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Abstract— This paper presents a real-time approach for
matching stereo images acquired by a stereo sensor embedded
in a moving vehicle. The new method consists of matching
edge points extracted from stereo images using the temporal
relationship, which exists between consecutive stereo pairs.
Matching a current stereo pair takes into account the matching
results of the preceding stereo pair. The method looks first for
what we call matching control edge points (MCEPs) based on
spatio-temporal matching of edge curves of consecutive stereo
pairs. Dynamic programming is considered for matching edge
points of the stereo images. The MCEPs drive the optimal path
of the dynamic programming. The proposed approach has been
tested on virtual and real stereo image sequences and the results
are satisfactory.

I. INTRODUCTION

An intelligent vehicle (IV) can perform road obstacle

detection by knowing its environment. Stereo vision [1] is a

well-known method used to obtain an accurate and detailed

3D representation of the environment around an IV. The

key problem in stereo vision consists of finding correspon-

dences between pixels of stereo images taken from different

viewpoints [2]. Exhaustive surveys on methods tackling the

correspondence problem are available in [3], [4]. A taxonomy

of dense stereo correspondence algorithms together with

a testbed for quantitative evaluation of stereo algorithms

is provided by Scharstein and Szeliski [5]. The taxonomy

shows that graph cuts-based methods [6] outperform other

methods, but they are time consuming which makes them

not suitable for real-time applications (e.g. advanced driver

assistance systems (ADAS)).

Although there is strong support that the incorporation

of temporal information can achieve better results [7], [8],

[9], [10], only a small amount of research has been devoted

to the reconstruction of dynamic scenes from stereo image

sequences. We believe that by considering the temporal

consistency between consecutive frames, stereo matching

results could be improved [11], [12]. This paper presents

a new stereo matching method exploiting the connection
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that exists between consecutive stereo pairs of images pro-

vided by a stereo cameras aboard a vehicle. We use the

same approach detailed in [11] to find such a connection.

Based on this connection, we first search for spatio-temporal

matching of significant edge curves in consecutive stereo

images. This allows to find correspondences between edge

curves in the current stereo pair. Second, the correspondences

between edges points of the matched edge curves is deduced.

Third, the matched edge points are used to drive dynamic

programming [13] search for matching all edge points in the

current stereo pair. The proposed method has been tested

both on virtual and real stereo image sequences and showing

promising results.

The remainder of the paper is organized as follows. Sec-

tion II overviews stereo methods handling stereo sequences

and using temporal consistency. The new stereo method is

detailed in section III. Experimental results are presented in

section IV. Section V concludes the paper.

II. RELATED WORK

In recent years, several techniques have been proposed to

obtain more accurate disparity maps from stereo sequences

by utilizing temporal consistency [7], [9], [14], [8]. Most

of these methods use either optical flow or spatiotemporal

window for matching stereo sequences. In their approach,

Tao et al. [14] proposed a dynamic depth recovery where a

scene representation, that consists of piecewise planar surface

patches, is estimated incrementaly. Such a representation

is derived based on color segmentation. Each segment is

modeled as a 3D plane. The motion of the plane is described

using a constant velocity mode. A spatial match measure and

a scene flow constraint [15] are employed in the matching

process. The accuracy of the results and the processing

speed are limited by the image segmentation algorithm used.

Vedula et al. [15] presented a linear algorithm to compute

3D scene flow based on 2D optical flow and estimate 3D

structures from the scene flow. In [16], the temporal consis-

tency was enforced by minimizing the difference between

the disparity maps of adjacent frames. This approach is

designed for offline processing only (i.e. it takes pre-captured

stereo sequences as input and calculates the disparity maps

for all frames at the same time). In [9], an algorithm was

developed to compute both disparity maps and disparity

flow maps in an integrated process. The disparity map

generated for the current frame is used to predict the disparity

map for the next frame. The disparity map found provides

spatial correspondence information which was used to cross-

validate the disparity flow maps estimated for different views.
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Programmable graphics hardware were used for accelerating

processing speed.

