
Edge Contour Representation
(Jain et al., Chapt 6, Gonzalez et al., Chapt 8)

(1) The simplest representation of a contour is using an ordered list of its edge
points.

* A s accurate as the location estimates for the edge points.
* Not very compact representation.
* Not very effective representation for subsequent image analysis.

(2) A more powerful representation is fitting an appropriate curve having some ana-
lytical description (i.e., line segments, circular arcs, cubic splines).

* I ncreases accuracy (errors in edge location are reduced through averaging).
(e.g., fitting a line to a set of edge points that lie along a line)
* M ore compact and efficient representation for subsequent image analysis.

• Curve interpolation vs curve approximation

- A curve interpolates a list of points if it passes through the points.

- A curve approximates a list of points if it passes close to the points, but not neces-
sarily passing exactly through the points.

- Curve interpolation methods are more appropriate when the edges have been
extracted accurately.

- In practice, curve approximation methods yield better results because the edge
locations can not be extracted very accurately.

approximationinterpolation



• Digital contours

- The length of a digital contourp1 = (x1, y1), p2 = (x2, y2), ..., pn = (xn, yn) can be
approximated by adding the lengths of the individual segments between edge points:

L =
n

i=2
Σ √ (xi − xi−1)2 + (yi − yi−1)2

- Slope (tangent) and curvature are difficult to compute precisely since the angle
between neighboring edge pixels is quantized to 45 degrees increments.

- The idea is to compute the slope using edge points that are not adjacent:

left k-slope: the direction between pointspi−k and pi
right k-slope: the direction between pointspk and pi+k
k-curvature: the difference between the left and rightk-slopes.

• Distance of point from line

- Equation of line passing from two points (x1, y1), (x2, y2):

x(y1 − y2) + y(x1 − x2) + y2x1 − y1x2 = 0

- Distanced of edge point (u, v) from the line:

d =
r

D

r=u(y1 − y2) + v(x1 − x2) + y2x1 − y1x2

D is the distance between (x1, y1) and (x2, y2).



• Evaluating the goodness of the fit

Maximum absolute error: measures how much the points deviate from the curve in
the worst case.

MAE = maxi |di|

Mean squared error: gives an overall measure of the deviation of the curve from the
edge points.

MSE =
1

n

n

i=1
Σ d2

i

Normalized maximum absolute error: the ratio of the maximum absolute error to the
length of the curve (error becomes independent of the length of the curve).

NMAE =
maxi |di|

L

Ration of curve length to the end point distance: a good measure of the complexity
of the curve.



Contour representation using edge points

• Chain-code representation

- Specifies the direction of each edge point along the contour.

(1) Start at the first edge point and go clockwise around the contour.

(2) The direction to the next edge point is specified using one of the four or eight
quantized directions.

chain code: 0033333...01



- The chain-code can be made invariant to starting point by:

* Treating the code as a circular sequence

* Choosing the starting point such as the resulting code forms an integer of min-
imum magnitude.

- The derivative of the chain-code (difference code) is invariant to rotation:

10103322 -> 33133030(i.e., 2-1->3, 1-0->3, 0-1->1, 1-0->3, ....)

• Slope representation( � -s plot)

- A continuous version of the chain code (arbitrary directions).

(1) Start at the first edge point and go clockwise around the contour.

(2) Estimate the slope and arc length using the formulas given previously for digi-
tal contours.

(3) Plot the slope versus the arc-length.



- The � -s plot is a representation of the shape of the contour:

* Horizontal line segments in the� -s plot correspond to straight lines in the
contour.

* L ine segments at other orientations correspond to circular arcs.

* Portions of the� -s plot that are non straight lines correspond to other curve
primitives.

- Some comments

* Different starting points cause a shift in thes-axis.

* Rotations cause a shift in the� -axis.

* The � -s plot is not very tolerant to noise.

• Slope density function

- The histogram of the slopes along a contour.

- Can be very useful for object recognition.

- Orientation can be determined using correlation of slope histograms.



• Centroidal profile representation

- Plot the distance from the centroid to the boundary as a function of angle.

- Some comments

* I nv ariant to rotation but depends on starting point.

* Can be made invariant to scaling (e.g., divide by the largest distance).

* Tolerant to noise.



Contour representation using curve fitting (inter polation)

- The main assumption when using interpolation is that the edge points have been
extracted accurately.

- Errors in edge locations can be handled better using curve-fitting based on approxi-
mation (will be discussed later).

• Curve fitting models

- Straight line segments
- Circular arcs
- Conic sections
- Cubic splines

• Polygonal representation

- Fits the edge points with a sequence of line segments (i.e., contour is represented
as a polygon).

- The polygon interpolates a selected subset of edge points (i.e., the ends of each line
segment are edge points).

- We will be referring to those edge points as vertices.



- Three ways to compute the polygonal approximation of a contour:

Split algorithm (top-down)

(1) Take the line segment connecting the end points of the contour (if the contour
is closed, consider the line segment connecting the two farthest points).

(2) Find the farthest edge point from the line segment.

(3) If the normalized maximum error of that point from the line segment is above
a threshold, split the segment into two segments at that point (i.e., new vertex).

(4) Repeat the same procedure for each of the two subsegments until the error is
very small.

- Can be used for closed contours too!



Merge algorithm (bottom-up)

(1) Use the first two edge points to define a line segment.

(2) Add a new edge point if it does not deviate too far from the current line seg-
ment.

(3) Update the parameters of the line segment using least-squares.

