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The Laplacian Pyramid as a Compact |mage Code

PETER J. BURT, mewmBer, ieEee, AND EDWARD H. ADEL SON

Abstract—We describe a technique for image encoding in which
local operators of many scales but identical shape serve as the bass
functions. The representation differs from established techniques in
that the code elements are localized in spatial frequency as well as in
space.

Pixel-to-pixel correlations are first removed by subtracting a low-
pass filtered copy of the image from the image itself. Theresult is a net
data compression since the difference, or error, image has low
variance and entropy, and the low-pass filtered image may represented
at reduced sample density. Further data compression is achieved by
quantizing the difference image. These steps are then repeated to
compress the low-pass image. Iteration of the process at appropriately
expanded scales generates a pyramid data structure.

The encoding process is equivalent to sampling the image with
Laplacian operators of many scales. Thus, the code tends to enhance
salient image features. A further advantage of the present code is that
it is well suited for many image analysis tasks as well as for image
compression. Fast algorithms are described for coding and decoding.

INTRODUCTION

COMMON characteristicof imagesis that neighboring

pixels are highly correlated. © represent the image
directly in terms of the pixel values is therefore inefficient:
most d the encoded information & redundant. The first
task in designing an efficient, compressedcode is to find a
representation whichin effect, decorrelates the imagsxels.
This hasbeen achievedthrough predictive and through trans-
form techniques (cf. [9], [10] for recent reviews).

In predictive coding, pixels are encodedequentially ina
raster format.However, prior to encodingeachpixel, its value
is predictedfrom previously coded pixels in the same and
preceding rastelines. The predictedpixel value, which repre-
sents redundantinformation, & subtractedfrom the actual
pixel value, and only the difference, or prediction error, is
encoded. Sinceonly previously encodedpixels are used h
predicting eachpixel's value,this processis said tobe causal.
Restriction © causalprediction facilitatesdecoding:to decode
agiven pixel, its predicted value igecomputed fromalready
decodedneighboring pixels, and added ¢ the storedpredic-
tion error.

Noncausalprediction, based ona symmetric neighborhood
centered atach pixel, should yield more accurateprediction

does not permit simple sequential coding. Noncausalap-
proaches tamage coding typically involve image transforms,
or the solution b large setsof simultaneousequations.Rather
than encodingpixels sequentially, such techniquesencode
them all at once, or by blocks.

Both predictiveandtransform techniquesave advantages.
The former is relatively simple to implement and B readily
adapted @ local image characteristics. The latter generally
provides greaterdata compression, but at the expense of
considerably greater computation.

Here ve shall describea newtechnique forremoving image
correlation whichcombines features ofpredictive and trans-
form methods.The technique isnoncausal, yet computations
are relatively simple and local.

The predicted value foreachpixel is computed asa local
weighted average, using a unimodal Gaussian-like (or related
trimodal) weightingfunction centered onthe pixel itself. The
predicted valuedor all pixels arefirst obtainedby convolving
this weighting function with the image. The result is a low-
pass filtered image which is then subtracted from the original.

Let g.(ij) be theoriginal image,and g,(ij) be the result of
applying a appropriatelow-pass filter to g,. The prediction
error L(ij) is then given by

Lo(i) = go(ij) — 0u(ij)

Rather thanencodeg,, we encodel, and g,. This results
in anet datacompressionbecause JaL, is largly decorrelated,
and somay be representegixel by pixel with many fewer bits
than g,, and b) g, is low-passfiltered, and ® may be encoded
at a reduced sample rate.

Further datecompression s achieved byiterating this pro-
cess.The reducedimage g, is itself low-passfiltered to yield
g, anda second erroimage is obtained: L,(ij)=g,(ij)—g.(ij).
By repeatingthesestepsseveraltimes we obtain a sequence fo
two-dimensional arrayL{,, L,, L, ..., L,. In our implemen-
tation each issmallerthan its predecessoby a scale factor of
1/2 due b reducedsample density.If we now imagine these
arrays stacked onebove another, theresult is a tapering
pyramid datastructure.The value at each node ithe pyramid

and, hence, greater data compression. However, this approgghresents thalifference betweerwo Gaussian-likeor related
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functions convolved withthe original image. The difference
between thesewo functions is similar to the "Laplacian”
operators commonlyused n image enhancemenfl3]. Thus,
we refer b the proposedcompressed imageepresentationas
the Laplacian-pyramid code.

