The salience fraction is the sum of the
length of the thick fines divided by the sum of the length of all the lines.

The output of this algorithm satisfies a simple, global cri-
terion. One way to think of the salience fraction is that if the
lines forming a group originally came from a closed convex
curve, the salience fraction tells us the maximum fraction of
the curve’s boundary which has been detected as image
edges. Previous approaches to convex grouping have either
grouped one line with another if it is the nearest, mutually
convex line ([26], [24]) or if it is within some preset distance
(152]). Because the salience threshold depends on the overall
structure of the group, our algorithm can bridge gaps whose
size is dependent on the overall group size, and hence is scale
independent. Furthermore, spurious lines near a group will
not prevent the algorithm from considering more distant
lines that lead to groups with a strong overall salience.

4 THE GROUPING ALGORITHM AND ITS COMPLEXITY

In this section we present an algorithm for finding these sali-
ent convex groups. We begin by describing a basic backtrack-
ing algorithm. We analyze this algorithm theoretically in or-
der to bound its expected run time and the expected size of
its output. We show that the actual results of running the al-
gorithm match our theoretical predictions. Both our experi-
ments and theoretical analysis indicate that the expected
running time of the algorithm will be O(n”log(n) + mn) when
we use a salience threshold designed to find m groups in an
image having 7 lines. Furthermore, our analysis demon-
strates that salient convexity can be a strong clue that a
configuration of lines did not occur at random.

Finally, we make some modifications to the basic algo-
rithm, which make it more robust, but which make com-
plexity analysis more difficult. Accordingly, we use experi-
ments to show that these modifications do not significantly
affect the algorithm'’s performance.

4.1 The Basic Algorithm

Our problem definition takes the form of \global constraints
on the groups of line segments we seek. To perform an ef-
fective backtracking search, we must convert these into lo-
cal constraints whenever possible. That is, we need con-
straints that determine whether a sequence of line segments
could possibly lead to a valid sequence, so that we may
prune our search.

We provide the following recursive definition of an ac-
ceptable sequence, assuming that S, is acceptable.

1) Any sequence of a singleton, oriented line segment is
acceptable.

2) S,,, is acceptable only if I, ¢ S, (i.e., no line may ap-
pear more than once in a group).

3) S,,, is acceptable only if the oriented line segments in
it are mutually convex. This will be the case if the sum
of the absolute values of the angles turned is 277 when
one travels from the first endpoint of the first line to
each additional endpoint in turn, returnlng finally to
the first endpoint.

4) S, is acceptable only if: G <Dl (1 = -Gy, This is

equivalent to stating that ‘L:TGT > k.

We prune all unacceptable sequences reached in our
search. It is not hard to see that enforcing these constraints
will not eliminate any correct groups, while guaranteeing
that the search produces only correct groups. We prove this
in [28].

To further reduce the run time of our algorithm we no-
tice that some values are reused many times in the course of
such a search, so we precompute these results and save
them in tables. In particular, we often wish to know
whether two oriented line segments are mutually convex,
and if they are we want to know the distance from the end
of one segment to the beginning of the other. It is also con-
venient to keep, for each oriented line segment, a list of all
other oriented line segments with which it is mutually con-
vex, sorted by the distance that separates them. Finally, we
precompute the angle that is turned when going from one
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oriented line segment to another. Calculating this informa-
tion takes O(n’ log(n)) time, because we must sort 2n lists
that can each contain up to 2n ~ 2 items.

We may now describe the backtracking search in more de-
tail, noting how these results are used. The search begins by
trying all oriented line segments in turn as singleton se-

(1-k
L‘(k—l -G From con~

quences. Given an S, we calculate i1
straint 4), we know that we only want to consider adding a
line, 1,,, when the distance from [, to ..., is less than or equal
to this quantity. Clearly we only want to add [, if it is mu-
tually convex with I, So we can find all candidates to add to
the sequence by referencing the precomputed list of line seg-
ments that are convex with /. Since these lines are sorted by
their distance from [, we may loop through them, stopping
once we reach line segments that are too distant to consider.
By limiting ourselves to these candidates, we have enforced
constraint 4). In addition, we check that [, is convex with [,
using our precomputed results.

We can then enforce constraint 3) by keeping a running
count of the angles turned as we traverse the line segments
in S, A table lookup will tell us the angles added to go from
I, to 1, and from [, to I,. Therefore, we can ensure that the
entire sequence is mutually convex by checking that the
absolute values of the angles turned in traversing it sum to
27. And constraint 2) is simply checked explicitly.

4.2 Complexity Analysis of the Basic Algorithm

We now analyze the performance of this algorithm on ran-
domly generated line segments. This analysis has two
goals. First, we wish to understand when salient convexity
is a useful grouping clue. By determining the expected
number of groups produced, as the salience threshold, k,
and the number of lines, n, vary, we obtain a basis for de-
termining the relative likelihood that a group was produced
by a scene structure, as opposed to a random process. This
analysis will lead us to a method for choosing k appropriate
to the input size, so as to produce manageable and useful
output. Second, we want to understand when the algorithm
will be fast. We also determine the algorithm’s expected run
time, and show that if we choose a salience fraction that
will produce a manageable sized output, then the system’s
expected run time will also be reasonable.

Fig. 2. A salient convex group may be formed by choosing any line
from each of the four sides.

