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Abstract—Using keypoint-based features, such as SIFT features, 
for detecting copy-move image forgeries has yielded promising 
results. In this paper, our emphasis is on improving the detection 
and localization of duplicated regions using more powerful 
keypoint-based features. In this context, we have adopted a more 
powerful set of keypoint-based features, called MIFT, which 
share the properties of SIFT features but also are invariant to 
mirror reflection transformations. To improve localization, we 
propose estimating the parameters of the affine transformation 
between copied and pasted regions more accurately using an 
iterative scheme which finds additional keypoint matches 
incrementally. To reduce the number of false positives and 
negatives, we propose using “dense” MIFT features, instead of 
standard pixel correlation, along with hystereresis thresholding 
and morphological operations. The proposed approach has been 
evaluated and compared with competitive approaches through a 
comprehensive set of experiments using a large dataset of real 
images. Our results indicate that our method can detect 
duplicated regions in copy-move image forgery with higher 
accuracy, especially when the size of the duplicated region is 
small.  

Keywords: blind image forensics, copy-move image forgery, 
SIFT, MIFT, matching. 

I.INTRODUCTION 
Manipulating digital image contents in order to hide or 

create misleading images with no observable trace has 
appeared in many forms [1, 2].  Recently, there have been 
many research studies on improving image forgery detection 
[3]. In this study, our focus is on detecting one of these altering 
techniques named image cloning (copy-move). This tampering 
method creates a forged image by copying a certain portion of 
an image and moving it to another location of the same image 
[4]. The key characteristic of image cloning is that, since the 
duplicated region is picked from the image itself, the noise 
components, texture and color patterns are compatible with the 
rest of the image. Thus, it is not easy to detect the forgery parts 
[5]. Among the image forgery detection methods proposed in 
the literature, pixel-based approaches are the most popular; the 
key idea is exposing image tampering by analyzing pixel level 
correlations [6]. In general, pixel-based approaches can be 
classified into two categories: block matching [4, 7, 8, 2, 9, 10, 
11, and 12] and feature matching [13, 14, 15, and 16]. The key 
idea behind feature matching methods is discovering and 
clustering similar parts in an image. The feature matching 
approaches presented in [13, 14, 15], employ local statistical 
features, known as Scale Invariant Feature Transform (SIFT) 
[16]. In these methods, very similar techniques were used to 
find corresponding features and potentially interesting areas. 
An affine transformation between matching regions was 
estimated using Random Sample Consensus (RANSAC) [17]. 

The method proposed by Pan and Lyu [14] includes a 
verification step, which tries to locate the duplicated regions by 
using the normalized correlation map and thresholding. 

As shown in our experimental results, a weakness of Pan's 
method, as well as of similar methods [13, 15], is that they 
cannot localize the forged region very accurately. Moreover, 
these methods were evaluated on a relatively small number of 
real forged images. In this study, we improve copy-move 
forgery detection using keypoint-based features by focusing on 
the issue of accurate detection and localization of duplicated 
regions. Specifically, we have made several contributions in 
this work. First, we employ Mirror Reflection Invariant Feature 
(MIFT) features [18] instead of SIFT features to find similar 
regions in images. MIFT features share all properties of SIFT 
features but are also invariant to mirror reflection 
transformations. Second, since the quality of the affine 
transformation between copied and pasted regions is critical in 
localizing the duplicated region accurately, we refine the 
parameters of the affine transformation iteratively by finding 
additional keypoint matches incrementally. Third, to extract the 
duplicated region, we use dense MIFT features and apply 
hysteresis thresholding [19] instead of standard thresholding, 
and morphological operators to reduce false positives and 
negatives. We have evaluated the performance of the proposed 
methodology by performing a comprehensive set of 
experiments using a large database of real images (i.e., CASIA 
v2.0) [20]. Comparisons with competitive approaches show 
that the proposed method can detect duplicated regions in 
copy-move image forgery more accurately, especially when the 
size of the duplicated regions is small.   

The rest of this paper is organized as follows: Section 2 
describes the proposed approach in detail. Section 3 presents 
our experimental results and comparisons. Finally, section 4 
concludes our work and discusses directions for future 
research.  

