Deformable/Active Contours (or Snakes)
(Trucco, Chapt 4)

- The goal is to find a contour that best approximates the perimeter of an object.

- It is helpful to visualize it as a rubber band of arbitrary shape that is capable of deforming during time, trying to get as close as possible to the target contour.

- It is applied to the gradient magnitude of the image, not to the edge points (e.g., like the Hough transform).

• Procedure

- Snakes do not solve the entire problem of finding contours in images.

- They depend on other mechanisms such as interaction with a user or with some other higher-level computer vision mechanism:

 (1) First, the snake is placed near the image contour of interest.

 (2) During an iterative process, the snake is attracted towards the target contour by various forces that control the shape and location of the snake within the image.
• Approach

- It is based on constructing an energy functional which measures the appropriateness of the contour.

- Good solutions correspond to minima of the functional.

- The goal is to minimize this functional with respect to the contour parameters.

• Contour parameterization

- The snake is a contour represented parametrically as $c(s) = (x(s), y(s))$ where $x(s)$ and $y(s)$ are the coordinates along the contour and $s \in [0,1]$

• The energy functional

- The energy functional used is a sum of several terms, each corresponding to some force acting on the contour.

- A suitable energy functional is the sum the following three terms:

 \[E = \int (\alpha(s)E_{cont} + \beta(s)E_{curv} + \gamma(s)E_{image}) ds \]

- The parameters α, β, and γ control the relative influence of the corresponding energy terms and can vary along c.
-3-

• Interpretation of the functional’s terms

- Each energy term serves a different purpose:

 - E_{image}: it attracts the contour toward the closest image edge.

 - E_{cont}: it forces the contour to be *continuous*.

 - E_{curv}: it forces the contour to be *smooth*.

- E_{cont} and E_{curv} are called *internal* energy terms.

- E_{image} is called *external* energy term.

• The continuity term

- Minimize the first derivative:

 $$E_{cont} = \| \frac{dc}{ds} \|^2$$

- In the discrete case, the contour is approximated by N points p_1, p_2, \ldots, p_N and the first derivative is approximated by a finite difference:

 $$E_{cont} = \| p_i - p_{i-1} \|^2$$ or

 $$E_{cont} = (x_i - x_{i-1})^2 + (y_i - y_{i-1})^2$$

- This term tries to minimize the distance between the points, however, it has the effect of causing the contour to shrink.

- A better form for E_{cont} is the following:

 $$E_{cont} = (\bar{d} - \| p_i - p_{i-1} \|)^2$$

 where \bar{d} is the average distance between the points of the snake.

- The new E_{cont} attempts to keep the points at equal distances (i.e, spread them equally along the snake).
The smoothness term

- The purpose of this term is to enforce smoothness and avoid oscillations of the snake by penalizing high contour curvatures.

- Minimize the second derivative (curvature):

\[E_{\text{curv}} = \left\| \frac{d^2 c}{ds^2} \right\|^2 \]

- In the discrete case, the curvature can be approximated by the following finite difference:

\[E_{\text{curv}} = \| p_i - 2 p_i + p_{i+1} \|^2 \text{ or } E_{\text{curv}} = (x_{i-1} - 2x_i + x_{i+1})^2 + (y_{i-1} - 2y_i + y_{i+1})^2 \]

The edge attraction term

- The purpose of this term is to attract the contour toward the target contour.

- This can be achieved by the following function:

\[E_{\text{image}} = -\| \nabla I \| \]

where \(\nabla I \) is the gradient of the intensity computed at each snake point.

- Note that \(E_{\text{image}} \) becomes very small when the snake points get close to an edge.
• **Discrete formulation of the problem**

Assumptions

Let I be an image and $\bar{p}_1, ..., \bar{p}_N$ the initial locations of the snake (evenly spaced, chosen close to the contour of interest).

Problem Statement

Starting from $\bar{p}_1, ..., \bar{p}_N$, find the deformable contour $p_1, ..., p_N$ which fits the target contour by minimizing the energy functional:

$$\sum_{i=1}^{N} (\alpha_i E_{cont} + \beta_i E_{curv} + \gamma_i E_{image})$$

• **A greedy algorithm**

- A greedy algorithm makes *locally optimal choices*, hoping that the final solution will be *globally optimum*.

Step 1 (greedy minimization): each point of the snake is moved within a small neighborhood (e.g., $M \times M$) to the point which minimizes the energy functional.

Step 2 (corner elimination): search for corners (curvature extrema) along the contour; if a corner is found at point p_j, set β_j to zero.
Algorithm

The input is an intensity image I containing the target contour and points $p_1,...,p_N$, defining the initial position and shape of the snake.

1. For each p_i, $i = 1,...,N$, search its $M \times M$ neighborhood to find the location that minimizes the energy functional; move p_i to that location.

2. Estimate the curvature of the snake at each point and look for local maxima (i.e., corners); Set β_j to zero for each p_j at which the curvature is a local maximum and exceeds a threshold.

3. Update the value of \tilde{d}.

Repeat steps 1-3 until only a very small fraction of snake points move in an iteration.
• **Implementation details**

- It is important to normalize the contribution of each term for correct implementation:

 (1) For E_{cont} and E_{curv}, it is sufficient to divide by the largest value in the neighborhood in which the point can move.

 (2) Normalize $\|\nabla I\|$ as $\frac{\|\nabla I\| - \text{min}}{\text{max} - \text{min}}$ where min and max are the minimum and maximum gradient values in the neighborhood.

• **Comments**

- This approach is simple and has low computational requirements ($O(MN)$).

- It does not guarantee convergence to the global minimum of the functional.

- Works very well as far as the initial snake is not too far from the desired solution.