The coding schemeutlined abovewill be practical only if
requiredfiltering computationscan be performedwith an ef-
ficient algorithm. A suitable fast algorithm has recentlybeen
developed [2] and will be described in the next section.
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THE GAUSSIAN PYRAMID

Thefirst step in Laplacian pyramid coding is to low-pass
filter the original imageg, to obtain imageg,. We say that g,
isa "reduced'version @ g, in that both resolution and sample
density are decreasednla similar way we form g, as a re-
ducedversion & g,, and ® on. Filtering is performed bya
procedure equivalento convolution with one of a family of
local, symmetric weighting functions. An important member
of this family resemblesthe Gaussianprobability distribution,
so the sequencef imagesg,, J,, ..., 0, is calledthe Gaussian
pyramid!

A fast algorithm for generating theGaussianpyramid is
given in the next subsection. f the following subsection we
show how the same algorithm can beused b "expand" an
image arrayby interpolating values between samplpoints.
This device is usetiereto help visualize the contents 6 levels
in the Gaussiampyramid, and n the nextsection to define he
Laplacian pyramid.

Gaussian Pyramid Generation

Suppose thémage is representednitially by the arrayg,
which contains C columns and R rows of pixels. Each pixel
represents the lighintensity at the correspondindmage point
by an integer I between0 and K— 1. This image becomethe
bottom @ zero levelof the Gaussianpyramid. Pyramid level 1
containsimage g,, which is areduced o low-pass filteredver-
sion ofg,. Each valuewithin level 1is computedas a weighted
average of values in level 0 withim5-by-5 window. Eachvalue
within level 2, representing g is then obtained from values
within level 1 by applying the samepattern of weights. A
graphical representationf this processin one dimensionis

GAUSSIAN PYRAMID

° ® g,
J
,/“/// \‘\\
. / \ h
° ° ° ® g,
g, = IMAGE

6. = REDUCE [g,]

Fig L A one-dimensional graphicepresentationof the processwhich
generates daussianpyramid Each row of dots represents nodes
within a level of thepyramid. The value of each node in the zero
level is just thegray level of a correspondingmage pixel. The value
of eachnodein a high level is the weightedaverage bnode values
in the next lower level. Note thatnode spacing doubleom level
to level, while the sameweighting pattern or “generating kernel" is
used to generate all levels.

The Generating Kernel

Note thatthe same 5-by-5pattern of weights w is usedto
generate eachyramid array from its predecessorThis weight-
ing pattern,called thegenerating kerneljs chosensubjectto
certain constraints [2]. For simpticity we make separable:

w(m, 0 = w(m) w(n).

The one-dimensional, length 5, functior is normalized

2
W (m)=1
m=-2

and symmetric

given in Fig. 1. The size of the weighting function is not critical

[2]. We have selectedthe 5-by-5 pattern becauseit provides
adequate filtering at low computational cost.

The level-to-level averagingprocessis performed bythe
function REDUCE.

g, =REDUCE, )

which meansfor levels 0 <I < N andnodesi, j, 0 < i < C,
0<j<R,
2 2
g/(i, )= z w(m, n)g,.,(2i + m, 2 + n).

m=-2 n=-2

Here N refers tothe number oflevels in the pyramid, while
C, and R arethe dimensionsof the Ith level: Note in Fig. 1
that thedensity of nodesis reduced B half in one dimension,
or by afourth in two dimensionsfrom level to level. The d-
mensions b the original image are appropriate for pyramid
construction fi integers M., M., and N exist such thatC =
M2" +1 andR =M, 2" + 1. (For example, i M, and M,
areboth 3andN is 5, then imagesmeasure97 by 97 pixels.)
Thedimensions bg areC =M. 2""'+1andR =M, 2" '+
1.

twe will refer to this sebf low-passfiltered imagesas the Gaussian

pyramid,eventhough in some cases tiwill be generatedwith a trimodal
rather than unimodal weighting function.