II.METHOD OVERVIEW 
The key objectives of the proposed approach are: (1) to 

recognize copy-move manipulated images, (2) to classify 
images as forged or non-forged, and (3) to accurately locate the 
duplicated region in the tampered images. Since in copy-move 
image forgery some part of an image is copied and pasted on 
another part of the same image, finding similar parts in an 
image is the key idea explored here as well as in other studies. 
This is accomplished by extracting and matching local features 
from different regions of the image in order to find similar 
regions. Figure 1 illustrates the main steps of our approach.  
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Figure 1. Main steps of proposed methodology. 

In the following subsections, we explain the steps of the 
proposed method in detail.  

A. Extracting Keypoints and Establishing Correspondences 
The SIFT algorithm is a powerful feature extraction 

technique [16], which extracts features invariant to scale, 
rotation, and brightness. However, SIFT descriptors are not 
invariant to mirror reflection. To account for this issue, 
previous approaches proposed extracting SIFT descriptors from 
horizontally and vertically reflected versions of the original 
image [14, 15]. In this paper, we have adopted MIFT [18] 
descriptors that are invariant to mirror reflection 
transformations. Since we search for duplicated regions in a 
single image, we divide the image into smaller parts and 
compare the descriptors among them. The search is performed 
outside a small window centered at the detected keypoint to 
avoid finding nearest neighbors of a keypoint from the same 
region [14]. Once a matching candidate has been found, it is 
accepted as a distinctive matched point if the ratio of the 
distances from the first and second nearest neighbors is smaller 
than the threshold [16]. This threshold can vary from zero to 
one; a threshold closer to zero yields more accurate but fewer 
matches. Here, a low threshold is utilized since it reduces false 
matches. 

B. Estimating Affine Transformation from Keypoint 
Correspondences 
Using the keypoint correspondences from the previous step, 

an affine transformation is estimated. To eliminate incorrectly 
matched keypoints before estimating the affine transformation 
parameters, a pre-processing step is applied using some simple 
geometric constraints (see below).  To further remove incorrect 
matches, the affine transformation parameters are estimated 
using RANSAC [17], which can estimate the model parameters 
with a high degree of accuracy even when a significant number 
of wrong matches are present.  

The geometric constraints applied in the pre-processing 
step are the “slope” and “location” constraints. To apply the 
“slope” constraint, the slope of all lines connecting 
corresponding keypoints are found and clustered and the group 
with the largest number of keypoints is selected as the main 
group. Then, we compare all other groups to the main group 
and eliminate any group having a different slope (i.e., within a 
threshold) from the slope of the main group. The “location” 
constraint is applied on the remaining groups by eliminating 
groups containing a small number of correspondences as well 
as removing corresponding keypoints from groups if the 
keypoint locations are rather far (i.e., within a threshold) from 
the average keypoint location of the group. To further remove 
incorrect matches and estimate the affine transformation 
matrix, we apply the RANSAC algorithm on the remained 
matched points. Figure 2 shows an example of the above steps. 

   

(a) Initial correspondences (b) correspondences after 
the pre-processing step 

(c) Final matches (i.e., 
RANSAC inliers) 

Figure 2. Removing incorrect correspondences using geometric constraints. 

C. 6BRefining Affine Transformation  
Quite often, the correspondences selected as inliers in the 

previous section do not cover well the region of duplication; as 
a result, the estimated affine transformation is not precise 
enough to map the whole duplicated region to the copied 
region. To deal with this issue, we refine the affine 
transformation parameters iteratively, by slowly increasing the 
search window around the corresponding regions. Figure 3 
shows the main steps of the refinement process. 

 
Figure 3. Mains steps of refining the affine transformation. 

Given a pair of corresponding regions, first we define a 
detection window for each region using the inliers found by 
RANSAC. The detection windows are then slowly resized (i.e., 
horizontally and vertically). Then, keypoints are detected inside 
the resized windows and RANSAC is applied to find a new set 
of inliers. The new inliers are used to re-estimate the affine 
transformation parameters. By repeating these steps, the affine 
transformation parameters are refined iteratively until the 
number of inliers does not increase anymore. Figure 4 shows 
an example with five iterations. The number of 
correspondences and inliers at each iteration are shown in 
Table 1. 

