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A new visual
medium, Virtualized
Reality, immerses
viewers in a virtual
reconstruction of
real-world events.
The Virtualized
Reality world model
consists of real
images and depth
information
computed from these
images. Stereoscopic
reconstructions
provide a sense of
complete immersion,
and users can select
their own viewpoints
at view time,
independent of the
actual camera
positions used to
capture the event.

he different visual media we have

today share two shortcomings: direc-

tor-decided viewpoints and two-

dimensional views. Virtualized Reality
is an immersive visual medium that lets the view-
er select a (possibly time-varying) viewing angle
at view time, freely moving throughout the virtu-
alized event in ways even a mobile camera present
at the event site could not. A viewer equipped
with a stereo viewing system can even be
immersed in a stereoscopic reconstruction of the
live or recorded event. Viewers can thus watch a
virtualized basketball game from a seat at the cen-
ter of the court or from a viewpoint moving with
the ball.

Like Virtualized Reality, virtual reality (VR) also
immerses the viewer in a virtual environment.
The two differ, however, in how the virtual world
models are constructed. VR environments are typ-
ically created using simplistic CAD models and
lack fine detail. Virtualized Reality, in contrast,
automatically constructs the virtual model from
images of the real world, preserving the visible
detail of the real-world images. It is thus possible
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to create realistic virtualized environments of such
complex environments as a surgery or a basketball
game. Such environments lie beyond the scope of
current VR systems.

The Virtualized Reality process involves three
phases: transcribing the visual event, recovering
3D structure, and generating synthetic viewpoints.
We transcribe a visual event using many cameras
surrounding the scene. We compute the 3D struc-
ture of the event for some of these cameras using
a multi-camera stereo method.! The views for
which we compute structure are called transcription
angles. The stereo process generates a depth map,
which encodes the scene depth of each image
point from the corresponding transcription angle.
We call this combination of an image and an
aligned depth map a scene description.

The virtualized model of one time instant con-
sists of a collection of scene descriptions at that
instant, each from a different transcription angle.
A time-varying event is represented as a collection
of successive time instants. Scene descriptions
translate easily into computer graphics models
with depth maps providing scene geometry and
images providing scene texture. Novel views of
the virtualized event can be synthesized easily
from these models using graphics hardware.

Possible applications of Virtualized Reality
include realistic training in a virtualized work
space, true telepresence, and imaginative uses in
entertainment. For example, surgical training
could be enhanced by virtualizing a rare heart
surgery. Students could then observe the opera-
tion in 3D from anywhere in the virtualized oper-
ating room, potentially standing in the same
position as the actual surgeon. To achieve tele-
presence, reconstruction and display of the
remote scene occurs simultaneously with the actu-
al event. For entertainment, Virtualized Reality
could make possible a whole new medium that
would allow viewers to watch a ballet perfor-
mance seated on the edge of the stage or a basket-
ball game while standing on the court or running
with a particular player.

View synthesis

Visual reconstruction from arbitrary view-
points is an important component of Virtualized
Reality. View synthesis, or view transfer, consid-
ers visual reconstruction as an image-to-image
mapping designed to generate novel views of a
scene given two or more real images of it.
Additional knowledge about the scene or the
imaging process may also contribute to synthesis.



One class of view synthesis techniques requires
image flow or pixel correspondence, that is,
knowledge about where points in one image
move to in another image. Using this informa-
tion, Tseng and Anastassiou? described a codec
similar to MPEG-2 that can efficiently transmit a
set of discrete viewpoints but cannot construct
novel views. View interpolation is an image-based
rendering technique that interpolates the image
flow vectors between two images at each pixel to
generate intermediate views for any viewpoint on
the line connecting the original two viewpoints.
Both Chen and Williams® and Werner et al.* used
linear interpolation as an approximation of per-
spective viewing because of the simplicity and
speed of implementation. Seitz and Dyer® demon-
strated that this yields physically valid images
only if the source images are rectified. Current
view interpolation algorithms, however, restrict
the synthetic view to a linear space defined by the
reference viewpoints and cannot synthesize views
from arbitrary viewpoints.

Laveau and Faugeras® developed a method that
allows arbitrary viewpoints if the viewpoint is
specified in terms of epipolar geometry with
respect to the original viewpoints. McMillan and
Bishop” and Kang and Szeliski® constructed cylin-
drical panoramic images from planar images
before synthesizing new views from the implicit
3D structure. With no existing real-time cylindri-
cal imaging systems, this approach cannot cur-
rently be extended to time-varying imagery.
Multiple Perspective Interactive (MPI) Video®
attempts to give viewers control of what they see
using a different approach. This method com-
putes 3D environments for view generation by
combining a priori environment models with
dynamic motion models recovered by intersect-
ing the viewing frustums of the pixels that indi-
cate motion.