In the worst case, the algorithm will be exponential in
both run time and in the size of its output, for any choice of
k. As a simple example of this, in Fig. 2 we show eight lines
formed into a squarish shape. Even for fairly high values of
k, we may form a salient convex group using either of the
two lines on each side of the square, for a total of 2! groups.
If we formed n-tuples of lines around an m sided convex

polygon we would have an output of at least m" groups. By
making the sides’ endpoints close together, we can ensure
that these groups are judged salient for any value of k less
than 1. And the work required by the system is at least
equal to the size of the output.

However, one way to understand the effectiveness of sa-
lient convexity as a nonaccidental property is to determine
the expected size of the output produced with random
data. We also find that performance on real data is well
predicted by this analysis, and so it provides a better un-
derstanding of the system’s typical performance. We need
first to choose a model of random image generation. We
have chosen a simple random model, for which we provide
a conservative estimate of our algorithm’s performance.

Perhaps the most generic possible model of random line
‘generation would be to assume that lines have lengths, an-
gles and positions chosen from independent uniform distri-
butions. If we assume that camera position is random, there
is no reason to expect any bias in line orientation or position
so uniform distributions on these variables are particularly
natural. Nonuniformity might, however, occur in line
length in natural settings. For example, if three-dimensional
lines were uniformly distributed in the world, one would"
tend to see more distant lines than nearby ones, and these
distant lines would appear shorter. Furthermore, the actual
distribution of line lengths we find in images will depend
on our methods of detecting edges and approximating
them with line segments. In the analysis that follows, we
will none-the-less assume that the image contains n line
segments with lengths uniformly distributed between 0 and
M, the maximum allowed length. But it is straightforward
to repeat the analysis for other distributions, and to see that
distributions that favor shorter lines will lead to results that
indicate that less work is required to find salient convex -
groups than our present analysis indicates.

We will simplify our analysis by assuming that the be-
ginning point of a new oriented line segment is uniformly
distributed within a circle of fixed radius, R = M, centered
at the second endpoint of the last oriented line segment in
the current sequence. This case is more tractable to analyze
than the assumption that lines are uniformly distributed
throughout the image, because through this new assump-
tion the position of each line becomes independent of the
structure of the previous lines in a group. This assumption
will cause us to conservatively estimate the work required
to find convex-groups, since randomly distributed lines are
closest together when distributed in a circle, leading to
more saliency.

We begin by examining the effectiveness of distance and
angle constraints in pruning our search. The distance con-
straint must be met by acceptable sequences to satisfy con-
dition 4, the angle constraints are required by condition 3.
Using these results, we compute the expected work and
output size of the search, assuming a particular value of k.
This allows us to see how we must adjust k as n grows to
keep the output size reasonable, and to see how work de-
pends on k, n, or the desired output size.
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4.2.1 The Distance Constraint

The probability that the distance constraint is met as we
add line 7 to a group is given by:

L.(1-k
Pr(Gi < -iLk——) - GLH)
We define:
L.1-k
= ’1_l(k__) -G
5 =1-G

and let h(r) and g(s) denote probability density functions
on v, and s, respectively. Note that:

=85, + KL,
where k’ = 125, We may recursively compute A(r,) and g(s,).

To initialize the recursion, we note that the density func-
tion of 1, is -, and the density:

h(r) h(k'l ) for 0<r < MK'".

kl /
We may then show that:

maxir. 2 2 N
" h(ﬂ)(; - *i—‘}d%

g<si) ds

Hra) = L( 0 (k1)) MK

and

(see [28] for details). In fact, this integral is a bit of a simpli-
fication, because in deriving it we do not take account of
the fact that r, may never be bigger than R. If we ignore this
effect, we are slightly exaggerating the likelihood of an ad-
ditional line meeting the distance constraint, and hence
overestimating the work that the system performs.

The distance constraint is met provided that 1, falls some-
where in a circle of radius 7,. This occurs with probability:

2
Pr( <r ) J.OR h(ri_l)%—zl dr._,

which we may ¢ompute after computing h(r,).

’zz

(i-1),2"1,1

4.2.2 The Angle Constraint

There are two parts to our treatment of the angle constraint.
First, we consider the probability that a line that passes the
distance constraint will be locally convex with just the previ-
ous line. When a line, /, passes the distance constraint, we
know that [,, will be uniformly distributed in a circle about I_
12 The location of [, in this circle is constrained to lie in a
wedge (see Fig.3), and so the probability of this occurring
depends only on the angle of the wedge. If we define 4, to be
the angle of line /, relative to the x axis, then the angle of the
wedge is 4,—a, , provided that 4, — ., < 7, and otherwise is 27
- (4, — a.,). The probability of I, being compatible with I, is
just the angle of this wedge divided by 27. Integrating over
all angles, we find that there is a probab1hty of + that the
lines will be compatible.

Fig. 3. The dashed circular wedge shows where I,, must lie in order to
satisfy the distance and convexity constraints.

