
CS 4/791E Computer Vision

Spring 2004 - Dr. George Bebis

Programming Assignment 1

Due date: 2/26/04

This assignment has two parts. The goal is to familiarize yourselves with some fundamental
image processing algorithms and the OpenCV library.

1. (25 pts) Implement image smoothing using convolution with Gaussian masks. First, imple-
ment 2D Gaussian convolution using 1D Gaussian masks as discussed in class. I have put on the
web the code for generating the Gaussian mask. For comparison purposes, implement 2D Gaus-
sian convolution using 2D Gaussian masks. For this part, use OpenCV’s cvSmooth function and
the option CV_GAUSSIAN. In both cases, show your results using mask sizes 3x3, 5x5, and 7x7.

2. (75 pts) The majority of face recognition algorithms require that human faces in an image
have been detected an normalized prior to recognition. By normalization we imply normalize
faces with respect to location, size, orientation, and lighting. Here, you would need to implement
a simple algorithm based on affine transformations.

P P1 2

P
3

f f

f

Figure 1. A typical face image showing the features of interest.

Specifically, the algorithm uses an affine transformation to map certain facial features (e.g., eyes)
to predetermined locations in a fixed window (e.g., 20x20). Figure 1 shows an example. Light
correction and histogram equalization can be applied on the result to normalize faces with
respect to illumination but you would not have to worry about it in this assignment. Figure 2



-2-

shows examples of faces normalized with respect to location, size, and orientation while Figure 3
shows the results of illumination normalization.

Figure 2. Examples showing face images before and after normalization.

Figure 3. Original images (top), light-corrected images (3rd row), and histogram equalized
images (last row).

A set of images to be used in your experiments are available from the course’s webpage. In this
assignment, you will be using the following facial features: left eye center, right eye center, tip
and mouth center. First, you would need to extract manually the coordinates of these facial fea-
tures from each face image provided. Use xv for this step or any other image viewer. For exam-
ple, when placing the cursor on the image locations of interest and clicking the middle mouse
button, xv displays the image coordinates of the cursor on the screen (warning: the column num-
ber is shown first and the row number second). Then, you would need to choose the predeter-
mined locations of these features in a fixed size window, let’s say, 40x48 (note that the original
images have size 112/92, so the aspect ratio is maintained) and compute the parameters of the
affine transformation.

Every feature point needs to be mapped to its corresponding location in the fixed window, thus, it
needs to satisfy the affine transformation equations. For example, let’s say that the average eye
and mouth locations are denoted as (P1, P2, P3), and the predetermined locations as (P f

1 , P f
2 ,



-3-

P f
3 ), then the affine transformation equations are given below:

P f
1 = AP1 + b

P f
2 = AP2 + b

P f
3 = AP3 + b

where

A =




a11

a21

a12

a22





and b =




b1

b2





The above equations can be rewritten as

Pc1 = px

Pc2 = py

where

P =





X1

X2

X3

Y1

Y2

Y3

1

1

1






px =





X f
1

X f
2

X f
3






py =





Y f
1

Y f
2

Y f
3






c1 =





a11

a12

b1






c2 =





a21

a22

b2






Since each facial feature from each image contributes a pair of equations (i.e., one of the x-coor-
dinates and one for the y-coordinates), by putting together all the equations you get an overdeter-
mined set of linear equations that can be solved using Singular Value Decomposition (SVD). I
have put on the web the code for solving overdetermined systems of equations. We will talk
about SVD in detail later in this course. Once you have solved for the parameters of the affine
transformation, you would need to normalize each face using the computed affine transforma-
tion.

You would need to turn in a report, including the results of your experiments, and a discussion.
Show the inverse equations for the affine transformation too. Email me your code with instruc-
tions of how to compile it and run it.