Zhang et al. [8], proposed to extend existing traditional

methods by using both spatial and temporal variations. The

spatial window used to compute SSD (sum of squared

differences) cost function is extended to a spatiotemporal

window for computing the sum of SSD (SSSD). Their

method could improve results when we deal with static

scenes and structured light. It fails to do so with dynamic

scenes. Davis et al. [7] developed a similar framework as in

[8]. However, their work is focused on geometrically static

scenes imaged under varying illumination. Given an input

sequence taken by a freely moving camera, Zhang et al. [17]

proposed a novel approach to construct a view-dependent

depth map for each frame. Their method takes one sequence

as input and provides the depth for different frames (i.e.

offline processing). It is not applicable in an IV.

Recently, the authors proposed the so-called association

as a method to use for finding the relationship between

consecutive stereo pairs [11]. In this paper, we propose to use

the same principle as in [11] to get the connection between

adjacent (consecutive) frames. A spatio-temporal approach is

presented to match edge curves of adjacent frames. The edge

points of matched edge curves will be used in the matching

process to drive dynamic programming.

III. STEREO MATCHING ALGORITHM

This section describes the steps of the proposed method for

matching stereo images captured by stereo sensor mounted

aboard an IV. We note that the stereoscopic sensor used in our

experiments provides rectified images (i.e., corresponding

pixels have the same y-coordinate). The principle of the new

approach is to exploit the link between consecutive stereo

pairs. So, the matching results of the preceding stereo pair

are used for matching the current stereo pair. The following

notations will be used in the rest of the paper. ILk−1
and IRk−1

denote the left and right stereo images of the frame fk−1

acquired at time k−1 and dk−1 is the corresponding disparity

map. ILk and IRk represent the left and right stereo images of

the frame fk acquired at time k. We assume that the frame

fk = (ILk , I
R
k ) represents the current stereo pair for which we

want to compute the disparity map dk. fk−1 = (ILk−1
, IRk−1

)
represents the preceding frame for which the disparity map

dk−1 is available. The matching problem is formulated as

follows: how to compute dk by taking into account dk−1

and the relationship between the frames fk−1 and fk.

A. Edge detection

The first step consists of extracting significant features

from the stereo images to be matched. In this work, we are

interested in using edge points for matching. The Canny edge

detector [18] is regarded as one of the best edge detectors

currently in use. It provides continuous edge curves, which

are vital to the proposed matching method. Consequently, we

use the Canny operator for edge (points and curves) detection

from the stereo images. In the rest of the paper we use the

following notations. Sm
f =

{

C
m,i
f

}

i=1,..,Nm
f

denotes the set

of edge curves extracted from the image If . f ∈ {k, k+ 1}
represents the frame index. m ∈ {L,R} is the index of the

stereo image, i.e. L for left image and R for right image.

Nm
f represents the number of edge curves in the image Imf .

In [11], the declivity operator [?] was used to detect edge

points. This operator does not detect horizontal edge curves.

Using the Canny detector in the current work allows the

detection of more edge points, which results in more dense

disparity maps.

B. Association between edge points of consecutive images

As mentioned earlier, the main idea of the proposed

approach is to exploit the relationship between consecutive

stereo pairs. The authors have proposed the so-called asso-

ciation to achieve this task [11]. This subsection describes

the method used to find the association between edge points

of consecutive frames (i.e., association between edge points

of the images ILk−1
and ILk (resp. IRk−1

and IRk )).

Let us assume that we want to find the association between

the left images. Let us consider two edge points PL
k−1

and

QL
k−1

belonging to a curve C
L,i
k−1

in the image ILk−1
and their

corresponding ones PL
k and QL

k belonging to a curve C
L,j
k in

the image ILk (see Fig. 1). The associate point to point PL
k−1

is defined [11], [12] as the point belonging to the curve C
L,i
k

whith the same y-coordinate as PL
k−1

. Two associate points

are two edge points belonging to two corresponding curves

of two consecutive images of the same sequence and having

the same y-coordinate. From Fig. 1, we remark that point QL
k

constitutes the associate point of PL
k−1

. More details about

how to find the association between consecutive images is

available in [11].