We must also consider the probability that a sequence of i
lines will be mutually convex. We derive a density function on
the sum of the angles that will be turned as we go from one line
to the next, and determine the probability that this sum is less
than 2z This is a necessary, though not a sufficient condition on
convexity. The density function for each such angle is-inde-
pendent of the others and of the distance between the lines. So
we need only consider the density on one of these changes of
angle, and then convolve this density with itself i times to find
the density of the sum of i such angles. -

The angle of one line relative to the previous one is uni-
formly distributed between 0 and 27. We need then derive a
density function for the difference between the angle of one
line and the next one in a group, given that the new line is
convex with respect to the previous one. If we let f be this
probability density function, we have:

a8y

fla,—a_)= {2;1( 0s))

(again, this is derived in [28]).

ifg,—a_, <7

ifa-a_ >n

4.2.3 Expected Work of the Algorithm

As we have stated, there is a fixed overhead of O(1* log(n))
work. We will now determine the expected number of
nodes our algorithm searches. We sum over all 7 the amount
of work that must be done when we consider extending
each group of i lines by an additional line. We must con-
sider two orientations for each line segment, so there are
2n(2n — 2) ... (2n — 2i + 2) possible ordered sequences of i
line segments. Let &, be the probability that the ith line will
pass the distance constraint, given that the previous lines
have, and let A, be the probability that a group of otherwise -
compatible lines will have angles that sum to less than 2.
Then the expected number of groups of size i that we must
consider, which we will call E, is:

1 i-1
E, = A,2n(2n - 2)...(2n - 2i + 2)5, ...5,{1}

where E, = 2n.

For each group with i lines that we reach, there are poten-
tially 2n — 2i lines that we must consider adding to the
group. However, -our preprocessing has sorted these lines,
so that we only need to consider the ones that meet the dis-
tance constraints and that are convex with the last line in
our group. We call the expected number of possible exten-
sions to a group of size 7, X, and:
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TABLE 1 )
THiS TABLE SHOWS THE EXPECTED NUMBER OF SEARCH STEPS REQUIRED TO FIND CONVEX GROUPS
Expected Work
Number ) k
oflines | .6 .65 7 .75 .8 .85 .9
200 1.99 x 10" | 2,270,000 | 346,000 65,800 15,100 4,280 1,650
300 582x10° | 4.14x 10" | 4,200,000 | 561,000 93,200 19,000 5,200
400 8.73x10° | 4.23x10° | 3.04 x10" | 3,020,000 [ 386,000 61,000 12,700
500 853x10° | 3.05x10° [ 1.62x10° | 1.24x10" | 1,260,000 | 162,000 26,800
700 345 10" | 8.09x10" | 2.65x10° | 1.29 x 10° | 8,830,000 | 791,000 90,700
1000 225 x 10" | 3.76 x10° | 7.54x10" | 2.11x10° | 8.77x10" | 5,060,000 | 378,000
TABLE 2

THIS TABLE IS AN ADJUNCT TO TABLE 1. IT SHOWS THE EXPECTED NUMBER OF NODES EXPLORED
IN THE SEARCH TREE DIVIDED BY THE NUMBER OF STEPS
IN A PREPROCESSING PHASE

Ratio of search to preprocessing

Number k

of lines | .6 .65 7 .75 .8 .85 9
200 14.4 1.65 .25 .048 .011 .003 .001
300 175 12.5 1.26 169 .028 .006 .002
400 1,410 68.6 4.92 .489 .063 .010 .002
500 8,560 306 16.3 1.25 127 .016 .003
700 168,000 3,950 130 6.28 431 .039 .004
1000 5,140,000 [ 85,800 1,720 48.2 2.00 .115 .009

TABLE 3
THIS TABLE SHOWS THE ACTUAL NUMBER OF NODES IN THE SEARCH TREE THAT WERE EXPLORED WHEN FINDING
CONVEX GROUPS IN RANDOMLY GENERATED IMAGES. THE LENGTHS OF THE LINES WERE: GENERATED FROM A UNIFORM
DISTRIBUTION FROM ZERO TO HALF THE WIDTH OF THE IMAGE. THE POINTS WERE THEN RANDOMLY LOCATED IN A SQUARE IMAGE

Actual work for random lines
Number k
oflines | .6 .65 7 .75 .8 .85 .9
200 347,000 112,000 31,300 8,590 2,270 601 123
300 3,120,000 892,000 208,000 45,600 8,760 1,670 306
400 17,400,000 | 4,970,000 | 1,130,000 | 172,000 | 27,000 4,050 692

1 .
X = Z(Zn ~20)5,,,
Therefore, the total amount of work that we must per-
form in our search, W, is the number of possible extensions
to groups:

w,= Y EX,
i=1

This expression shows that asymptotically, the expected
amount of work is exponential in n. We will show, however,
that run time is polynomial in the output size. To predict at
what point the computation will become unmanageable,
we also compute the expected amount of work for a variety
of realistic situations (further details of the computation are
given in [28]).

Table 1 shows the expected work of the system as n and k
vary. Table 2 shows the amount of work of the system di-
vided by (2n)’log(2n). This tells us roughly the proportion
of the system’s work that is spent in search, as opposed to
fixed overhead, although one step of overhead is not di-
rectly comparable to one step of search. We see that even
though the search is asymptotically exponential in n, for
fixed k, this exponential growth does not dominate the sys-
tem’s performance in many realistic situations.

Later, we compare this to the results of the full system on
real data. For now, we compare this theoretically derived
estimate of the system’s work to simulations on random

data. This determines the effect of two approximations
made in our analysis. First, we assumed that the end point
of one line is uniformly distributed in a circle about the end
point of a previous line. However, in simulation, lines will
be uniformly distributed in a fixed image. Second, -our
analysis did not apply the full convexity constraints, be-
cause it does not consider whether a newly added line is
convex with the first line in our group. We expect that these
approximations should make our analysis conservative,
overestimating the work required. )

In this test we generate collections of random line seg-
ments in a square. Lines have uniformly distributed angles
and a length chosen from a uniform distribution between 0
and half the width of the square. We draw the location of
the line from a uniform distribution, assuming that the line
is completely inside the image. Table 3 shows the results of
these experiments for various combinations of values of k
and n.

