The reconstruction problem

Both intrinsic and extrinsic parameters are known: we can solve the reconstruction problem unambiguously by triangulation.

Only the intrinsic parameters are known: we can solve the reconstruction problem but only up to an unknown scaling factor.

Neither the extrinsic nor the intrinsic parameters are available: we can solve the reconstruction problem but only up to an unknown, global projective transformation.

Reconstruction by triangulation

Assumptions and problem statement

<table>
<thead>
<tr>
<th>Both the extrinsic and intrinsic camera parameters are known.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute the location of the 3D points from their projections p_l and p_r.</td>
</tr>
</tbody>
</table>

• What is the solution?

- The point P lies at the intersection of the two rays from O_l through p_l and from O_r through p_r.

![Diagram showing the intersection of epipolar lines and epipolar planes]
Practical difficulties

- The two rays will not intersect exactly in space because of errors in the location of the corresponding features.

- Find the point that is closest to both rays.

- This is the midpoint P' of line segment being perpendicular to both rays.

Parametric line representation (review)

- The parametric representation of the line passing through P_1 and P_2 is given by:

$$P(t) = P_1 + t(P_2 - P_1) \quad \text{or}$$

$$x(t) = x_1 + t(x_2 - x_1) \quad \text{and} \quad y(t) = y_1 + t(y_2 - y_1)$$

- The direction of the line is given by the vector $t(P_2 - P_1)$
• Computing P'

- Parametric representation of the line passing through O_l and p_l:

$$O_l + a(p_l - O_l) = ap_l$$

- Parametric representation of the line passing through O_r and p_r:

$$O_r^L + b(p_r^L - O_r^L) = T + bR^T p_r$$

since $O_r^L = R^T O_r^R + T = T$ and $p_r^L = R^T p_r^R + T$

$$(p_r^R = p_r, \quad p_l^L = p_l)$$

- Suppose the endpoints P_1 and P_2 are given by

$$P_1 = a_0p_l \quad \text{and} \quad P_2 = T + b_0 R^T p_r$$

- The parametric equation of the line passing through P_1 and P_2 is given by:

$$P_1 + c(P_2 - P_1)$$

- The desired point P' (midpoint) is computed for $c = 1/2$
• **Computing** \(a_0 \) and \(b_0 \)

- Consider the vector \(w \) orthogonal to both \(l \) and \(r \) is given by:

\[
w = (p_l - O_l) \times (p_r^L - O_r^L) = p_l \times R^T p_r
\]

(since \(p_r^R = R(p_r^L - O_r^L) \))

- The line \(s \) going through \(P_1 \) with direction \(w \) is given by:

\[
a_0 p_l + cw = a_0 p_l + c(p_l \times R^T p_r)
\]

- The lines \(s \) and \(r \) intersect at \(P_2 \):

\[
a_0 p_l + c_0(p_l \times R^T p_r) = T + b_0 R^T p_r
\]

(assume \(s \) passes through \(P_2 \) for \(c = c_0 \))

- We can obtain \(a_0 \) and \(b_0 \) by solving the following system of equations:

\[
a_0 p_l - b_0 R^T p_r + c_0(p_l \times R^T p_r) = T
\]
Reconstruction up to a scale factor

Assumptions and problem statement

Only the intrinsic camera parameters are known. We have established \(n \geq 8 \) correspondences to compute \(E \). Compute the location of the 3D points from their projections \(p_l \) and \(p_r \).

Comments:

We cannot recover the true scale of the viewed scene since we do not know the baselile \(T \) (recall: \(Z = f \frac{T}{d} \)).

Reconstruction is unique only up to an unknown scaling factor.

This factor can be determined if we know the distance between two points in the scene.

Estimate \(E \)

- We can estimate \(E \) using the 8-point algorithm.
- The solution is unique up to an unknown scale factor.

Recover \(T \)

\[
E^T E = S^T R^T RS = S^T S = \begin{bmatrix}
T_y^2 + T_z^2 & -T_x T_y & -T_x T_z \\
-T_y T_x & T_z^2 + T_x^2 & -T_y T_z \\
-T_z T_x & -T_z T_y & T_x^2 + T_y^2
\end{bmatrix}
\]

note: \(\text{Tr}(E^T E) = 2\|T\|^2 \) or \(\|T\| = \sqrt{\text{Tr}(E^T E)/2} \)

To simplify the recovery of \(T \), let’s divide \(E \) by \(\|T\| \):

\[
\hat{E}^T \hat{E} = \begin{bmatrix}
1 - \hat{T}_x^2 & -\hat{T}_x \hat{T}_y & -\hat{T}_x \hat{T}_z \\
-\hat{T}_y \hat{T}_x & 1 - \hat{T}_y^2 & -\hat{T}_y \hat{T}_z \\
-\hat{T}_z \hat{T}_x & -\hat{T}_z \hat{T}_y & 1 - \hat{T}_z^2
\end{bmatrix}
\]

where \(\hat{T} = T/\|T| \)

(we can compute \(\hat{T} \) much easier from \(\hat{E}^T \hat{E} \))
Recover R

It can be shown that

$$R_i = w_i + w_j x w_k \text{ where } w_i = \hat{E}_i x \hat{T}$$

Ambiguity in (\hat{T}, R)

There is a twofold ambiguity in the sign of \hat{E} and \hat{T}

There will be four different estimates for (\hat{T}, R)

3D reconstruction

Let’s compute the z coordinate of each point in the left camera frame:

$$p_l = f_l \frac{P_l}{Z_l} \quad \text{and} \quad p_r = f_r \frac{P_r}{Z_r} = f_r \frac{R(P_l - \hat{T})}{R_3^T(P_l - \hat{T})} \quad \text{(since } P_r = R(P_l - T))$$

The first component x_r of p_r is:

$$x_r = f_r \frac{R_3^T(P_l - \hat{T})}{R_3^T(P_l - \hat{T})}$$

Substituting $P_l = \frac{p_l Z_l}{f_l}$ into the above equation we get:

$$Z_l = f_l \frac{(f_r R_1 - x_r R_3)^T \hat{T}}{(f_r R_1 - x_r R_3)^T p_l}$$

Compute X_l and Y_l from $P_l = \frac{p_l Z_l}{f_l}$

Compute (X_r, Y_r, Z_r) from $P_r = R(P_l - T)$
Algorithm

Input: a set of corresponding points p_l and p_r

1. Estimate E

2. Recover \Hat{T}

3. Recover R

4. Reconstruct Z_l and Z_r

5. If the signs of Z_l and Z_r are:
 - 5.1 both negative for some point, change the sign of \Hat{T} and goto step 4
 - 5.2 one negative, one positive, for some point, change the sign of each entry of \hat{E} and goto step 3.
 - 5.3 both positive for all points, exit.

Comment: the algorithm should not go through more than 4 iterations (why?)
Reconstruction up to a projective transformation

- We will not discuss this case (more complicated)

- Look in the book if interested (pp. 166-170)