The reconstruction problem

Both intrinsic and extrinsic parameters are known: we can solve the reconstruction problem unambiguously by triangulation.

Only the intrinsic parameters are known: we can solve the reconstruction problem but only up to an unknown scaling factor.

Neither the extrinsic nor the intrinsic parameters are available: we can solve the reconstruction problem but only up to an unknown, global projective transformation.

Reconstruction by triangulation

Assumptions and problem statement

Both the extrinsic and intrinsic camera parameters are known.

Compute the location of the 3D points from their projections p_l and p_r

• What is the solution?

- The point *P* lies at the intersection of the two rays from O_l through p_l and from O_r through p_r .

• Practical difficulties

- The two rays will not intersect exactly in space because of errors in the location of the corresponding features.

- Find the point that is closest to both rays.
- This is the midpoint P' of line segment being perpendicular to both rays.

• Parametric line representation (review)

- The parametric respresentation of the line passing through P_1 and P_2 is given by:

$$P(t) = P_1 + t(P_2 - P_1)$$
 or

$$x(t) = x_1 + t(x_2 - x_1)$$
 and $y(t) = y_1 + t(y_2 - y_1)$

- The direction of the line is given by the vector $t(P_2 - P_1)$

• Computing *P'*

- Parametric representation of the line passing through O_l and p_l :

$$O_l + a(p_l - O_l) = ap_l$$

- Parametric representation of the line passing through O_r and p_r :

$$O_r^L + b(p_r^L - O_r^L) = T + bR^T p_r$$

since $O_r^L = R^T O_r^R + T = T$ and $p_r^L = R^T p_r^R + T$
 $(p_r^R = p_r, \ , p_l^L = p_l)$

- Suppose the endpoints P_1 and P_2 are given by

$$P_1 = a_0 p_l$$
 and $P_2 = T + b_0 R^T p_r$

- The parametric equation of the line passing through P_1 and P_2 is given by:

$$P_1 + c(P_2 - P_1)$$

- The desired point P' (midpoint) is computed for c = 1/2

• Computing a_0 and b_0

- Consider the vector w orthogonal to both l and r is given by:

$$w = (p_l - O_l) \ge (p_r^L - O_r^L) = p_l \ge R^T p_r$$

(since $p_r^R = R(p_r^L - O_r^L)$)

- The line *s* going through P_1 with direction *w* is given by:

$$a_0 p_l + cw = a_0 p_l + c(p_l \ x \ R^T p_r)$$

- The lines *s* and *r* intersect at P_2 :

$$a_0 p_l + c_0 (p_l \ x \ R^T p_r) = T + b_0 R^T p_r$$
(assume *s* passes through P_2 for $c = c_0$)

- We can obtain a_0 and b_0 by solving the following system of equations:

$$a_0 p_l - b_0 R^T p_r + c_0 (p_l \ x \ R^T p_r) = T$$

-5-

Reconstruction up to a scale factor

Assumptions and problem statement

Only the intrinsic camera parameters are known.

We have established $n \ge 8$ correspondences to compute *E*

Compute the location of the 3D points from their projections p_l and p_r .

Comments:

We cannot recover the true scale of the viewed scene since we do not know the baselile T (recall: $Z = f \frac{T}{d}$).

Reconstruction is unique only up to an unknown scaling factor.

This factor can be determined if we know the distance between two points in the scene.

Estimate E

- We can estimate *E* using the 8-point algorithm.

- The solution is unique up to an unknown scale factor.

Recover T

$$E^{T}E = S^{T}R^{T}RS = S^{T}S = \begin{bmatrix} T_{y}^{2} + T_{z}^{2} & -T_{x}T_{y} & -T_{x}T_{z} \\ -T_{y}T_{x} & T_{z}^{2} + T_{x}^{2} & -T_{y}T_{z} \\ -T_{z}T_{x} & -T_{z}T_{y} & T_{x}^{2} + T_{y}^{2} \end{bmatrix}$$

note: $Tr(E^T E) = 2||T||^2$ or $||T|| = \sqrt{Tr(E^T E)/2}$

To simplify the recovery of *T*, let's divide *E* by ||T||:

$$\hat{E}^{T}\hat{E} = \begin{bmatrix} 1 - \hat{T}_{x}^{2} & -\hat{T}_{x}\hat{T}_{y} & -\hat{T}_{x}\hat{T}_{z} \\ -\hat{T}_{y}\hat{T}_{x} & 1 - \hat{T}_{y}^{2} & -\hat{T}_{y}\hat{T}_{z} \\ -\hat{T}_{z}\hat{T}_{x} & -\hat{T}_{z}\hat{T}_{y} & 1 - \hat{T}_{z}^{2} \end{bmatrix} \text{ where } \hat{T} = T/||T||$$

(we can compute \hat{T} much easier from $\hat{E}' \hat{E}$)

Recover R

It can be shown that

$$R_i = w_i + w_i x w_k$$
 where $w_i = \hat{E}_i x \hat{T}$

Ambiguity in (\hat{T}, R)

There is a twofold ambiguity in the sign of \hat{E} and \hat{T}

There will be four different estimates for (\hat{T}, R)

3D reconstruction

Let's compute the *z* coordinate of each point in the *left camera* frame:

$$p_l = f_l \frac{P_l}{Z_l}$$
 and $p_r = f_r \frac{P_r}{Z_r} = f_r \frac{R(P_l - \hat{T})}{R_3^T(P_l - \hat{T})}$ (since $P_r = R(P_l - T)$)

The first component x_r of p_r is:

$$x_{r} = f_{r} \frac{R_{1}^{T}(P_{l} - \hat{T})}{R_{3}^{T}(P_{l} - \hat{T})}$$

Substituting $P_l = \frac{p_l Z_l}{f_l}$ into the above equation we get:

$$Z_{l} = f_{l} \frac{(f_{r}R_{1} - x_{r}R_{3})^{T}\hat{T}}{(f_{r}R_{1} - x_{r}R_{3})^{T}p_{l}}$$

Compute X_l and Y_l from $P_l = \frac{p_l Z_l}{f_l}$

Compute (X_r, Y_r, Z_r) from $P_r = R(P_l - T)$

Algorithm

Input: a set of corresponding points p_l and p_r
1. Estimate <i>E</i>
2. Recover \hat{T}
3. Recover <i>R</i>
4. Reconstruct Z_l and Z_r
5. If the signs of Z_l and Z_r are:
5.1 both negative for some point, change the sign of \hat{T} and goto step 4
5.2 one negative, one positive, for some point, change the sign of each entry of \hat{E} and go os step 3.
5.3 both positive for all points, exit.

Comment: the algorithm should not go through more than 4 iterations (why?)

Reconstruction up to a projective transformation

- We will not discuss this case (more complicated)
- Look in the book if interested (pp. 166-170)