Comparing these results with Table 1 shows that our
analysis overestimates the amount of work required by the
system. Since we are overestimating the constants in an
exponential series, we expect the overestimate to be more
severe in situations where the higher order terms of our
series come into play. This occurs as k shrinks and as n
grows (i.e., when the number of larger groups considered
becomes substantial). This is supported by the data. When
our analysis predicts that only a few thousand nodes will
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TABLE 4
THIS TABLE SHOWS THE EXPECTED NUMBER OF SALIENT CONVEX GROUPS THAT QUR ALGORITHM PRODUCES

Expected number of groups produced

Number k

of lines .6 .65 N4 75 .8 .85 9
200 51,400 5,850 885 166 36.3 8.75 2.09
300 996,000 70,600 7,120 946 154 28.8 5.62
400 1.12x 10" | 539,000 38,600 3,820 484 72.8 11.8
500 8.69 x 10" | 3,100,000 | 165,000 12,500 1,270 158 21.7
700 2.50 x 10° 5.86 x 10/ 1,920,000 | 92,800 6,340 561 57.8
1000 1.14x 10" | 1.90x10° | 3.80x10" [ 1,060,000 | 44,100 | 2,530 [ 179

TABLE 5

THE ACTUAL NUMBER OF SALIENT GROUPS THAT WERE FOUND IN IMAGES OF RANDOMLY GENERATED LINE SEGMENTS

Actual number groups for random lines
Number k
oflines | .6 .65 7 .75 .8 .85 | .9
200 7,500 2,580 782 234 70 15 | 5
300 45,800 13,800 | 3,540 867 159 32 |5
400 189,000 | 55,500 | 13,300 {2,300 {392 [58 |6

be searched, we find that our analysis has overestimated
the required work by about a factor of 10. This gap widens
to the point where, when millions of search nodes are ex-
pected, this is actually an overestimate by about a factor of
40. Considering that we are predicting the behavior of an
exponential process, this seems like a good (albeit conser-
vative) analysis. It is sufficiently accurate to provide us with
a good idea of the circumstances under which our run time
will be dominated by preprocessing.

4.2.4 Expected Size of the Output

It is also important to determine the size of the output of
our algorithm. First it will help us to assess the significance of
salient convexity as a grouping clue. Second, if we can predict
the size of the output ahead of time, we can use this to decide
how high to set our salience threshold based on the number
of lines in the image to produce an output of the desired size.
Third, it will help us to see the extent to which the system’s
run time depends on the size of its output.

The expressions above for E, provide the expected num-
ber of groups of any particular length that we will encoun-
ter in our search. We could use this as a bound on the size
of the output, but this would be an oversimplification. Just
because a group is reached in our search does not mean it
will be accepted. When we reach a group of length 7 in our
search, we have yet to take account of the length of the ith
line, or the gap between the ith line and the first one. It is
difficult to determine the probability distribution of this

find using this method. Table 5 shows the number of
groups that we found in experiments with random line
segments. There is good agreement between these results.
Our analysis typically overestimates the size of the output
by about a factor of 2, except when the expected output is
quite large.

This result has two implications. First, it allows us to
identify those circumstances where salient convexity will
provide a strong clue that a group did not emerge from a
random process. As a simple example of this, suppose we
expect an image of 300 lines to contain 20 convex groups
that come from convex objects (or parts) and that have a
salience threshold of .8 or more. Table 4 shows that we
would expect to find only 154 convex groups with this sali-
ence. This implies that we would have to examine only 174
groups output by our algorithm to find the 20 correct
groups. Without some grouping clue we might have to ex-
amine a vastly larger number of groups of lines before
finding some that originate in a single object. Obviously
salient convexity provides a powerful clue that a group -
originates with a single object in this example. If we can
choose k so that few random groups will be salient, but
some of the real structure of the scene will produce salient
convex groups, we will have a valuable grouping clue.

Second, we can use this result to determine how the asymp-
totic run time of the algorithm depends on the output size.
To see this, we consider a strategy in which we adjust k as
grows to maintain a constant sized output: Note that:

final gap, because it is dependent on the combination of i no 1

previous processes that built up the group. But we can ap- W, = 2 E; Z(zn —2i)8,,
proximate it very simply by assuming that the distribution i=1

of the relative position of the first and last lines in the group  And therefore:

is the same as that between any other two lines. Using this ‘ 2
approximation, the expected number of groups that the W, <2n0, + EX, <210, + n

system will produce is:

O 24 1+11

We sum for i from two up because groups of size one are never
salient unless the salience fraction is less than or equal to .5.
Table 4 shows the number of groups that we expect to

This tells us that, if we denote output size by 1, our search
is O(wm + n’), and total run time of the algorithm is
O(rlog(n) + nm). This confirms that the algorithm will be
efficient whenever the output is kept small. ;
This conclusion is based on derivations of W, and O, that
are bounds on the frue values. It is Concelvable that this
conclusion might not hold if there were a very tight bound
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TABLE 6
THIS IS THE NUMBER OF NODES EXPLORED (N THE SEARCH TREE FOR SOME REAL IMAGES. THE SECOND COLUMN INDICATES
WHETHER WE USED THE MODIFICATIONS TO THE ALGORITHM DESCRIBED IN THE TEXT TO MKE IT MORE ROBUST,
OR WHETHER WE USED JUST THE BASIC ALGORITHM