A second class of view synthesis techniques
eliminates the need for pixel correspondences by
densely sampling the viewing space, possibly
interpolating missing views. Katayama et al.'®
demonstrated that it is possible to generate images
for arbitrary viewing positions from a dense set of
images on a plane. Satoh et al.!! used this proper-
ty to develop a prototype 3D image display system
with motion parallax. Two similar methods have
been proposed recently: lightfield rendering by
Levoy and Hanrahan'? and the lumigraph by
Gortler et al.’® Both methods convert the given
views into a four-dimensional field representing
all light rays passing through a 3D surface. New

view generation is posed as computing the correct
cross-section of this field. These methods require
the full calibration of each input view, but can
generate correct synthetic views from any view-
point outside of the convex hull of the scene.

We introduced Virtualized Reality and pre-
sented a few preliminary results in earlier work.'*
This article presents first results from a virtualiz-
ing facility that provides all-around coverage,
presently consisting of 51 cameras mounted on a
geodesic dome 5 meters in diameter.

3D Dome: The virtualizing studio

A virtualizing studio is a facility for making vir-
tualized models. Our studio, 3D Dome, transcribes
events from many angles to capture all-around
scene structure. The studio can provide accurate
scene structure for each video field—1/60th of a
second in NTSC—of a time-varying event. For
structure recovery, the studio captures every frame
of each video stream, maintaining synchroniza-
tion among the images taken at the same time
instant from different cameras. Synchronization
is crucial to correctly virtualize time-varying
events because stereo (the structure extraction
process) assumes that the images from the differ-
ent viewpoints correspond to a static scene. This
section provides a brief overview of the actual sys-
tem. A more detailed discussion of the setup and
the synchronous, multi-camera image acquisition
system can be found elsewhere.'®

The studio setup

Figure 1a shows the conceptual virtualizing
studio, and Figure 1b shows 3D Dome, the studio
we built using a geodesic dome 5 meters in diam-
eter. Fifty-one cameras are placed at nodes and the
centers of the bars of the dome, providing views
from angles surrounding the scene. Currently, we
use monochrome cameras, each equipped with a
3.6-mm lens for a wide view (about a 90-degree

Figure 1. The
Virtualized Reality

studio: (a) conceptual;

(b) 3D Dome.
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Figure 2. Six captured

images to be used to
compute scene

descriptions.
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horizontal field of view) of the dome. Color cam-
eras can provide more realistic virtualization, but
at higher costs.

Synchronous multi-camera image acquisition

Synchronous digital acquisition of many video
streams is a difficult task because even a single
monochrome camera providing 30 images per sec-
ond, each image captured digitally to contain 512
by 512 8-bit pixels, represents a bandwidth of 7.5
Mbytes per second. The sustained bandwidth to
store even a few video streams onto a secondary
storage device exceeds the capabilities of typical
image capture and digital storage systems, even
with the best lossless compression technology avail-
able today. For example, our current system—a Sun
Sparc 20 workstation with a standard 1-Gbyte hard
drive and with a K*T V300 digitizer—can capture
and store only about 750 Kbytes per second.
Specialized hardware can improve the throughput,
but at a cost level unsuitable for replication.

To overcome these limitations, we perform dig-
ital acquisition in two steps: real-time recording
and off-line digitization. The recording system uses
standard CCD cameras and consumer-grade VCRs.
The cameras are electronically synchronized to a
common sync signal. Every field of each camera’s
video output is time stamped with a common
Vertical Interval Time Code (VITC) before being
recorded onto video tape. The hardware for this
part of the system runs in real time, allowing con-

tinuous capture of long motion sequences. The
tapes are digitized individually off line.

A computer program interprets the VITC time
code of each field in real time as the tape plays.
Given a list of frames to capture, the digitizing
program captures as many from the list as it can.
When the tape goes past the last required frame,
the computer rewinds it to the starting frame,
replays the tape, and repeats the process. The real-
time VITC interpretation helps to identify frames
missed in previous passes, guaranteeing capture of
unique frames on each repetition.

In our experience, four passes suffice to capture
every frame, as the V300 can transfer every fourth
frame of a video stream to the computer memory.
The VITC time code in each field of the captured
image also serves to synchronize fields and frames
from different cameras. Figure 2 shows a still frame
as seen by six cameras of the virtualizing studio
digitized using the setup described above. A sepa-
rate report' gives more details on the synchronous
multi-camera recording and digitizing setup.