 
Figure 4. Refining the affine transformation iteratively; the green points show 

the initial correspondences while the red points show the inliers found by 
RANSAC.  

As it is evident from the example, the iterative process 
yields more correspondences, covering a larger area inside the 

Locating Duplicated Region.  

Refining Affine Transformation iteratively. 

Estimating Affine Transformation from Keypoint 
Correspondences. 

Extracting Keypoints and Establishing Correspondences. 

5- IF inliers ration < threshold THEN go to step 2 

4- Compute inliers using RANSAC. 

3- Detect keypoints inside new windows. 

2- Slowly increase detection window size. 

1- Define detection window for original and duplicated regions. 
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original and duplicated regions; this yields a more accurate 
affine transformation. It should be mentioned that the threshold 
used for finding corresponding keypoints during the iterative 
process is greater than the one used in the initial step. This 
allows finding more correspondences compared to the initial 
stage.  

TABLE 1. NUMBER OF CORRESPONDENCES AND RANSAC INLIERS AT EACH 
ITERATION 

 
Iterations 

 

Initial 
Step 1 2 3 4 5 6 

Correspo
ndences  

 
27 28 36 50 71 77 

RANSAC 
Inliers  22 23 28 29 31 33 33 

 

D. Locating Duplicated Region 
The last step of our algorithm attempts to accurately locate 

the duplicated region. Cross-correlation has been used before to 
locate the duplicated region and verify similarity with the 
original region [14]. In this study, we detect the duplicated 
region using dense MIFT features. 

1) Dense MIFT Feature Extraction 
To detect as many pixels as possible inside the duplicated 

region, we employ dense MIFT features. The key idea is 
computing a MIFT descriptor at each pixel location inside the 
detection window instead of at the keypoint locations only. 
This is on contrast to traditional methods which employ pixel 
correlation to find the duplicated region. Since MIFT 
descriptors can be matched more accurately than pixels, the 
duplicated region can be detected more precisely.  Using the 
estimated affine transformation, the correspondences between 
the original and forged regions can be computed at each pixel 
location. The similarity between corresponding locations is 
then calculated using dense MIFT descriptors. Thresholding 
the distance between corresponding MIFT descriptors can then 
reveal the duplicated region. 

2) Hysteresis Thresholding 
Using a single threshold to determine the similarity 

between corresponding MIFT descriptors in the original and 
duplicated regions might compromise detection results. In this 
work, we have opted for using hysteresis thresholding [37], a 
process based on two thresholds, one low and one high, which 
takes into consideration spatial information. Hysteresis 
thresholding has been used before in the context of edge 
detection where the high threshold is used to detect “strong” 
edges while the low threshold is used to fill in gaps between 
“strong” edges using “weak” edges [19]. In a similar manner, 
we use the high threshold to detect “strong” corresponding 
pixels, that is, corresponding pixels from the original and 
duplicated region having very similar MIFT descriptors (i.e., 
very likely to belong to the duplicated region). Additional 
pixels (i.e., “weak” pixels”) are detected if they are adjacent to 
“strong” pixels and the distance between the corresponding 
MIFT descriptors in the original and duplicated regions 
exceeds the low threshold. In our experiments, the low 
threshold is chosen to be R times lower than the high one, 
where R is a ratio parameter.  

The output of the step above is a group of pixels, which 
might still contain holes or isolated pixels. To deal with these 
issues, we apply morphological operations (i.e., dilation and 
erosion) to remove small holes and eliminate isolated pixels.  

These operations are applied separately on the images obtained 
using the high and low thresholds described in the previous 
section. Then, we simply combine the results to obtain the final 
duplicated region 

III.EXPERIMENTAL RESULTS 
In this section, the performance of the proposed approach is 

analyzed through a set of experiments. For comparison 
purposes, we have compared our method with the method of 
Pan and Lyu [14].  