Actual work for real images
No. Alg. K
lines Type 6 .65 7 75 8 -85 9
183 basic 1,800,000 548,000 | 133,000 | 28,900 7,030 2,000 613
complete 284,000 166,000 | 75,000 | 37,000 | 15,400 6,710 2,470
265 basic 5,630,000 | 1,660,000 | 420,000 | 102,000 27,200 6,370 1,410
complete 496,000 288,000 | 136,000 | 55,300 | - 18,200 7,440 2,800
27 basic 816,000 | 193,000 | 47,000 9,740 1,590
complete 106,000 | 59,400 | 24,200 9,810 3,840
296 basic 7,200,000 | 1,820,000 | 429,000 93,300 16,300 3,350 946
complete 273,000 163,000 ) 89400 | 41,800 ] 14,800 6,170 2,900
375 basic 689,000 226,000 | 78,600 | 27,100 9,620 3,410 1,390
complete 201,000 104,000 | 54,600 | 31,300 | 18,500 9,610 3,610
450 basic 2,090,000 696,000 | 227,000 | 69,000 | 21,300 6,420 2,160
complete 295,000 163,000 | 92,500 | 48,400 | 24,800 | 11,400 4,440
461 basic 72,000 | 26,700 9,970 3,560 1,250
complete 105,000 ) 37,500 | 19,300 8,200 3,130
TABLE 7

THis TABLE SHOWS THE NUMBER OF SALIENT CONVEX GROUPS PRODUCED BY THE TWO VARIATIONS OF OUR ALGORITHM,
WHEN APPLIED TO A NUMBER OF REAL IMAGES

Actual number of groups found for real images
No. Alg. k
lines Type .6 .65 7 .75 .8 .85 9
183 basic 16,300 4,760 1,170 248 110 60 35
complete 2,160 1,190 494 315 134 69 31
265 basic 32,300 8,930 1,850 404 182 98 51
complete 1,750 982 542 276 120 47 27
271 basic 5,600 598 148 64 36
complete 540 291 157 65 34
296 basic 47,400 | 12,800 2,670 474 136 73 42
complete 2,040 1,180 620 312 152 85 42
375 basic 23,100 | 11,100 5,250 | 2,390 | 1,020 | 406 163
complete 1,680 1,020 536 331 188 | 122 48
450 basic 74,100 | 37,900 | 18,500 | 7,840 | 2,960 | 965 | 293
complete 2,160 1,340 797 430 235 125 52
461 basic 754 376 194 | 96 49
complete 863 368 178 84 34

on W, and a very loose bound on O,  However, our ex-
periments indicate that this is not the case. Our data sug-
gest that run time grows roughly linearly with the size of
the output. In Fig. 4 we plot the amount of work performed
by the search, for fixed values of n, as k, and therefore the
output size, varies. We can see that the search does grow
linearly with the output size.

8 /n =400
2] 7 1 = 300
& /
E ; / n=200
S \ ,4/
u P4
e
150 22,000
OUTPUT SIZE

Fig. 4. The number of search steps performed on simulated data,
plotted against output size. The plot is on a log-log scale. The three
graphs show different values of ».

4.3 Run Time and Output Size for Real Images

Next we made a few practical modifications to our sys-
tem. For robustness, we allowed for some sensing noise
when computing convexity. Also, if an entire line segment
violated convexity when added to a group, we consider
adding only a portion of the line segment. In fact, even
when convexity is preserved when an entire line segment
participates in a group, we still allow the group to use only
a subset of the line if that will increase the group’s salience.
Finally, we removed duplicate or near duplicate groups
from the output of the system. See [28] for details. A Com-
mon Lisp version of this system can be obtained by anony-
mous ftp to externalnjnec.com, in the directory
“/pub/dwj/src/convex-grouping.tar.”

We repeated our experiments to determine the effect these
modifications have on the run time of the system and on the
size of its output. We ran both the basic algorithm and the
modified algorithm on a set of real images, so that by compar-
ing these results to our previous results we can tell how much
of the change is due to the use of real images, and how much is
due to the additional constraints. We can see that the basic and
modified algorithms have comparable performance.
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Fig. 5. This shows the most salient groups in an image of a telephone. These are all the groups that have a salience fraction of at least .75, and that-
consist entirely of oriented line segments that do not appear in more salient convex groups. The dofted fines show the edges of the image. Within the
image there is a box around each separate group. Solid lines show the lines that form the group. Circles show the corners found in the group.

Fig. 7. The salient convex groups found in another scene.

1

Fig. 8. A picture from the CMU calibration lab, courtesy of David Michael, along with the most salient groups found.
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Section 5 shows examples of the images we used. Table 6
shows the number of nodes explored in the search, for both
the basic and full systems on these and similar images. Ta-
ble 7 shows the number of groups produced by both varia-
tions of the algorithm on these images.

We can see that our theoretical predictions almost always
bound the performance of the system. Moreover, our
analysis predicts the system’s performance roughly to
within an order of magnitude. For example, when fewer
than one million search steps are expected, our analysis
overestimates the work that will be required by the basic
algorithm by roughly a factor of 2. This is quite good
agreement, considering that the amount of search required
by two different images of similar size may also vary by a
factor of 2. Our predictions concerning the size of the out-
put are similarly good.

