Point Detection

- We are often interested in detecting point features in an image.

- These features are usually defined as regions in the image where there is significant edge strength in two or more directions.

• A naive approach

- Apply a mask over the image.

*

- Apply thresholding:

if |R| > T, then possible discontinuity !

=

mask					
-1	-1	-1			
-1	8	-1			
-1	-1	-1			

original image

1	1	1	1	1
1	10	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

convolved image

-	-	-	-	-
-	72	-9	0	_
_	-9	-9	0	-
-	0	0	0	-
_	_	_	-	_

- Depending on the value of T we can get:

4 points $(0 < T \le 9)$ 1 point $(9 < T \le 72)$ 0 points (T > 72)

• A better approach (Trucco, pp. 82-85)

- Let us assume that f_x and f_y denote the partial derivatives of the image f.

- Let us assume a corner p and a neighborhood Q of p (e.g., 3x3, 5x5. etc.)

- The following matrix C is very important for deciding the presence of p (it characterizes the structure of the gray-levels):

$$C = \begin{bmatrix} \sum_{Q} f_x^2 & \sum_{Q} f_x f_y \\ \sum_{Q} f_x f_y & \sum_{Q} f_y^2 \end{bmatrix} = \sum_{Q} \begin{bmatrix} f_x \\ f_y \end{bmatrix} \begin{bmatrix} f_x & f_y \end{bmatrix}$$

- One way to examine the presence of a corner is to look the eigenvalues of C (they are both positive, why?):

(1) the eigenvectors encode edge directions

(2) the eigenvalues encode edge strength

(1) if the area is a region of constant intensity, <u>both eigenvalues</u> will be very small.

(2) if it contains an edge, there will be <u>one large</u> and <u>one small eigenvalue</u> (the eigenvector associated with the large eigenvalue will be parallel to the image gradient).

(3) if it contains edges at two or more orientations (i.e., a corner), there will be two large eigenvalues (the eigenvectors will be parallel to the image gradients).

- How should we compare the eigenvalues?

* find locations where the smaller eigenvalue is greater than some threshold.

* consider the ratio of the two eigenvalues.

Algorithm			
Input: image f, threshold t for λ_2 , size of Q			
(1) Compute the gradient over the entire image f			
(2) For each image point <i>p</i> :			
(2.1) form the matrix <i>C</i> over the neighborhood <i>Q</i> of <i>p</i> (2.2) compute λ_2 , the smaller eigenvalue of <i>C</i> (2.3) if $\lambda_2 > t$, save the coordinates of <i>p</i> in a list <i>L</i>			
(3) Sort the list in decreasing order of λ_2			
(4) Scanning the sorted list top to bottom: delete all the points that appear in the			

list that are in the same neighborhood Q with p

• Problems

- How to choose *t*? (sometimes, the histogram of λ_2 values can help us pick a good value).

- How to choose the size of the neighborhood Q? (large neighborhoods do lead to good localization results while very small neighborhoods might not give good detection rates)