(OWr(0) =a, W (-1)= W (1) =b, and W(-2) =

wi(i) = w(-) fori = 0, 1, 2.

An additional constraint is called equal contribution. This
stipulates thatall nodes at a given level must contribute he
sametotal weight(=1/4) to nodesat the next higher level. Let
wW/(2) = cin this
caseequalcontribution requiresthat a + 2¢ = 2b. Thesethree
constraints are satisfied when

w(0)=a
w(-1) = w(l)= 1/4
wW(-2)= W(2) = 1/4 —a/2.

Equivalent Weighting Functions

Iteratve pyramid generaion is equivalent toconvolvingthe
imageg, with asd of “equivdent weighting functions”h;:

g=h 0O g

or

g(ij) = h(m,n)gy(i2' + m« j2' +n).

m=-M n=-M
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Fig. 2. The equivalent weighting functiohgx) for nodesin levels1, 2, 3,
andinfinity of the Gaussianpyramid. Note that axisscaleshave been
adjusted by factors of 2 to aid comparison Hereparametera of the
generating kernel is 0.4, and the resulting equivalentweighting
functions closely resemble the Gaussian probability density functions.

The size M, of the equivalentweighting function doubles
from one level to the next, & does the distance between
samples.

Equivalent weightingfunctions for Gaussian-pyramidevels
1, 2, and 3 are showin Fig. 2. In this casea= 0.4. The shape
of the equivalentfunction convergesrapidly to a characteristic
form with successivelyhigher levels o f the pyramid, so that
only its scale changes. Howevehjs shapedoes dependn the
choice ¢ a in the generatingkernel. Characteristic shapes
for four choices 6 a areshown inFig. 3. Note that the equiv-
alent weighting functions are particularly Gaussian-like when
a =0.4 Whena= 0.5 the shapses triangular; when a = 0.3 it
is flatter andbroader thara Gaussian.With a =0.6 the central
positive mode issharply peaked,and & flanked bysmall nega-
tive lobes.

Fast Filter

The effect of convolving a image with oneof the equiv-
alent weighting function$, is to blur, or low-pass filter, tham-
age. The pyramid algorithm reduceshe filter bandlimit by an
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EQUIVALENT WEIGHTING FUNCTIONS

a=04

Fig. 3 The shapeof the equivalentweighting functiondependson the
choice of parametea. Fora = 0.5, the function is triangular; for a =
0.4 it is Gaussian-like, and far= 0.3 it is broaderthan Gaussian For
a = 0.6 the function is trimodal.

Gaussian Pyramid Interpolation

We now define a function EXPAND as the reverse of REDUCE.
Its effectis to expandan (M + 1)-by-(N + 1) array into a
(2M + 1)-by-(2N + 1) array by interpolating new node values
between thaiven values. Thus, EXPAND applied toarray g, of
the Gaussiarpyramid would yield an array g, which is the
same size ag,_,.

Let g, be the result of expandirgy n times. Then

Qo =0
and
9.,= EXPAND @, n—1)

By EXPAND we mean, forlevels 0 < I < N and0 < n and

nodesi, j, 0<i<C_, 0<j<R_,

i w(m,n)

2

9.() = 4
m=-2 n=-2
d-m j-nQ
g!n—lD 2 ’ 2 D (2)

octave from level to level, and reduces the sample interval by the

same factor. Thiss a very fast algorithm, requiring fewer com-
putational steps to compute a set of filtered images tharegte
ired by the fast Fourietransform to compute a single filtered
image [2].

Example: Fig. 4 illustrates the contents & a Gaussian
pyramid generated with = 0.4. The original image,on the far
left, measure®57 by 257. Thisbecomeslevel 0 on the pyra-
mid. Each higher level array is roughly half as large in

Only terms forwhich (—m)/2 and §—n)/2 areintegers e
included in this sum.