(4) Start a new line segment when edge points deviate too far from the line seg-
ment.

Split and Merge algorithm

- The accuracy of l ine segment approximations can be improved by interleaving
merge and split operations.

(1) After recursive subdivision (split), allow adjacent segments to be replaced by a
single segment (merge).

(2) Alternate applications of split and merge until no segments are merged or
split.



- Some comments

* Polygonal representations are more economical that using edge points.

* We can make the error as small as desired by splitting the contour into very
small line segments.



• Cir cular arcs

- Once an edge list has been approximated by line segments, subsequences of the
line segments can be replaced by circular arcs.

- This involves fitting circular arcs through the endpoints of two or more line seg-
ments.

(1) Initialize the window of vertices to the three endpoints of the first two line
segments in the polygonal approximation.

(2) Compute the ratio of the length of the part of the contour corresponding to the
two line segments to the distance between the end points. If the ratio is small,
then leave the first line segment unchanged, advance the window of vertices by
one vertex, and repeat this step.

(3) Fit a circle through the three vertices.

(4) If the fit is not good (i.e., normalized maximum error is too large), then leave
the first line segment unchanged, advance the window of vertices, and return to
step 2.

(5) If the circle fit succeeds, then try to include the next line segment in the circu-
lar arc. Repeat this step until no more line segments can be subsumed by this cir-
cular arc.

(6) Advance the window to the next three polygon vertices after the end of the cir-
cular arc and return to step 2.



• Conic sections and cubic splines

- Conic sections correspond to hyperbolas, parabolas, and ellipses (2nd degree poly-
nomials).

- Cubic splines correspond to 3rd degree polynomials.

- Conic sections and cubic splines allow more complex contours to be represented
using fewer segments.



Contour representation using curve fitting (approximation)

- Higher accuracy can be obtained by computing an approximation that is not forced
to pass through particular edge points.

- Approximation-based methods use all the edge points to find a good fit (this is con-
trast to the previous methods that use only the interpolated edge points).

- Methods to approximate curves depend on the reliability with which edge points
can be grouped into contours.

(1) Least-squares regression can be used if it is certain that the edge points
grouped together belong to the same contour.

(2) Robust regression is more appropriate if there are some grouping errors.

• Noise-free case

- Suppose the curve model we are trying to fit is described by the equation

f (x, y, a1, a2, . . . ,a p) = 0

- In the noise-free case, it suffices to usep edge points to solve for the unknown
parametersa1, a2, ..., a p.

- In practice, we need to use all the edge points available to obtain good parameter
estimates.



• Least-squares line fit

- Linear regression fits a line to the edge points by minimizing the sum of squares of
the perpendicular distances of the edge points from the line being fit.

Χ2 =
n

i=1
Σ(xi sin � − yi cos� + � )2

- The solution to the linear regression problem is

� = y cos� − x sin �

where

x =
1

n

n

i=1
Σ xi y =

1

n

n

i=1
Σ yi,

and

tan � =
a

b + c

where

a = 2
n

i=1
Σ(xi − x)(yi − y),

b =
n

i=1
Σ(xi − x)2 −

n

i=1
Σ(yi − y)2

c = √ a2 + b2



- Some problems with linear regression:

* I t works well for cases where the noise follows a Gaussian distribution.

* I t does not work well when there are outliers in the data (e.g., due to errors in
edge linking ).



• Robust regression methods

- Outliers can pull the regression line far away from its correct location.

- Robust regression methods try various subsets of the data points and choose the
subset that provides the best fit.

Iterative fitting

(1) Fit the line to the data set.

(2) Remove the point with the worst error.

(3) If the line parameters do not change significantly, quit, else repeat from step 1

Least-median of squares
(assume that there aren data points andp parameters in the model)

(1) Choosep points at random from the set ofn data points.

(2) Compute the fit of the model to thep points.

(3) Compute the median of the square of the residuals.

(4) Repeat until the median squared error is less than some threshold, or take the
best median error result after some number of runs.

- This algorithm can handle up to 50% outliers in the data set.



Contour representation at multiple scales

- The curvature scale space (CSS) approach has been introduced as a shape repre-
sentation for planar curves.

- The idea is finding points of inflection (i.e, curvature zero-crossings) on the curve
at varying levels of detail.

- The curvaturek of a planar curve, can be expressed as follows:

k(t) =
ẋ(t) ÿ(t) − ẏ(t) ẍ(t)

( ẋ(t)2 + ẏ(t)2)3/2

- To compute the curvature of the curve at varying levels of detail,x(t) and y(t) are
convolved with a Gaussian function g(t,� ).

- Defining X(t, � ) and Y (t, � ) as th e convolution of x(t) and y(t) respectively with
the Gaussian function, the smoothed curve curvaturek(t, � ) can be expressed as fol-
lows:

k(t, � ) =
Xt(t, � )Ytt(t, � ) − Xtt(t, � )Yt(t, � )

(Xt(t, � )2 + Yt(t, � )2)3/2

whereXt(t, � ) and Xtt(t, � ) are defined as:

Xt(t, � ) = x(t) *
∂g(t, � )

∂t

Xtt(t, � ) = x(t) *
∂2g(t, � )

∂t2

- Yt(t, � ) andYtt(t, � ) are defined in a similar manner.

- The function defined implicitly byk(t, � ) = 0 is the CSS image of the curve.
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Contour Description

- Extract a number of features (descriptors).

- Descriptors can be used for object recognition.

- Good descriptors are invariant to geometrical transformations (i.e., translation,
rotation, and scaling).


