
Edge Contour Extraction
(Pitas, section 5.5, Sonka et al., sections 5.2.4-5.2.5)

- Edge detectors typically produce short, disjoint edge segments.

- These segments are generally of little use until they are aggregated into extended
edges.

- We assume that edge thinning has already be done (e.g., non-maxima suppression).

- Two main categories of methods:

(1) local methods (extend edges by seeking the most "compatible" candidate
edge in a neighborhood).

(2) global methods (more computationally expensive - domain knowledge can
be incorporated in their cost function).

Note: local methods can not handle big gaps.

-2-

Local processing methods

- Some important observations useful for contour extraction:

* The output of edge detectors tend to have approximately constant intensity
along object boundaries.

* I mage edges and lines are smooth and tend to have low curvature.

* Small local edge direction differences ensure smooth object boundaries.

(1) At each edge pixel, a neighborhood (e.g., 3x3) is examined.

(2) The center edge pixel can be linked with its neighbors if the magnitude and
direction differences are below certain thresholds and their magnitudes are rela-
tively large:

|e(pi) − e(p j)| ≤ T1

|
�
(pi) − �

(p j)| ≤ T2

|e(pi)| ≥ T |e(p j)| ≥ T

-3-

• Contour extraction using heuristic search

- A more comprehensive approach to contour extraction is based on graph searching.

- Graph representation of edge points:

(1) Edge points at positionpi correspond to graph nodes.

(2) The nodes are connected to each other if local edge linking rules (e.g., like
the ones given previously), are satisfied.

(the edge linking rules may be modified to suit the requirements of a particular
problem).

- The generation of a contour (if any) from the pixel pA to the pixel pB is equivalent
to the generation of a minimum-cost path in the directed path.

- A cost function for a path connecting nodesp1 = pA to pN = pB could be defined
as follows:

C(p1, p2, . . . , pN) = −
N

k=1
Σ |e(pk)| + a

N

k=2
Σ |� (pk) − � (pk−1)| + b

N

k=2
Σ |e(pk) − e(pk−1)|

- Finding a minimum-cost path is not trivial in terms of computation (typically, the
approach is to sacrifice optimality for the sake of speed).

-4-

• Contour extraction using dynamic programming

Dynamic programming

- It is an optimization method that searches for optima of functions in which not all
the variables are simultaneously interrelated.

- It subdivides a problem recursively into smaller subproblems that may need to be
solved in the future, solving each subproblem - proceeding from the smaller ones to
the larger ones - and storing the solutions in a table that can be looked up as and
when need arises.

Principle of optimality (applied to the case of graph searching): the optimal path
between two nodespA, pB, can be split into two optimal sub-pathspA pi and pi PB
for any pi lying on the optimal pathpA pB.

Express the problem in recursive form

- Consider the following objective function to be maximized:

F(p1, p2, . . . , pN) =
N

k=1
Σ |e(pk)| − a

N

k=2
Σ |� (pk) − � (pk−1)|

- The objective function can be written in a recursive form as follows:

F(p1, p2, . . . , pk) = F(p1, p2, . . . , pk−1) + f (pk−1, pk)

where f (pk−1, pk) = |e(pk)| − a|� (pk) − � (pk−1)|

Complete optimization problem

F̂(p̂1, p̂2, . . . , p̂k) = maxpi i=1,2,...,k [F(p1, p2, . . . , pk)]

-5-

Solution using dynamic programming

- The optimal pathp̂1 p̂k can be split into two optimal sub-pathŝp1 p̂k−1 and p̂k−1 p̂k
satisfying the following recursive relation:

F̂(p̂1, p̂2, . . . , p̂k) = maxpi i=1,2,...,k [F(p1, p2, . . . , pk−1) + f (pk−1, pk)] =

maxpk
[F̂(p̂1, p̂2, . . . , p̂k−1) + f (p̂k−1, pk)]

- The initial value ofF̂(p̂1) is giv en by:

F̂(p̂1) = |e(p1)|

- Dynamic programming has reduced the global opimization problem toN stages of
two variable optimization.

-6-

A-algorithm (by Nilsson, 1980)

(1) Expand the starting nodex A and put all its successors into an OPEN list with
pointers back to the starting nodex A. Evaluate the costf () for each expanded
node.

(2) If the OPEN list is empty, fail. Determine the nodexi from the OPEN list with
the lowest associated costf (xi) and remove it, If xi=xB, then trace back through
the pointers to find the optimum path and stop.

(3) If the option to stop was not taken in step 2, expand the specified nodexi, and
put its successors on the OPEN list with pointers back toxi. Compute their costs
f (). Go to step 2.

- Note that this algorithm does not guarantee the globally optimum path.

- One disadvantage of the heuristic search algorithm is that short paths may have
smaller cost than longer paths that are more likely to be the final winners.

- Pruning certain paths (e.g., short ones, paths having high cost per unit length) can
help alleviate some of these problems.

-7-

• An example

- A pixel is linked to one of its three 8-connected neighbors in front of the con-
tour direction.

- f (xk) is the sum of edge gradient magnitudes along the path fromx A to xk
(i.e., max cost is used in this example).

- The algorithm finds the path ADEFB -- cost 31 (the optimum path, however, is
the path ACDEFB -- cost 32)

-8-

Global processing methods

- If the gaps between pixels are very large, local processing methods are not effec-
tive.

- Global methods are more effective in this case !!

Hough Transform can be used to determine whether points lie on a curved of a
specified shape (model-based method).

Deformable Models (Snakes) can be used to extract the boundaries of objects
having arbitrary shapes.

Grouping can be used to decide which groups of features are likely to be part of
the same object.