A. Dataset 
To examine digital forgery detection methods, a dataset 

containing different types of forgery is required. In this study, 
we have used the CASIA tampered image detection evaluation 
database V2.0 (CASIA, 2010) [20]. CASIA v2.0 includes 
samples of copy-move and copy-paste digital forgeries applied 
on color images of different sizes, varying from 240 × 160 to 
900 × 600. The tampered images have been generated by 
copying-and-pasting image region(s). The region selected for 
duplication can be transformed before copying it by applying 
scaling, rotation, reflection or distortion. The duplicated region 
can vary in size (e.g., small, medium or large). The resulted 
image can be post-processed (e.g., by applying blurring) in 
order to create the final altered image. In this paper, we have 
only used images corresponding to copy-move forgery. Since 
the dataset includes both the original and forged images, we 
have applied pixel subtraction followed by binary thresholding 
and morphological closing to extract the duplicated region (i.e., 
ground truth) to evaluate the accuracy of our method. A sample 
of forged images and the ground truth indicating the forged 
area is shown in Figure 5. 

 

 
(a) Original image 

 
(b) Forged image 

 
(c) Ground truth 

Figure 5. A sample of images and the ground truth in the CASIA Dataset 

B. Implementation Details 
As mentioned earlier, the first step of our approach is to 

extract a set of keypoint descriptors. In this study, we extract 
MIFT features; the window centered at keypoints is defined to 
be 15x15 pixels. Since our aim in this step is to find quite 
accurate correspondences, we use threshold equal to 0.2 for 
comparing MIFT descriptors which gives less but more 
accurate matches. If the number of correspondences is less than 
10, we increase the threshold to 0.3 with step of 0.05. When 
removing incorrect matches using geometric constraints, we 
group corresponding points based on their slope in 10 groups. 
Additionally, to refine the affine transformation, the search 
windows are resized with a rate of 0.2 (i.e., both horizontally 
and vertically) in each iteration. In this step, we match the 
MIFT descriptors using a threshold equal to 0.3 in order to 
allow more matches to be found. In hysteresis thresholding, the 
high threshold is defined to be 2 times smaller than the low 
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one1. To evaluate the performance of our method, we employ 
Precision-Recall (PR) curves [21]. 

C. Detailed Results 
To better evaluate the performance of our method, except 

the first experience, we have classified images into different 
categories based on the size of the duplicated region and the 
operations used to create the forgery. 2 shows the different 
evaluated categories and the number of images within each 
group. The PR curves shown below for each category 
correspond to the average PR curves over all the images in that 
category. 

TABLE 2. IMAGE CATEGORIES IN CASIA V2.0 DATASET. 

Tampering Region Size Operations Total 
Medium Scale Rotate - 87 

Small Scale Rotate - 17 
Medium Reflection Scale Rotate 35 

Small Reflection Scale Rotate 48 
Small Scale Rotate Blurring 8 
Small Scale Rotate Deform 19 
Small Deform   48 

 

1)  Effect of Thresholding 
 First, we compare standard thresholding with hysteresis 

thresholding. Since the output of thresholding is a group of 
pixels that might contain holes or isolated pixels, the 
morphological operations are applied prior to combining the 
results of the high and low thresholds in the hysteresis 
thresholding. Figure 6 shows two examples comparing 
standard thresholding with hysteresis thresholding. The 
duplicated regions have been produced using scaling in the top 
image and reflection in the bottom image. Figure 7 shows the 
corresponding PR curves. Clearly, hysteresis thresholding can 
locate the duplicated region more accurately. 

 
(a) Detection windows. 

 
(b) Standard 
thresholding 

 
(c) Hysteresis 
thresholding 

Figure 6. Comparison between standard and hysteresis thresholding. 

 

 
Figure 7. Comparison between standard (single) and hysteresis thresholding. 

                                                 
1  Since in finding correspondences, a higher threshold yields a lower 

number of matches, we define the high and low values of hysteresis 
thresholding in opposite order compared to their definition in the literature. 