If we apply EXPANDI times to image),, we obtaing, , which
is the samesize as the original image g,, Although full
expansionwill not be used n image coding,we will use t to
help visualize thecontents b various arrays within pyramid
structures. The top row of Fig. 5 showsageg, ¢ 8; 1 9, » -
obtained by expanding levels of the pyramid in Fg.The low-

each dimension as its predecessor, due to reduced sample dengitys filter effect of the Gaussian pyramid is now shown clearly.
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GAUSSIAN PYRAMID

2 3 4 5

Fig. 4. First six level®f the Gaussianpyramid for the "Lady" image The original image,level O, meusure57 by 257 pixels andach
higher level array is roughly half the dimensdons of its predecessor. Thus, level 5 measures just 9 by 9 pixels.

THE LAPLACIAN PYRAMID

Recall that our purpose for constructing tieelucedimage g,
is that it may serve as a prediction for pixel valuesin the
original imageg,. To obtain a compressedrepresentation, &
encodethe errorimage which remainsvhen an expandedy, is
subtracted frong,. This imagebecomesthe bottom levelof the
Laplacianpyramid. The next levelis generatedby encodingg,
in the sameway. We now give a formal definition for the
Laplacian pyramid, and examine its properties.

Laplacian Pyramid Generation

The Laplacian pyramid is a sequence of error im#igels,
..., Ly. Each is the difference between two levels of the Gauss
pyramid. Thus, for & 1 <N,

L =g —-EXPAND( )
=0 —89.:1r

Since there is no imagsg,. , to serve aghe prediction image for
gNa we SaM-N = gN'

Equivalent Weighting Functions

The value at each node ithe Laplacian pyramid is the
difference betweetthe convolutions 6 two equivalentweight-
ing functionsh,, h ., with the original image. Again, thisis
similar to convolving & appropriately scaled Laplacian
weighting functionwith the image. The node valuecould have
been obtainedlirectly by applying this operator,although &
considerably greater computational cost.

Just aswe may view the Gaussiarmpyramid as a set of low-
pass filteredcopies of the original image,we may view the
Laplacianpyramid as a set of bandpassfiltered copies of the
image. The scale of the Laplacian operator doubta® level to
level of the pyramid, while theenterfrequencyof the passband
is reduced by an octave.

In order to illustratethe contents 6the Laplacianpyramid,
it is helpful to interpolate between sampl@oints. This maybe

done within the pyramid structure by Gaussian interpolatiodccurrence in this and other similar images, then the entropy

LetL,, be the result oexpandingl, n times using (2). Then, L,,
is the size of the original image.

The expanded Laplacian pyramid levéts the “Lady” image
of Fig. 4 are shown in the bottom row of Fig. 5. Nttat image
features such as edges and bars appelaancedn the Laplacian
pyramid. Enhancedkeaturesare segregated bysize: fine details
areprominent n L, ,, while progressively coarser featureare
prominent in the higher level images.

Decoding

It can be shownthat the original image canbe recovered
exactly by expanding, then summing all the levels of the
. Laplacian pyramid:

lan
N
9= L. 4)

A more efficient procedure is texpandL, onceandadd t to
L,_,,then expand this image once and &dtb L, _,, andso on
until level Ois reached andy, is recovered.This procedure
simply reversesthe steps in Laplacian pyramid generation.
From (3) we see that

gN :LN
and forl=N-1,N-2, ..., 0,
@=L +EXPAND@.,).

Entropy

If we assume that the pixel valuesaf imagerepresentation
are statisticallyindependentthen the minimum number ofbits

per pixel required to exactly encode the image is given by the en-

tropy of thepixel value distribution. This optimummay be ap-
proached in practicéhrough techniquessuch as variable length
coding.

