- The Hough transform was initially developed to detect analytically defined shapes (e.g., lines, circles, ellipses etc.).

- The generalized Hough transform can be used to detect arbitrary shapes (i.e., shapes having no simple analytical form).

- It requires the complete specification of the exact shape of the target object.

- **Special case: fixed orientation and size**

\[
\begin{align*}
 x &= x_c + x' \quad \text{or} \quad x_c = x - x' \\
 y &= y_c + y' \quad \text{or} \quad y_c = y - y'
\end{align*}
\]

\[
\begin{align*}
 \cos(\pi - \alpha) &= \frac{y'}{r'} \quad \text{or} \quad y' = r \cos(\pi - \alpha) = -r \sin(\alpha) \\
 \sin(\pi - \alpha) &= \frac{x'}{r'} \quad \text{or} \quad x' = r \sin(\pi - \alpha) = -r \cos(\alpha)
\end{align*}
\]
Combining the above equations we have:

\[x_c = x + r \cos(\alpha) \]
\[y_c = y + r \sin(\alpha) \]

Preprocessing step

1. Pick a reference point (e.g., \((x_c, y_c)\))

2. Draw a line from the reference point to the boundary.

3. Compute \(\phi\) (i.e., perpendicular to gradient’s direction).

4. Store the reference point \((x_c, y_c)\) as a function of \(\phi\) (i.e., build the *R-table*).

\[
\begin{align*}
\phi_1: & \quad (r_1, \alpha_1), (r_2, \alpha_2), \ldots \\
\phi_2: & \quad (r_1^2, \alpha_1^2), (r_2^2, \alpha_2^2), \ldots \\
\phi_n: & \quad (r_1^n, \alpha_1^n), (r_2^n, \alpha_2^n), \ldots
\end{align*}
\]

- The *R-table* allows us to use the contour edge points and gradient angle to recompute the location of the reference point.

Note: we need to build a separate *R-table* for each different object.
Detection

(1) Quantize the parameter space:

\[P[x_{c_{\text{min}}} \cdots x_{c_{\text{max}}}] [y_{c_{\text{min}}} \cdots y_{c_{\text{max}}}] \]

(2) for each edge point \((x, y)\)

(2.1) Using the gradient angle \(\phi\), retrieve from the \textit{R-table} all the \((\alpha, r)\) values indexed under \(\phi\).

(2.2) For each \((\alpha, r)\), compute the candidate reference points:

\[
\begin{align*}
x_c &= x + r \cos(\alpha) \\
y_c &= y + r \sin(\alpha)
\end{align*}
\]

(2.3) Increase counters (voting):

\[++(P[x_c][y_c]) \]

(3) Possible locations of the object contour are given by local maxima in \(P[x_c][y_c]\)

- If \(P[x_c][y_c] > T\), then the object contour is located at \((x_c, y_c)\)
• General case

- Suppose the object has undergone some rotation θ and uniform scaling s:

$$(x', y') \rightarrow (x'', y'')$$

$$x'' = (x'\cos(\theta) - y'\sin(\theta))s$$

$$y'' = (x'\sin(\theta) + y'\cos(\theta))s$$

- Replacing x' by x'' and y' by y'' we have:

$$x_c = x - x'' \text{ or } x_c = x - (x'\cos(\theta) - y'\sin(\theta))s$$

$$y_c = y - y'' \text{ or } y_c = y - (x'\sin(\theta) + y'\cos(\theta))s$$
(1) Quantize the parameter space:

\[
P[x_{c_{\min}} \cdots x_{c_{\max}}][y_{c_{\min}} \cdots y_{c_{\max}}][\theta_{\min} \cdots \theta_{\max}][s_{\min} \cdots s_{\max}]
\]

(2) for each edge point \((x, y)\)

(2.1) Using its gradient angle \(\phi\), retrieve all the \((\alpha, r)\) values from the \textit{R-table}

(2.2) For each \((\alpha, r)\), compute the candidate reference points:

\[
\begin{align*}
 x' &= r\cos(\alpha) \\
 y' &= r\sin(\alpha)
\end{align*}
\]

for \((\theta = \theta_{\min}; \ \theta \leq \theta_{\max}; \ \theta++)\)

for \((s = s_{\min}; \ s \leq s_{\max}; \ s++)\)

\[
\begin{align*}
 x_c &= x - (x'\cos(\theta) - y'\sin(\theta))s \\
 y_c &= y - (x'\sin(\theta) + y'\cos(\theta))s \\
 \text{++}(P[x_c][y_c][\theta][s]);
\end{align*}
\]

(3) Possible locations of the object contour are given by local maxima in \(P[x_c][y_c][\theta][s]\)

- If \(P[x_c][y_c][\theta][s] > T\), then the object contour is located at \(x_c, y_c\), has undergone a rotation \(\theta\), and has been scaled by \(s\).
• **Advantages**

- The generalized Hough transform is essentially a method for object recognition.

- It is robust to partial or slightly deformed shapes (i.e., robust to recognition under occlusion).

- It is robust to the presence of additional structures in the image (i.e., other lines, curves, etc.).

- It is tolerant to noise.

- It can find multiple occurrences of a shape during the same processing pass.

• **Disadvantages**

- It requires a lot of storage and extensive computation (but it is inherently parallelizable!).

- Faster variations have been proposed in the literature:

 Hierarchical representations

 First match using a coarse resolution Hough array

 Then selectively expand parts of the array having high matches

 Projections

 - Instead of having one high-dimensional array, store a few two dimensional projections with common coordinates (e.g., \((x_c, y_c), (y_c, \theta), (\theta, s), (s, x_c)\)).

 - Find consistent peaks in these lower dimensional arrays.