Computing scene descriptions

Scene descriptions are analogous to the 2.5D
sketch of the Marr paradigm, which encodes the
geometric and photometric structure of all sur-
faces visible from a specific location. We use a
stereo technique to compute the geometric struc-
ture, so this location coincides with the location
of the reference camera used in stereo computa-



tion. Since the images themselves have limited
field of view, the geometric extent of the scene
description is limited to the viewing frustum of
the reference camera. The transcription angle,
then, must include orientation as well as position.
Clearly, the distribution of the transcription
angles is important to the quality of the virtual-
ized reconstruction of the event.

Distribution of transcription angles

Our rendering strategy uses a scene descrip-
tion—more precisely, a textured triangle mesh
model derived from this description—as the fun-
damental unit of structure. Each transcription
angle specifies the location and orientation of one
scene description. Using the model from one
scene description, we can synthesize the appear-
ance of the surfaces from arbitrary viewing posi-
tions. As the virtual camera moves away from the
corresponding transcription angle, the quality of
the reconstruction decreases because of occlusion
and errors in the recovered structure. By mini-
mizing the distance between any desired view-
point and a real camera, we maximize the quality
of the synthesized images.

This behavior implies that transcription angle
density should be uniform and high to maximize
the output quality. In fact, a high enough density
eliminates the need for correspondences, allowing
direct interpolation of the images using algorithms
like the lumigraph'® or light field rendering.'? The
problem with such techniques is that the density
of camera views can easily become extremely high.
For example, Levoy and Hanrahan use as many as
8,000 images to compute a light field for a single
scene. For dynamic scenes, which require all the
views to be captured simultaneously, the amount
of hardware alone makes this strategy impractical.
Either way, a trade-off must be made between the
number of transcription angles and the quality of
reproduction.

The number of cameras sets an upper limit on
the number of transcription angles because each
angle requires a real view of the scene. If all cam-
eras are used to provide transcription angles, then
the camera distribution should satisfy the same
constraints as the transcription angle distribution.
Another factor in determining the camera distri-
bution is that stereo usually makes fewer mistakes
as the cameras are moved closer together. Because
we expected to use all cameras to obtain tran-
scription angles, we selected the number of cam-
eras (51) to meet these criteria. The initial
experiments described in this article use all 51 of

the transcription angles in the view synthesis
process; we intend to investigate the economy of
representation in the future.

Camera clusters

We compute stereo with each of the 51 cam-
eras as reference and with several other cameras
providing the baselines required for multi-baseline
stereo (MBS). Using many cameras improves the
extent and accuracy of stereo as long as features
in the reference camera can be successfully
matched to the features in the other cameras. The
matching gets increasingly difficult the more the
viewing angle differs. Arbitrarily adding more
cameras provides little improvement in stereo
accuracy while increasing the computational cost.
We therefore use only the immediate neighbors—
three to six depending on the specific camera in
our setup—of the reference camera for stereo com-
putations. These neighbors radiate out from the
reference camera in all available directions. We
modified the original formulation of MBS to han-
dle verged cameras. We are thus free to place cam-
eras in any orientation.

Camera calibration

Stereo programs require fully calibrated cam-
eras to extract structure in metric units. We cali-
brate for the intrinsic and extrinsic camera
parameters using Tsai’s'® approach modified and
implemented by Reg Willson. We do this in two
steps because our arrangement of cameras does
not adapt very well to a simultaneous calibration
procedure involving all cameras and all calibra-
tion parameters. We first calibrate each camera’s
intrinsic parameters—those that affect the projec-
tion of points from the camera’s 3D coordinates
to the image plane—individually using a movable
planar calibration object. The calibration process
estimates five intrinsic parameters: focal length,
image center (two parameters), aspect ratio, and
one radial lens distortion parameter. We then
place the cameras in their positions on the dome
and calibrate the six extrinsic parameters—rota-
tion and translation relative to a world coordinate
frame—using a set of dots on the floor visible to
all cameras. The world coordinate frame is rooted
on the floor in our case.

Multi-baseline stereo

We adapted the MBS algorithm developed by
Okutomi and Kanade' for a general camera con-
figuration (that is, nonparallel cameras) by incor-
porating the Tsai camera model. Two factors
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Figure 3. Scene

description of one
image. (a) Intensity
image. (b) Aligned

depth map.
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primarily motivate the choice of MBS. First, MBS
recovers dense depth maps, with a depth estimate
for every pixel in the intensity image. Second,
MBS takes advantage of the large number of cam-
eras we use to improve the depth estimates.