The histogram of pixel values for the "Ladytageis shown
in Fig. 6(a). if we let the observedfrequency ofoccurrence f(i)
of each graylevel i be an estimate of its probability o
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FIG 6. The distribution of pixel gray level values at various stages of the encoding process. The histogram of the original image (&)given

(b)-(e) give histograms for levels 0-3 of the Laplacian pyramid with generating parameter a=0.6. Histograms following quantization at each

level areshown n (f)-(i). Note that pixel valuednthe Laplacian pyramid are concentrateedhear zero, permitting datacompression
through shortened and varable length code words. Substantial further reduction is realized through quantization (particulpysaatidow
levels) and reduced sample density (particularly at high pyramid levels).

is given by
255
H = -% £i log, fii)

The maximum entropy would ke 8 in this case sincethe
image isinitially representedta256 gray levels, and would fe
obtained wherall gray levels were equally likely. The actual
entropy estimate for "Lady" is slightly less than this, at 7.57.

The technique ofsubtracting apredicted value fromeach
image pixel, asn the Laplacian pyramid, removesmuch d the
pixel-to-pixel correlation. Decorrelation alsoresults in a
concentration D pixel values aroundzero, and,therefore, in
reduced variance and entropy. The degreeto which these
measuresare reduceddepends onthe value of the parameter
"a" used in pyramid generation (see Fig. 7). We found
that the greatest reduction was obtainedder 0.6 in our exam-

generated with this value afthan when generated withsanaller
value such a$.4, which yields more Guassian-likeequivalent
weighting functions. Thusthe selectiona = 0.6 had perceptual
as well as computational advantages. Ting four levels d the
corresponding Laplaciampyramid and their histograms are
shown inFig. 6(b)-(e). Variancgo® and entropy H) are also
shown foreachlevel. These quantitiegenerally are found 6
increase from level to level, as in this example.

QUANTIZATION

Entropy canbe substantially reduced B quantizing thepixel
values ineachlevel of the Laplacian pyramid. This introduces
quantization errors, but through the proper choice ofthe
number and distribution d quantization levels. the degra-
dation maybe madealmost imperceptibleo human observers.
We illustrate this procedure withuniform quantization. Te
range & pixel values isdivided into bins ¢ size n, and

ples. Levels of the Gaussian pyramid appeared "crisper" whge quantized valu€, (i, j) for pixel L, (i, j) is just the middle
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Fig 7. Entropy and variance of pixel values in Laplacian pyramid level 0 as a function of the parafmfetethe “Lady” image.Greatest
reduction is obtained fax [10.6 This estimate of the optimad™ was also obtained at other pyramid levels and for other images.

(a)

(b)

(c)

(d)

Fig 8. Examples of image data compression using the Lapld&yaamidcode.(a) and(c) give the original "Lady" and "Walter" images,
while (b) and (d) give their encoded versionglud dataratesare 1.58 and0.73 bits/pixel for "Lady" and "Walter," respectivelyThe

corresponding mean square errors were 0.88 percent and 0

value of the bin which contairls(i, j)

C(i,j)=mn if (m—1/2n <L, j) < (m + 1/2n. (5)
The quantized image igconstructedhrough the expandand
sum procedure (4) using values in the place df values.
Results 6 quantizing the "Lady" image are shown in Fig.
6(f)-(i). Thebin sizefor eachlevel was chosen byincreasing
n until degradationwas just perceptible when viewed from
adistance of approximately five times the image width
(pixel-pixel separatiorE 3 min arc). Note thabin size becomes
smaller at higher levels (lower spatial frequencies).Bin size at
agiven pyramid level reflects the sensitivity d the human
observer tocontrast errors within the spatial frequencybands
represented tathat level. Humans arefairly sensitive to
contrast perturbations at low and medium spatial frequencies

.43 percent, respectively.

relatively insensitive to such perturbations at high spatial
frequencies [3], [4] , [7] .

This increasedbserversensitivity along withthe increased
datavariancenoted abovemeans thaimore quantizationlevels
must be used & high pyramid levels than a low levels.
Fortunately, these pixels contribuli¢tle to the overall bit rate
for the image, due b their low sample density. The low-level
(high-frequency) pixels, which are densely sampledcan be
coarsely quantized (cf. [6], [11], [12]).