2) Effect of Scale and Rotation 
In this set of experiments, we consider the case where both 

scale and rotation have been applied to create the image 
forgery. As shown in Table 1, both medium and small sizes of 
duplicated regions have been measured. Figure 8 shows an 
example along with detection results for our method and the 
method of [14]. Figure 9 shows the corresponding PR curves; 
as the results indicate, the proposed method performs 
considerably better than the method of [14], especially when 
the size of the duplicated region is small.  

 
(a) Original image. 

 
(b) Forged image. 

 
  (c) Result of [14] 

 
 (d) Result of proposed method. 

Figure 8. Detection of image forgery assuming both scale and rotation. 

 
 

  

Figure 9. Comparison between the proposed method and the method of [14] 
assuming scale and rotation.  
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3) Effect of Reflection 
As described earlier, mirror reflection is a common 

operation used in copy-move image forgery. The method 
presented in [14] handles reflection by filliping the feature 
vector of each keypoint horizontally and vertically before 
finding the similarities among the vectors. The accuracy of the 
methods is examined in this set of experiment assuming 
medium and small duplicated region sizes. The combination of 
mirror reflection with scale and rotation to create the duplicated 
region is investigated in this part. Figure 10 shows an example 
along with detection results. The accuracy of proposed method 
and the method of [14] are compared in Figure 11. The 
proposed method outperforms the method of [14], especially 
when the size of the duplicated region is small.  

 
(a) Original 

image. 

 
(b) Forged 

image. 

 
(c) Result of 

[14] 

 
 (d) Result of 

proposed 
method. 

Figure 10. Detection of image forgery assuming mirror reflection, scale, and 
rotation. 

 
 

 
 Figure 11. Comparison between the proposed method and the method of [14] 

assuming mirror reflection, scale, and rotation. 

4) Effect of Blurring 
In the CASIA dataset, blurring has been applied either on 

the edges of the duplicated region or on the whole region. This 

operation is typically combined with other operations such as 
scale and rotation. In this set of experiments, blurring, scale, 
and rotation are combined to create the image forgery. Figure 
12 shows an example along with detection of the duplicated 
region. The accuracy of proposed method and the method 
presented in [14] are compared in Figure 13. This comparison 
was done using small duplicated region sizes only. 

 
(a) Original image 

 
(b) Forged image 

 
(c) Result of [14]  

 
(d) Result of 

proposed method. 
Figure 12. Detection of image forgery assuming blurring, scale and rotation. 

 
Figure 13. Comparison between the proposed method and the method of [14] 

assuming blurring, scale, and rotation. 

5) Effect of Deformation 
Deformation is another operation applied on the images of 

the CASIA dataset. This operation is typically a non-linear 
transformation. As shown below, detecting this kind of forgery 
has lower accuracy than forgery detection in other categories. 
This is due to the fact that we employ a linear transformation 
(e.g., affine) to bring similar regions into correspondence. 
Nevertheless, the proposed method still outperforms the 
method of [14].  

 
(a) The original image 

 
(b) The forged image 

 
(c) Result of [14].         

 
(d) Result of proposed method. 

Figure 14. Detection of image forgery assuming deformation, scale and 
rotation. 
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In this set of experiments, we considered deformation, scale 
and rotation for image forgery. Figure 14 shows an example 
along with duplicated region detection results. As Figure 15 
shows, our method outperforms the method of [14], however, 
extracting the duplicated region has a lower accuracy overall 
when combining all three transformations together. This 
comparison was done using small duplicated region sizes only. 
 

 
Figure 15. Comparison between the proposed method and the method of [14] 

assuming deformation, scale and rotation.. 

IV.CONCLUSIONS 
In this paper, we have considered the problem of copy-

move image forgery detection.  Our emphasis was on detecting 
and extracting duplicated regions with higher accuracy and 
robustness. We have performed extensive experiments using a 
large dataset of real images to evaluate the proposed approach. 
In particular, we have investigated the effect of different 
transformations in creating the image forgery on detection 
accuracy. Comparisons with related methods indicate that the 
proposed methodology can extract duplicated regions more 
accurately. It should be mentioned that like with similar 
methods employing keypoint-based features for matching, the 
proposed approach will not work well if the duplicated region 
corresponds to a flat surface where no interest points can be 
detected.  
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