L,j

L

L L

L

L

L

L,i

Fig. 1. IL
k−1

and IL
k

represent consecutive images of the left sequence.

The point QL

k
in the image IL

k
constitutes the associate point of the point

PL

k−1
in the image IL

k−1
.

For each edge point in image ILk−1
(resp. IRk−1

) we look

for its associate one, if it exists, the image ILk (resp. IRk ).

C. Spatio-temporal matching of edge curves of consecutive

stereo images

Here, we illustrate how to find the correspondence between

edge curves of consecutive frames fk−1 and fk based on

the association computed in the previous subsection and the

known disparity map dk−1 of the frame fk−1.

1) Temporal correspondence: This involves matching be-

tween curves of the image ILk−1
(resp. IRk−1

) with edge

curves of the image ILk (resp. IRk ). We illustrate the proposed

method using the images ILk−1
and ILk . The same process is
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used to match the edge curves between the images IRk−1
and

IRk .

Temporal correspondence consists of finding for each

edge curve C
L,i
k−1

in the set SL
k−1

its corresponding edge

curve C
L,j
k in the set SL

k , if it exists. Let Ass(CL,i
k−1

) =
{aen}n=1,..,Ni

be the set of edge points aen, belonging to the

image ILk , which represent the associates of the edge points

of the edge curve C
L,i
k−1

. Ni is the number of associations

found for the edge curve C
L,i
k−1

. If Mi represents the number

of edge points in C
L,i
k−1

, Ni ≤ Mi because there are edge

points in image ILk−1
for which there is no associate in

image ILk . If there is no error in the association process,

all the edge points belonging to the set Ass(CL,i
k−1

) should

belong to one edge curve, which is the corresponding curve

to C
L,i
k−1

. Unfortunately, there are some errors inherent to

the association process. Consequently, the edge points aem
may belong to different curves in SL

k . We find the match

of C
L,i
k−1

by looking for the curve C
L,j
k , which contains the

maximum number of edge points in Ass(CL,i
k−1

). We apply

the same method to all the edge curves in SL
k−1

to find their

corresponding ones in SL
k .

2) Spatial correspondence: This step involves matching

the edge curves of the stereo images ILk−1
and IRk−1

on the

basis of the disparity map dk−1. The same principle as in

temporal correspondence is used to find spatial correspon-

dence.

Let Match(CL,i
k−1

) = {men}n=1,..,Ni
be the set of edge

points men, belonging to the image IRk−1
, which match the

edge points of C
L,i
k−1

. Ni is the number of matched edge

points belonging to C
L,i
k−1

. If Mi represents the number

of edge points in C
L,i
k−1

, Ni ≤ Mi because there is a

number of edge points in the image ILk−1
for which there

is no match in the image IRk−1
. If there is no error in the

matching process, all the edge points belonging to the set

Match(CL,i
k−1

) should belong to one edge curve, which is

the corresponding of the curve C
L,i
k−1

. Unfortunately, there are

some errors inherent to the matching process. Consequently,

the edge points mem may belong to different curves in SR
k−1

.

We find the match of the curve C
L,i
k−1

by looking for the curve

C
R,j
k−1

, which contains the maximum number of edge points

in Match(CL,i
k−1

).
At this point, we have (1) the spatial correspondence

between the edge curves of the stereo images ILk−1
and IRk−1

,

(2) the temporal correspondence between the edge curves of

the images ILk−1
and ILk , and (3) the temporal correspondence

between the edge curves of the images IRk−1
and IRk . We

can deduce easily the spatial correspondence between the

edge curves of the images ILk and IRk as depicted in Fig. 2.