We also measured the run time of our unoptimized com-
puter implementation. The system ran on a Symbolics 3640
Lisp Machine.' On an image with 246 lines, the basic algo-
rithm spent 48 seconds on preprocessing overhead. The
search tree was explored at a rate of between 450 and 2,300
nodes per second. Our implementation of the complete al-
gorithm was approximately a factor of 20 slower, largely
because of additional time spent in preprocessing. How-
ever, our implementation of the complete algorithm was
simple and inefficient, and we believe that most of the ad-
ditional time it required could be eliminated in a more care-
ful implementation. These numbers indicate that the overall
system could be expected to run in a few minutes or less in
a practical implementation.

5 GROUPING PERFORMANCE

So far, we have evaluated our grouping system in terms of
its efficiency, and the probability that the groups it produces
will reflect real scene structure, rather than a random proc-
ess. We now present some examples of the system’s per-
formance on real images. In particular, we have integrated
our grouping system into a complete recognition system, to
demonstrate its potential value.

Our recognition system, described in detail in [28], first
forms convex groups, as we have described here. Addition-
ally, it only uses a group if none of its oriented line segments
appear in a more salient convex group. This prevents it from
having to consider several, similar groups. For each group,
the system finds 2D point features at places where the lines in
the group have an intersection point that is stable with re-
spect to error. The recognition system then considers all pairs
of salient convex groups found. The 2D points in a pair of
salient groups are used to index into a lookup table, where
we have represented comparable groups of 3D model points,
at compile time. This indexing phase, which matches groups
of 2D image points to geometrically consistent 3D model
points is also described in [27]. We then explore the matches
hypothesized by indexing, beginning with those generated
by pairs of image groups that matched the fewest pairs of
model groups. A verification step uses matches between 2D

1. This was a state-of-the-art computer in the MIT Al lab circa
1990.
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points and 3D points to determine a hypothetical location of
a model in the image. It then searches for additional evidence
of the model’s presence at the location, to confirm or Teject a
hypothesis.

We first show the most salient groups found in several
images, along with their associated point features. Fig. 5
shows the most salient groups found by the grouping sys-
tem in an image of an isolated telephone. Many of the
groups found here show up reliably in other pictures of the
phone, taken from different viewpoints.

In Fig. 6, we see some groups found in a scene that in-
cludes the telephone. Almost all the telephone’s convex
groups are at least partially occluded in this picture. How-
ever, we find unoccluded portions of these groups, many
useful groups from the stapler, and some of the salient
structure of the mugs. Fig. 7 shows the groups found in
another scene containing the occluded telephone.

Fig. 8 shows the results on a different scene, which was
taken at the CMU calibrated image lab. Although the edges
are noisy and hard even for a person to interpret, we can
see that the system finds much of the rectangular structure
inherent in the buildings in the scene.

In each of the pictures shown, many of the most salient
groups come entirely from the convex structure of a single
object, making them useful for recognition. We also see
many remaining challenges to grouping, because many of
the groups found either do not appear perceptually salient,
or appear to either combine lines from two different objects,
or to combine strong lines from one object with noisy or
unstable lines. For example, in the fourth set of groups
shown in Fig. 6, we can see that a strong group from the
face of the telephone includes an external edge from the rim
of an occluding coffee mug.

Fig. 9. This figure shows the results of a recognition system that uses
salient convex grouping. On the left are edges found in two different
scenes. On the right we show the correct hypothesis of the telephone’s
location in each scene, which is found by the system. Lines, which
indicate the hypothetical location of model lines, are shown superim-
posed over a dotted edge map of the image. Circles indicate the loca-
tion of image points that were used for indexing. Squares show the
hypothesized location of the corresponding model points.

These groups, however, do enable our system to effi-
ciently recognize objects. Although [28] details the per-
formance of the system, Fig. 9 shows two samples of our
results. Pairs of groups of points from the telephone have
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been represented in the indexing table ahead of time. The
figure shows that the system correctly locates the telephone.
Circles indicate the location of image points used for index-
ing, which come from two salient convex groups. In each
example, one group is from the side of the telephone. In the
example on top, the other group comes from the rectangu-
lar face of the phone; in the example on the bottom, the sec-
ond group comes from the small plate containing the phone
number. In these examples, grouping produces a relatively
small set of convex groups, some of which lead to correct
recognition of the object sought. See [28] for further details
on the overall efficiency of the recognition system, using

grouping.

6 ComMPARISON WITH OTHER GROUPING METHODS

In this section we will compare the effectiveness of salient
convexity as a grouping clue with two other grouping
methods. First, we consider Lowe’s approach to grouping
parallel lines. Lowe [39] measures the salience of parallel
lines by considering the amount of separation between
them, and the extent to which their angle deviates from
perfect parailelism. Lowe suggests considering those pairs
of lines first whose degree of separation and parallelism is
least likely to occur at random. Following Lowe’s deriva-
tion we will determine the expected number of salient
parallel lines that will appear in an image, for varying de-
grees of salience.

Let 6 be the angle between two lines, let I, and /, be the
lengths of the shortest and longest lines respectively, and let
s be the perpindicular distance from the midpoint of the
shorter line onto the longer line. Lowe uses the expression:

4a
T oalk

as a measure of the inverse salience of a pair of lines, where

E

welet b’ = % This is analogous to the definition of k' in our
salient convexity grouping. Lowe makes the additional re-
quirement that the perpindicular projection of the midpoint
of the shorter line onto the longer lie inside the longer line.
Suppose we wish to find a pair of lines of equal length
with an angle of 6, and a separation between them of s,. We
let by = I—;f, i.e., hj denotes the ratio of gap to line length.