To understand the MBS algorithm, we begin by
considering two-camera stereo, with two parallel
cameras with the same focal length F. The per-
pendicular distance zto a scene point is related to
the disparity d (the difference in the image loca-
tions of the scene point) by

d= BFL )
VA

where B is the baseline, or distance between the
two camera centers. The precision of the estimat-
ed distance increases as the baseline between the
cameras increases. Increasing the baseline, how-
ever, also increases the likelihood of matching
points incorrectly. The correctness of correspon-
dence depends also on the image; the aperture
problem makes it difficult to localize features par-
allel to the camera baseline. MBS attempts to
improve matching by computing correspon-
dences between multiple pairs of images, each
with a different baseline. Since disparities are
meaningful only for a pair of images, we refor-
mulate Equation 1 to relate correspondences from
multiple image pairs as
d 1

BF- ;S 2

The search for correspondences can now be
performed with respect to the inverse depth ¢,
which has the same meaning for all image pairs
with the same reference camera, independent of
disparities and baselines. The resulting corre-
spondence search combines the correct corre-
spondence of narrow baselines with the precision
of wider baselines. The effect of the image fea-
tures’ orientation with respect to the baselines can

be mitigated by using baselines ori-
ented in multiple directions.

A popular method to compute
correspondences between a pair of
images compares a small window of
pixels from one image to corre-
sponding windows in the other
image. The correct position of the
window in the second image is con-
strained by the camera geometry to
lie along the epipolar line of the
position in the first image. The
matching process for a pair of images
involves shifting the window along this line as a
function of ¢, computing the match error—using
normalized correlation or sum of squared differ-
ences—over the window at each position. MBS
combines the error estimates for each camera pair
by computing their sum before finding the mini-
mum error. The inverse depth ¢ for the pointis
the ¢ at this minimum.

Window-based correspondence searches do not
localize matches well in regions of low image tex-
ture and along depth discontinuities, so we have
incorporated an interactive depth map editor into
our process of structure extraction. This step can
roughly be compared to movie editing but is not
as critical to the virtualizing process. We are cur-
rently exploring improvements to the stereo algo-
rithm to make this step unnecessary. Figure 3b
shows the edited depth map computed by MBS,
aligned with the reference image of Figure 3a, from
the images shown in Figure 2. The farther points
in the depth map appear more white.

View generation

We virtualize an event using a number of scene
descriptions. The other part of Virtualized Reality
deals with synthesizing the scene from a viewer-
specified angle using one or more scene descrip-
tions. We first translate the scene description into
a textured triangle mesh. We then synthesize new
views by rendering this mesh to create novel views
of the scene. This process takes advantage of the
capabilities of graphics workstations, which have
specialized hardware to render and texture map
polygon meshes. We use Silicon Graphics work-
stations such as the Onyx/RE2 that can render
about 1 million texture mapped triangles per sec-
ond, though any rendering platform would suffice.

We first describe how new views are synthe-
sized from a single scene description and how the
view generated from a single scene description will
be lower in quality as the virtual viewpoint moves



Pixel grid

Triangle 1:
Vertex 1: (x1,y1,21) Texture coord.: (u,/m,v,/n)
Vertex 2: (x2,y2,22) Texture coord.: (u,/m,v,/n)
Vertex 3: (x3,y3,23) Texture coord.: (us/m,v;/n)

away from the transcription angle corresponding
to that scene description. We then describe how
other scene descriptions can be used to improve
the quality of the synthesized image. Finally, we
present a method of traversing the virtualized
space in all directions using all the transcription
angles.

Synthesizing views from one scene description

There are two aspects to view generation using
one scene description: object definition and occlu-
sion handling. Object definition is the process of
converting a scene description into a textured tri-
angle mesh model. A simple method of object def-
inition is to construct one large surface that passes
through all of the points in a depth map. Since
real scenes frequently contain independent
objects which may occlude each other, we intro-
duce a method to handle these occlusions.

Object definition. There are two steps in defin-
ing the object from a scene description: convert-
ing depth into (x, y, 2 coordinates and
constructing a triangle mesh from these coordi-
nates to describe the surfaces visible from the tran-
scription angle. Converting depth into 3D
coordinates is a simple transformation, since the
depth values give the z-coordinates (in the camera-
centered coordinate system) of the surface points
at each pixel. To compute the (x, y) coordinates,
we use the camera’s intrinsic parameters to deter-
mine the viewing ray (the ray emanating from the
camera center and passing through a given pixel)
and intersect that ray with the plane at the given
distance z read from the depth map. We then
apply the camera’s extrinsic parameters to convert
the camera-centered (x, y, z) position into a posi-
tion in the common-world coordinate frame.