RESULTS

The final result of encoding, quantization, and recon-
struction are shown in Fig. 8. The original "Lady" image is
shown inFig. 8(a); the encodedversion, & 1.58 bits/pixel, is
shown in Fig.8(b). We assumethat variable-lengthcode words

, lare used to take advantage of the nonuniform distribution of



BURT AND ADELSON: LAPLACIAN PYRAMID

node valuesso the bit rate for agiven pyramidlevel is its
estimated entropyimes its sampledensity, andthe bit rate for
the imageis the sum d that forall levels. The same procedure
was performedn the “Walter’ image; the original is shownin
Fig. 8(c). while the version encoded @¥3 bits/pixel s shown
in Fig. 8(d). In both cases, the encodedimages are almost
indistinguishablefrom the originals underviewing conditions
as stated above.

PROGRESSIVE TRANSMISSION

It should also be observed that the Laplagigramid code &
particularly wellsuited for progressiveimage transmission. n
this type of transmission a coarse renditionthed image is sent
first to give the receiveran early impression bimagecontent,
then subsequenttransmission provides image detail of
progressivelyfiner resolution[5]. The observer mayterminate
transmission of an image as soon as its contargsecognized,
or assoon asit becomesevident that the image will not be of
interest. D achieve progressive transmission, the topmost
level of the pyramid code & sent first, and expanded inthe
receiving pyramidto form an initial, very coarseimage. The
next lower level isthen transmitted,expandedandadded ¢ the
first, and so onAt the receiving end, the initial image appears
very blurry, but then comes steadily into “focus’ This
progression is illustrated in Fig. ®om left to right. Note that
while 1.58 bits are requiredfor each pixel of the full
transmission (rightmosimage), abouthalf of these,or 0.81
bits, are neededior eachpixel for the previous image (second
from right, Fig. 9), and 0.31 for the image previous to that (third
from right).

SUMMARY AND CONCLUSION

The Laplacian pyramid is a versatile dataucturewith many
attractive features forimage processing. tlrepresentsan image
as a series of quasi-bandpassedmages, each sampledat
successively sparsedensities. The resulting code elements,
which form a self-similar structurearelocalized in both space
and spatial frequency. By appropriately choosing gheameters
of the encodingand quantizing scheme, onean substantially
reducethe entropyin the representation,and simultaneously
stay within the distortion limits imposedby the sensitivity d
the human visual system.

Fig. 10 summarizeghe stepsin Laplacianpyramid coding.
The first step,shown on the far left, is bottom-up construction
of the Gaussianpyramid imagesg, , 9, , ..., @y [see (1)]. The
Laplacian pyramid images,, L,, ..., Ly are thenobtained as the
difference betweesuccessiveGaussianlevels [see (3)]. These
are quantizedot yield the compressedcode represented byhe
pyramid of valueC,(ij) [see(5)]. Finally, imagereconstruction
follows an expand-and-sum procedure [see (#)hg C valuesin
the place oL values. Herewe designatethe reconstructedmage
by r,.

It should also be observedthat the Laplacian pyra-
mid encoding schemeequiresrelatively simple computations.

The computations are local and may be performed in parallel, and

the samecomputations are iterated to build each pyramid
level from its predecessors. We may envision performing Lapla-

1.58

0.81

0.31

0.10

0.03

Fig. 9. Laplacian pyramid code applied to progressive image transmission. High levels of the pyramid are transmitted first to give the receiver

a quick but very coarse rendition of the image. The receiver’s image is then progressively refinded by adding successively lower pyramid levels

as these are transmitted. In the example shown here, the leftmost figure shows reconstruction using pyramid levels 4-8, or just 0.03 bits/pixel.

The following four figures show the reconstruction after pyramid levels 3, 2, 1, and 0 have been added. The cumulative data rates are shown

under each figures in bits per pixel.
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Fig. 10. A summary of the steps in Laplacian pyramid codind decoding. First, the originalimage g, (lower left) is usedto generate
Gaussian pyramid levelg, 8,, ... through repeated local averaging. Levels of the Laplacian pytalid, ... are then computedas
the differences between adjacent Gaussian levels. Laplacian pyramid elements are quantized toLgiglalctar pyramid code C,,
C,, C,, .... Finally, a reconstructed imaggis generated by summing levels of the code pyramid.

cian coding and decoding in real time usengay processors ra
a pipeline architecture.