Let E, denote the inverse salience of these lines. We ask:
how many pairs of lines will have a salience greater than 4~

in an image containing n randomly positioned lines? We
. assume fandom positioning with the same distribution as
in our previous analysis, except that we assume that the
midpoints of lines have uniformly distributed positions in
the image, rather than the endpoints of lines.

A pair of random lines described by 8, I, and I, will have
a greater salience than the lines we seek when:

4651, 46, 0,
P A N

That is, the midpoint of the shorter line must fall inside a
rectangle of area:

26,17
2522 = T(,)O-
1f this area is greater than the image, we assume that the
probability of inverse salience less than E; is 1, although this
will not happen often. Therefore, given 6, ,, ,, the probabil- -
ity of inverse salience less than E is:

|, 204k

minj 1, 3

hy@mR
where the image is assumed to be a circle of size 7R’ In
fact, since all lengths will be taken relative to the circle size,
we may from now on assume, without loss of generality

thatR=1.
Now we may integrate over all possible combinations of

1,1, and 6 to determine the probability that two lines will

have inverse salience less than E. This is:
T 2
1p1 s 20,0 |4
[] ; [ mm{l, o | 0kl
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() el

This derivation assumes that:

20, PG
Wr T2

which will be the case for all situations of interest in what
follows.

Using this result, we can determine the expected number
of false positive groups produced by Lowe’s system in
situations similar to those to which we have applied convex
grouping. As an example, Table 8 shows the expected num-
ber of randomly generated groups with a greater salience
than a designated pair of lines. This can be compared with
Table 4. The designated lines are assumed to have an angle
difference of %, and a separation that varies, as shown in
the table. The table shows the separation in terms of a vari-
able, h = ,—ll}g, which is analogous to the variable k used in

the convex grouping system.

It is easy to see that Lowe’s method of grouping has as-
ymptotically better performance than the convex grouping
method. But it is also clear that when we choose thresholds
so that the systems produce reasonably small sets of salient
groups, Lowe’s system must require lines to have only
small gaps between them. In some realistic circumstances it
appears that our system will tolerate larger gaps. Moreover,
the gaps allowed in convex grouping are considered rela-
tive to the size of the entire group, while the gaps between
parallel lines are measured relative only to the shortest line.
Opverall, both convexity and parallelism provide probabilis-
tic information for grouping.of roughly similar quality.

We now consider the performance of a greedy algorithm
for salient convex groups similar to the one proposed by Hut-
tenlocher and Wayner [24], or the one used as a preprocéssing
step in Jacobs [26]. We suppose that each oriented line initial-
izes a group, and that the group is extended by adding the
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TABLE 8
THIS TABLE SHOWS THE EXPECTED NUMBER OF SALIENT PARALLEL LINES THAT WE EXPECT LOWE'S ALGORITHM TO PRODUCE, AS
THE NUMBER OF LINES AND THE ALLOWED GAP BETWEEN THE LINES VARY. WE ASSUME THAT LINES MUST HAVE A SALIENCE
GREATER THAN LINES OF EQUAL LENGTH HAVING AN ANGLE OF % AND A GAP OF S, SUCHTHAT h = 11—15

Expected number of paralle! line pairs produced

Number h

of lines | .25 5 .6 .65 7 .75 8 .85 .9
200 2400 1000 750 630 520 420 330 250 170
300 5500 2300 1700 1400 1200 950 750 560 380
400 9700 4200 3000 2500 2100 1700 1300 990 670
500 15000 [ 6500 4700 3900 3300 2700 2100 1600 1000
700 30000 | 13000 | 9200 7700 6400 5200 4100 3000 2100
1000 61000 | 26000 | 19000 | 16000 | 13000 | 11000 | 8400 6200 4200

nearest line to the end of the group that does not introduce
a concavity in the connection between the two lines. That is,
this approach does not check that the first and last points in
the group can be convexly connected, allowing for spiral
groups (this is allowed in [24], for example). Huttenlocher
and Wayner [24] and Jacobs [26] perform variations on this
method, with different specific methods of adding lines, or
deciding when to stop extending a group. Huttenlocher and
Wayner [24] also consider other criteria for deciding which
line is best added to a group. However, the above general
description of the greedy algorithm will suffice for our
analysis, and provides a reasonable example of a greedy
convex grouping algorithm.

False positives in cluttered environments are easily pre-
dicted for the greedy algorithm, since it is guaranteed to
produce an O(N) sized output. The more relevant issue is
false negatives. We consider how the probability of finding
a convex structure in an image will decrease as the image
grows more cluttered with random lines.

Suppose we wish to locate a convex group that contains
two gaps, each of at least length g, That is, we suppose,

using our previous notation, that ||, ll, i1, > g, for-

some i, j. A greedy algorithm will fail to find this group if
there exist a line convex with I, whose first endpoint is a
distance less than g, from [ ,, and if a similar line exists for [.

Denote by P, the probability that a random uniformly
distributed oriented line will block a group containing /,

from extending to contain /.. It is easily seen that:
_la
P, =7 R

Assuming 2n oriented lines, the probability that at least one
will be convex with [, and closer to it than /,,, is:

1-(t-P)"

The probability that the greedy algorithm will not bridge
either of the gaps in the group, and therefore fail to collect
all the group’s convex lines together will be approximately:

(1 - (1 - Pn)zn)z

In Table 9, we show how this probability varies with the
gap size, g,, and the number of lines, n. We can see that
even with small gaps, there is a significant likelihood of
missing a salient convex group with a greedy algorithm.