We must now convert the 3D points into a sur-

Coordinates of 3D point Triangle 1

(x1.y1.21) | (x2.y2,22)

(u1,v1) (u2,v2)

(u3,v3) (ud,va)

Coordinates of image point (}3:¥3.23) [ (x4.y4,z4)
Triangle 2

Triangle 2:
Vertex 1: (x2,y2,22) Texture coord.: (u,/m,v,/n)
Vertex 2: (x3,y3,23) Texture coord.: (us/m,v/n)
Vertex 3: (x4,y4,z4) Texture coord.: (u,/m,v,/n)

face representation. We treat the 3D points as ver-
tices of a triangle mesh, which changes the task to
selecting the 3D connectivity of the points. In
general, this problem will have many solutions,
but in our case we know more than just the 3D
locations of the vertices: We also know how they
project into the image plane. That is, we already
have a local connectivity of 3D points because of
their corresponding projections into the image
plane. The task therefore reduces to selecting local
connectivity in the image plane, a simpler prob-
lem than the general 3D one.

In addition, we can exploit the regular pixel
grid to guide the connectivity process, because all
the image projections of the 3D points lie exactly
on the pixel grid. Using this information, we
apply a simple pixel connectivity rule: Convert
every 2 x 2 pixel area into two triangles by adding
a diagonal, as shown in Figure 4. The only remain-
ing question with this approach is which diago-
nal to select, a decision that affects the local
surface properties of the mesh. Because our mesh
is sampled extremely finely, however, the visible
impact of the decision is small and we therefore
always select the same diagonal. The texture to
apply to each triangle is easily obtained by using
the pixel coordinates of the triangle vertices.

This simple strategy for object definition has
several important features. First, the 3D coordi-
nates are quickly and easily extracted from the
depth map using the calibration parameters.
Second, the resulting “model” is little more than
surface interpolation between 3D data points and
therefore faithfully reproduces the exact structure
inherent in the depth map. This fact implies that
although we use a 3D model, we are essentially
using the specialized rendering hardware as an
efficient way to perform geometrically correct
view synthesis, fundamentally eliminating the

Figure 4. Triangle mesh

and texture coordinate

definition.
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Figure 5. (a) Phantom
surfaces at depth

discontinuity. (b) Holes
appear when phantom
surfaces are removed.
(c) Merged view using
another scene

description to fill holes.
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geometric distortions that may exist in purely cor-
respondence-based view interpolation.*5

The major drawback of this method is that it
generates O(N\?) triangles for a depth map of size
N x N. The resulting object is simple and regular,
though, making it suitable for efficient rendering
on graphics workstations. In addition, the result-
ing mesh can be simplified easily by applying stan-
dard mesh decimation algorithms. According to
our experiments, a reduction by a factor of 10 or 20
can be achieved without significant loss in quality.

Occlusion handling. A scene description
encodes the 3D structure of the scene visible from
the transcription angle. The object definition
method just discussed implicitly assumes that
only one continuous surface is visible from the
transcription angle. If this assumption is violated,
then the model will contain additional “phan-
tom” surfaces that bridge depth discontinuities
between real surfaces, as seen in Figure 5a. Even if
the model is perfect everywhere else, the phantom
surfaces cause the rendered view to become visu-
ally unrealistic as the viewing angle moves farther
from the transcription angle.

We avoid phantom surfaces by eliminating tri-
angles with large depth discontinuities along any
edge. This results in “holes,” as seen in Figure 5b.
The holes correspond to areas not visible from the
transcription angle. This behavior is desirable,
since the scene description encodes information
only about the visible 3D scene structure.

Merging multiple scene descriptions

Holes in the views synthesized using a single
scene description correspond physically to the
regions occluded from the transcription angle. In
many cases, these regions are visible in the scene
descriptions from other transcription angles.
These scene descriptions can be used to fill the
holes and therefore improve the visual realism of
the synthetic views. Our rendering strategy uses
two additional scene descriptions for this purpose.
Our complete approach, then, uses three scene

descriptions to con-
struct each synthetic
image. The reference
scene description corre-
sponds to the transcrip-
tion angle “closest” to
the desired synthetic
viewpoint. The two
scene descriptions used
for hole filling are
called supporting scene descriptions.

We can develop a number of methods to
“merge” multiple scene descriptions. For example,
we could merge these different 3D views into a
single 3D model. Because our goal is only to con-
struct a synthetic image, we developed a simpler
merging strategy that works only with renderings
of the objects defined by the scene descriptions.
This strategy requires only 2D merging, making it
faster and simpler than 3D merging. We first syn-
thesize the desired view using the reference scene
description. To identify “hole” pixels, we render
separately the triangles that were eliminated
because of large depth variation. The synthetic
view is then re-rendered using the supporting
scene descriptions, with the rendering limited to
the hole pixels.

For example, Figure 5c shows the results of fill-
ing the holes of Figure 5b using one supporting
view. Notice that the background and the right
shoulder of the person have been filled properly.
The holes remaining in the image correspond to
the portion of the scene occluded from both the
reference and supporting transcription angles.