An additional benefit, previously noted, is thHatcomputing
the Laplacian pyramid, one automatically has access to
quasi-bandpas<opies of the image. In this representation,
image featuref various sizes are enhancedand aredirectly
available for various image processing (e.g.[1]) and pattern
recognition tasks.

REFERENCES

[1] K. D. Bakerand G. D. Sullivan, "Multiple bandpass ifters in image
processing,'Proc. |IEE vol. 127, pp. 173 -184, 1980.

[2] P. J. Burt, "Fastfilter transformsfor image processing,Computer
Graphics, Image Processingol . 6, pp. 20-51, 1981.

[3] C. R. Carlsonand R. W. Cohen,"Visibility af displayed information,"
Off. NavalRes., Tech. Rep., Contr. NOOOI4-74-C-0184, 1978.

[4] —, "A simple psychophysicamodel for predicting the visibility of
displayed information,Proc. Soc. Inform. Displaypp.229-246 1980.

[5] K. Knowlton, "Progressivetransmission © grayscale andbinary
pictures bysimple, efficient, andlosslessencoding schemes,Proc.
IEEE, vol. 68, pp885 - 896, 1980.

[6] E. R. Kretzmer, "Reduced-alphabetrepresentationof television
signals," inlRE Nat.Conv. Reg.1956. pp140-147.

[7]1 J. J. Kulikowski and A. Gorea, "Complete adaptatiorio patterned
stimuli: A necessary andufficient condition for Weber's law for
contrast, '"Vision Res.vol. 18, pp. 1223-1227, 1978.

[8] A. N. Netravali and B Prasada,"Adaptive quantization ofpicture
signals using spatial maskingifoc. IEEE vol. 65, pp. 536-548, 1977.

[9] A. N. Netravaliand J. O. Limb, "Picture coding: Areview," Proc.
IEEE, vol. 68, pp. 336-406, 1980.

[10] W. K. Pratt, Ed., Image TransmissionTechniques New York:
Academic, 1979.

[11] W. F. Schreiber,C. F. Knapp, and N. D. Key, "Synthetic highs,an
experimental TVbandwidthreductionsystem,"J. Soc.Motion Pict.
Telev. Eng vol. 68, pp. 525-537, 1959.

[12] W. F. Schreiber and D. E. Troxel, U. S. Patent 4 268 861, 1981.
[13] A. Rosenfeldand A. Kak, Digital Picture Processing.New York:
Academic, 1976.

H

Peter J. Burt (M’'80) receivedthe B.A degeree ri
physics fromHarvard University, CambridgeMA,
in 1968, andthe M.S. and Ph.D. degrees ri
computer sciencdrom the University of Massa-
chusetts, Amherst, in 1974 and 1976, respec-tively
From 1968 ¢ 1972 he conducted researcin
sonar, particularlyin acousticimaging devices &
the USN Underwater Sound Laboratory, New
London, O and in London, England. As a

Postdoctoral Fellow, he has studied both natural vision and computer image
understanding at New York University, New YoikY (1976-1978),Bell
Laboratories (1978-1979gnd the University of Maryland, College Park
(1979-1989). Hehas been a member of the faculty at Rensselaer
Polytechnic Institute, Troy, NY, since 1980.

H

Edward H. Addson received B.A. degree in
physics and philosophy from Yaléniversity, New
Haven, CT, in 1974, and the Ph.D degree n
experimental psychologyrom the University of
Michigan, Ann Arbor, in 1979.

From 1979 to 1981 heas PostdoctoraFellow
at New York University, New York, NY. Since
1981, he has been at RCA Dadarnoff Research
Center, Princeton, NJ, as a member of the
Technical Staffin the Image Quality and Human
Perception ResearcBroup. Hs researchinterests centeon visual pro-
cessesn both humanmand machinevisual systems, andnclude psycho-
physics, image processing, and artificial intelligence.

Dr. Adelson is a member of the Optical Society of America, Asso-
ciation for Research in Vision and Opthalmology, and Phi Beta Kappa.