The greedy method is much like our backtracking
search, with the search tree for salient convex groups re-
stricted to have a branching factor of 1. Clearly this will

produce greater efficiency at the cost of missing some sali-
ent convex groups. Again the appropriateness of each
method may depend on its intended use. If we only expect
small gaps between lines, or if we can tolerate missing
some salient, convex groups, a greedy algorithm is to be
preferred. Our method does have several advantages, how-
ever. The output is predictable in terms of the gaps that will
be present in a group; one cannot predict with certainty
whether the greedy algorithm will find a group on the basis
of the group’s structure alone; performance also depends on
the location in the image of other, unrelated lines. Conse-
quently, false negatives do not occur in our algorithm,
given a particular tolerance. This may be important when
one is seeking a few significant groups in an image. Also,
our grouping method requires that a group be completely
convex when the beginning and end are connected, and
enforces closure. It is also possible to use hybrid methods
between the two. For example, for any fixed m, the m near-
est points to a line may be found in O(n log(n)) time. There-
fore, a backtracking search that only considered the m near-
est lines could be performed with O(n log(n)) preprocessing.
In situations where preprocessing dominates, this could
make a backtracking search very efficient, while providing
greater robustness than a simple greedy algorithm.

TABLE 9
WE CONSIDER A CONVEX GROUP WITH TWO GAPS, WHOSE
LENGTHS VARY IN THE COLUMNS OF THE TABLE.
THE GROUP IS IN AN IMAGE OF RADIUS 250 PIXELS.
THE TABLE SHOWS THE PROBABILITY THAT A SIMPLE GREEDY
ALGORITHM WILL Miss SUCH A CONVEX GROUP

Probability of Missing a Salient, Convex Group

Number Gap (pixels)

oflines | 5 10 15 1 20 25 30 40 50
200 1.0 | .98 | .91 78 | 0.6 | 42 15 04
300 1.0 | .95 | .83 62 | 0.4 22 04 00

400 99 | 92 [ .74 | 48 | 25 | .11 | .01 | .00
500 99 | 89 .65 | .36 | .16 | .05 | .00 | .00
700 98 | .82 | 49
1000 .97

7 CONCLUSIONS

Convexity is just one potential grouping clue, but it is an
important one to understand thoroughly. Objects often con-
tain at least some convex parts, especially in two important
application areas, recognition of buildings and of manufac-
tured objects. Something similar to the salient convexity
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measure that we consider is an essential part of the group-
ing methods used by Jacobs [25], Wayner [56], and Sawh-
ney [52]. And related grouping methods based on convexity
have been widely used in various approaches to recogni-
tion. But convexity has usually been handled in ad-hoc
ways that are sensitive to local perturbations of the image.

In this paper we use a simple, global measure of a con-
vex group’s salience. A global definition of our output has
the strong advantage of allowing us to anticipate our ocut-
put, independent of unrelated context. We show here that
much of the global constraint provided by salient convexity
can be converted into a local form in which it can be ap-
plied at each step of the search, and that this allows us to
build an efficient system.

Three key questions arise if we wish to understand the
performance of salient convexity. First, can we compute it
efficiently? Second, how likely is it that salient convex
groups reflect the underlying structure of the scene, as op-
posed to simply resulting from a random process? Third,
how robust can salient convex groups be to possible occlu-
sions or clutter? We have performed a theoretical analysis,
backed up by experiments, that allow us to answer these
questions.

We show that in realistic situations, we can efficiently
find the most salient convex groups of an image. Our algo-
rithm takes O(n” log(n) + mn) expected time to find the m
most salient groups in an image with z line segments. This
theoretical result is also practical. In real images, our system
runs sufficiently fast to be useful as an experimental sys-
tem. The system runs quickly precisely because salient con-
vex groups do not often arise by chance. This allows us to
effectively prune our search for groups. It also allows us to
show that the groups that we do find are likely to reflect
some non-random scene structure.

Finally, our analysis shows how to choose a measure of
salient convexity appropriate to the size of the image, and
of the desired output. For realistic sized images, we show
that a salience threshold ranging from about .70 to .85 will
produce a fast algorithm, with a manageable output size.
This tells us that our grouping system can find convex
groups that have between 30% and 15% of their boundary
missing due to occlusion or noise. The presence of clutter
also affects the robustness of the algorithm; in an unclut-
tered scene with fewer line segments we could use a lower
salience threshold, as we add clutter, our output will grow
unless we raise this threshold. Since our output is character-
ized by a simple salience criteria, we can predict precisely
how robust our algorithm will be.

Finally, we have demonstrated the potential value of sa-
lient convex grouping by incorporating our system into a
complete recognition system. Grouping reduces the combi-
natorics of recognition by focusing the search for an object
on subsets of the image that are likely to come from a single
object. It is not necessary that every group of lines that we
find in the image actually comes from the object for which
we are looking. It is sufficient if we can locate enough im-
age groups to allow us to recognize an object without hav-
ing to examine too many irrelevant image groups, that is,
our groups need to provide points that are more likely to
come from the object for which we are looking than are

randomly selected groups. The greater this likelihood is, the
greater is the advantage provided by grouping. The
grouping system presented here supports a very focused
recognition system that requires little search.
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