It is insightful to compare this algorithm to a
simpler one that identifies hole pixels by finding
pixels not touched after rendering the objects
from the reference scene description. This strate-
gy is appealing because of its simplicity and
because the eliminated triangles do not need to be
rendered.

However, under certain conditions this strate-
gy avoids filling regions that are obviously incor-
rect. In Figure 5b, for example, the reference scene
description did not see all of the person’s right
shoulder, so the synthesized view fills in this
region with pixels from the background. Using
this simpler merging strategy would not allow the
supporting view to correct these pixels, resulting
in the obvious error in the synthesized output.

Selecting reference transcription angle. Our
view generation strategy exhibits a highly desir-
able property: The synthesized view is exact and



hole-free when the desired view Virtual
coincides with a transcription angle, Camera
viewpoint

even with arbitrary errors in calibra-
tion and depth estimation. In addi-
tion, for a general scene, the quality 7R,
of the view synthesized from a single
scene description deteriorates as the

Figure 6. Selecting the reference

transcription angle. 6, is the angle

between the virtual camera’s line of

Target point

viewing angle moves away from its TR
transcription angle. This can happen

even with ideal models because of
foreshortening.

Consider, for example, a scene containing a
single receding plane as viewed from a transcrip-
tion angle. Because of foreshortening, the image
of the scene has less texture resolution for far parts
of the plane than for near parts. Even if the struc-
ture of this scene is recovered perfectly, the tex-
ture provided by a single scene description will be
forced to expand as the virtual camera moves to
view the plane frontally.

These properties suggest that the transcription
angles used to synthesize a virtual image should
be as “close” as possible to the desired viewpoint.
Despite its seeming simplicity, finding a good def-
inition of “close” is, in general, a highly complex
problem because of the possibility of occlusion.
Intuitively, we would expect the usefulness of a
transcription angle to increase as the virtual cam-
era moves closer (in physical space) to it.

Because the transcription angle has a limited
field of view, however, this intuitive metric is
insufficient. Using direction of gaze alone also has
clear problems. Potentially serious problems due
to occlusion arise even if we combine these two
metrics. For example, even if the virtual camera is
close to a real transcription angle and oriented in
the same direction, the desired viewpoint can lie
beyond the visible surfaces in the scene descrip-
tion—that is, the desired viewpoint can lie in the
region occluded from the transcription angle. As
a result, this transcription angle would be a poor
choice for synthesizing this image.

The metric we use to evaluate the “closeness”
of a virtual viewpoint to a transcription angle is
based on several assumptions about the distribu-
tion (3D placement) and orientation (field of
view) of the transcription angles and about the
general regions of interest in a typical scene. The
viewing direction of the virtual camera is specified
in terms of an eye point and a target point. The
virtual camera is situated at the eye point and ori-
ented so that its line of sight passes through the
target point. We measure closeness as the angle
between this line of sight and the line connecting

sight and the line joining the target
point with the position of the
transcription angle TR,. We select the
transcription angle TR; with the
smallest angle 6, as the reference

transcription angle.

TR
Reference
transcription ————~

angle Virtual i’ =
camera

viewpoint

TRy

Target point

Figure 7. Selection of supporting transcription angles. Given a reference

transcription angle, we determine the supporting angles by first enumerating the

neighboring angles (TR,) of the reference and then forming the triangles

containing the reference transcription angle and two of the neighbors. The

triangle pierced by the line of sight of the virtual camera determines the

supporting angles.

the target point to the 3D position of the tran-
scription angle, as shown in Figure 6. This mea-
sure works well when both the virtual viewpoint
and all the transcription angles point at the same
general region of space. In our system, the
assumption about transcription angle is true by
design, which tends to focus the user’s attention
on this same region.

Selecting supporting transcription angles.
We use supporting angles to compensate for the
occlusion in the reference description. The gener-
al problem of covering all occlusions with a few
transcription angles relates to the convex covering
problem and has no general solutions. That is, for
any given configuration of transcription angles, it
is possible to construct a scene in which certain
surfaces are occluded from all the transcription
angles. However, it is frequently possible to obtain
adequate coverage of occluded regions by concen-
trating only on the neighbors of the reference tran-
scription angle, especially when the transcription
angles are densely distributed.

Consider the triangles formed by the locations
of the reference transcription angle and all adja-
cent pairs of its neighbors, as in Figure 7. If the
transcription angle has n neighbors, there are n
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Figure 8. A baseball bat
swing from the
baseball’s point of view.
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such triangles. We determine which of these tri-
angles is pierced by the line of sight of the virtual
camera. The non-reference transcription angles
that form this triangle are selected as the support-
ing transcription angles. Using this approach, the
reference and supporting views “surround” the
desired viewpoint, essentially reducing the view
synthesis process to interpolation of an interme-
diate viewpoint from three real views.

Experimental results

We now present a few examples using real
data, including both static and dynamic scenes.
While the earlier sections on computing scene
descriptions and generating new views only dis-
cussed static scene analysis, the extension to
dynamic scenes is straightforward. Recall that
video is simply a sequence of images sampled and
displayed fast enough to give the illusion of con-
tinuous motion. Exploiting the same phenome-
non in our 3D environment, we apply static scene
analysis at each sample of a 3D time-varying event
to create the illusion not only of continuous scene

motion but also of a continuous user-controlled
viewpoint. (Note that examples of this nature are
best seen as a movie. You can find a few movies at
the project’s Web page, http://www.cs.cmu.edu/
Groups/VirtualizedR/.)

Ball's eye view

Because the virtual camera can move through
the virtualized environment without interfering
with the scene, it is possible to maneuver the cam-
era through paths that would be impossible in the
real world. To demonstrate this capability, we
reconstructed the flight of a virtual baseball
thrown at and hit by a batter. The real images (the
same images used throughout this paper to explain
the various components of Virtualized Reality)
come from a dynamic sequence of a person swing-
ing a baseball bat.

We collected the image sequences using our ini-
tial hardware configuration of 10 cameras (recall
that six camera views for one time instant appear
in Figure 2). We distributed these 10 cameras into
two clusters of five cameras and computed stereo



for a single camera in each cluster, resulting in
only two transcription angles. The virtual images
(in Figure 8) show the trajectory of a ball pitched
to the batter, hit by the bat, and knocked high
after being hit (in baseball terms, a popup). The
transcription angles were about 2,750 mm and
3,000 mm away from the baseball bat at the point
of the virtual camera’s closest approach (the image
labeled “Hit!” in Figure 8), while the virtual cam-
era was approximately 250 to 300 mm away from
the bat. As the images demonstrate, the synthetic
output is qualitatively correct even for this large
change in depth.

The distortions present in this example result
from three sources. Fundamentally, the real images
limit the texture resolution, so as the virtual cam-
era moves into the scene, the texture mapping
may zoom in beyond this available resolution.
Second, scene structure is limited by the quality of
camera calibration and correspondence estimation
and by the available image resolution (which
affects stereo). Therefore, the movement of the
camera “deep” into the scene also highlights any
inaccuracies in the computed scene structure.
Finally, the system has only two transcription
angles from which to work, and these viewpoints

are physically separated by almost two meters, rep-
resenting a rotation of nearly 60 degrees around
the person. Having only two views leaves more
holes in the synthetic output, while wide separa-
tion of those views requires more accurate surface
reconstruction to maintain consistency of struc-
ture between the transcription angles.

Virtual camera versus real camera

Virtualized Reality seeks only to provide “believ-
able” views of a scene at times, which requires some
internal consistency but not necessarily consistency
with the real world. This example explores the more
difficult case requiring faithful, accurate recon-
struction. Here we compare the virtual view gener-
ated using Virtualized Reality with what a real
camera placed at that location sees for three frames
of a golf swing. The scene was again captured from
two transcription angles (four cameras in a cluster),
located at (821, -74, -2,502) and (-968, -35, -2,334)
in the world coordinate frame (units are millime-
ters). The person was approximately 2,500 mm
away from the transcription angles.

Figure 9 shows the virtual and real camera views
located at (-228, -353, -2,580), near the middle of
the two transcription angles. Figure 10 does the

Figure 9. Comparing
generated virtual-
camera views with real-
camera views, located
near the middle of the
two transcription
angles. Views from a
real camera (top row).
Views generated for the
same positions using
Virtualized Reality
(bottom row).
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Figure 10. Comparing
generated virtual-
camera views with
real-camera views,
located far from the
two transcription
angles. Views from a
real camera (top row).
Views generated for
the same positions
using Virtualized
Reality (bottom row).

Figure 11. Some views

from a spiraling path in

a static scene.
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same for the virtual and real camera position (181,
-1,050, -1,500), significantly far from the tran-
scription angles in x, y, and z directions. The gap at
the back of the person’s neck corresponds to the
region occluded from both transcription angles.
The virtual camera view is quite faithful to the real
camera view, though the errors in recovering the
structure show up more prominently when the vir-
tual camera is far from the transcription angles.
Note that this scene was processed using full-image
frames, each of which contains two image fields
taken at different times—clearly visible in the real
images of the golf club, for example. Even without
compensation for this effect, the recovered struc-

ture was sufficient to produce realis-
tic output.

All-around view

As noted, the two examples above
used an early setup for studying
Virtualized Reality that consisted of
two transcription angles. We have
subsequently expanded the setup to
51 transcription angles to virtualize
the event from all directions. We
expected the increase in the number
of transcription angles to improve
the overall synthetic image quality in
three ways. First, with more than two
views, we expected that hole filling
would work better since we could
always select three transcription angles from
which to render the scene. Second, the cameras
were more closely spaced than before, reducing the
space over which each transcription angle was
required to assist with the rendering. Finally,
because the cameras surrounded the scene, the
viewer could move nearly anywhere in the scene
and still see a reasonable reconstruction.

We demonstrate this updated system using a
simple static scene of a person sitting on a table.
Figure 11 shows a few views of this scene from a
virtual camera winding through the dome. As
expected, the number of unfilled pixels dropped
significantly. Almost all of the remaining holes



occur because the virtual camera has moved
below all of the real transcription angles, which
requires extrapolation rather than interpolation
of the scene descriptions at the reference and sup-
porting transcription angles.

Two significant errors are still detectable in the
output, however. The first is a “ghosting” effect,
something like a shadow around the person. This
occurs in the holes present in the rendering of the
reference scene description. It results from incon-
sistencies in the video gain and offset levels of
each camera. If a “bright” camera is used as a sup-
porting angle of a “dark” camera, then even cor-
rectly matched regions can exhibit significant
differences in apparent brightness. This problem
is compounded because the absolute intensity
received from a real surface usually varies with the
viewing angle, but our system does not currently
model this effect.

The second error, not really discernible in a set
of static renderings, is the inaccuracies in repro-
ducing motion parallax. That is, as the virtual
camera moves around a static scene, the viewer
expects to see continuous motion in the virtual
image sequence, but the actual virtual image
motion exhibits occasional discontinuities. This
“jerkiness” occurs when the reference transcrip-
tion angle switches, which may reveal the incon-
sistencies between the structures recovered from
the two angles.

Combining virtual and virtualized environments

Because a virtualized environment is a metric
description of the world, we can introduce virtual
objects into it. A virtual ball, for example, is intro-
duced into a virtualized baseball scene as shown in
Figure 12. Note that the rendering of the virtual
object can be performed after the synthesis of the
virtual camera image without the objects or con-
currently with the virtual objects. We can use this
approach to extend chromakeying, which uses a
fixed background color to segment a region of

interest from a real video stream and then insert it
into another video stream. Because we have depth,
we can perform zkeying, which combines the
multiple streams based on depth rather than on
color.'” In fact, we can even simulate shadows of
the virtual object on the virtualized scene, and vice
versa, further improving the output image realism.

Conclusions and future work

Our examples prove that useful and interesting
applications of Virtualized Reality are just around
the corner. We intend to pursue such possibilities
in the coming months. We also plan to integrate a
stereoscopic display with head tracking to give
viewers the feeling of true immersion in the scene.

An open issue concerns the combined effect of
imperfect calibration, correspondence finding, and
mesh generation. The experiments presented here
reveal a clear need to improve the rendering sys-
tem to be more resilient to these inaccuracies. This
would affect the filling of holes and the motion
parallax of the synthesized output—a dynamic
property that has received almost no attention
from the view synthesis community in the past. In
addition, it is clear that systems with many cam-
eras require synthesis algorithms capable of han-
dling images of varying brightness to prevent
“ghosts” in the holes present in the image synthe-
sized from the reference transcription angle.

A research effort currently under way involves
creating object-centered models of the scene by
merging the scene descriptions. We use a voxel-
based approach for the merging, with each scene
description voting for the presence or absence of
surfaces in the 3D world based on the depth map
from that transcription angle. The contribution of
each depth map is only one of many, providing a
significant degree of robustness in the presence of
noise in the depth maps. The final model is recov-
ered by triangulating an isosurface extracted from
the merged voxel space, providing an object-
centered model for the scene such as the one in

Figure 12. Introducing a

virtual ball into a
virtualized scene.
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Figure 13. An object-
centered model (right)
computed by merging 51
depth maps and shown
aligned with an actual

camera view (left).
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Figure 13. Using the recovered structure, it is also
possible to accumulate texture from the 51 inten-
sity images.

The virtualizing facility itself opens up possi-
bilities for interesting research in other areas as
well. For example, other view generation strate-
gies, image-based rendering or view interpolation
in particular, can be studied and compared with
the depth map-based view generation. We could
also extend the capabilities of Virtualized Reality
to let the viewer interact with the virtualized
world. For instance, modeling a scene as a collec-
tion of distinct objects lets the viewer manipulate
the position and appearance of each indepen-
dently. We intend to pursue these directions in
the near future. MM
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