Let C
L,i
k be an edge curve in ILk . Finding the spatial match

of C
L,i
k is achieved in four steps. The first step searches

the match of C
L,i
k in ILk−1

, which we call C
L,j
k−1

. In the

second step, the corresponding edge curve, C
R,m
k−1

, of C
L,j
k−1

is searched in the image IRk−1
. The third step looks for the

match, C
R,n
k , of C

R,m
k−1

in the image IRk . The last step deduces

that C
R,n
k represents the match of C

L,i
k . We repeat the same

process for all the edge curves of the image ILk to find their

matches in the image IRk .

Fig. 2. Spatial and temporal matching of the edge curves belonging to
consecutive frames.

D. Initial disparity map

Here, we illustrate how to get an initial disparity map

for the stereo pair fk on the basis of matched pairs of

edge curves of the same frame. Let C
L,i
k and C

R,n
k be

corresponding edge curves belonging to the images ILk and

IRk , respectively, and eLm an edge point belonging to C
L,i
k .

Known that the stereo images are rectified, the corresponding

edge points should have the same y-coordinate. The match

of eLm, if it exists, should belongs to C
R,n
k and have the

same y-coordinate as eLm. We repeat this process for all

edge points of C
L,i
k to find their matches in C

R,n
k . The

same method will be applied to all pairs of matched edge

curves of the frame fk. As a result, we get a number of

pairs of matched edge points in the stereo images of the

frame fk. These correspondences allow to generate what we

call an initial disparity map (IDM) for the current frame.

The IDM is more accurate compared to the so-called pre-

estimated disparity map computed in [11]. We refer to the

matched edge points as MCEPs. They will be used to drive

the dynamic programming for matching the remaining edge

points of the current frame (section III-E.3).

E. Stereo matching method of edge points of the current

frame

In section III-D, we described how to match the edge

points belonging to the edge curves of the frame fk. This

section presents the method we propose for matching the

remaining edge points of the current frame by considering

MCEPs.

1) Disparity range constraint: The accurate choice of the

maximum disparity threshold value is crucial to the quality

of the output disparity map and computation time [5], [19].

In [11], [12], the authors presented a method to compute

possible disparities (disparity range). The method is based

on analyzing the v-disparity [20] computed from IDM. This

provides the disparity range for each scanline of the stereo
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images. We use the same idea here to determine the disparity

range for each image line on the matched stereo pair. More

details can be found in [11].

2) Cost function: As a similarity criterion between cor-

responding edge points, we use a cost function based on

the gradient magnitude and orientation at the matched edge

points. Let eL and eR be two edge points belonging to images

ILk and IRk , respectively. We denote by mL and mR (resp.

θL and θR) their gradient magnitudes (resp. orientations),

respectively. We assume that corresponding edge points on

the stereo images should have the same (or closer) gradient

magnitudes as well as the same (or close) orientations.

Therefore, we define the cost function as follows.

C(eL, eR) =
{

(

ILk (x
L, yL)− IRk (xR, yR)

)2

+ (mL)2+

(mR)2 − 2 ∗mL ∗mR ∗ cos(θL − θR)
}1/2

(1)

where (xL, yL) and (xR, yR) are the coordinates of the

edge points eL and eR, respectively.

3) Dynamic programming: Let {eLi,sl}i=1,..,NL
sl

(resp.

{eRj,sl}j=1,..,NR
sl

) be the set of edge points in the scanline

(image line) sl of the image ILk (resp. IRk ), which are ordered

according to their x-coordinates, where NL
sl (resp. NR

sl ) is

their number. We demonstrate how to match these edge

points for the scanline sl using dynamic programming. The

same technique will be used for all scanlines of the stereo

images ILk and IRk .

The problem of obtaining correspondences between edge

points on right and left epipolar scanlines can be solved as

a path finding problem on the 2D plane [13]. We propose

to subdivide the search space into a number of sub-spaces

depending on the number of MCEPs found at the scanline

sl.

Fig. 3 illustrates an example of 2D search plane, which

is divided into sub-search planes. The vertical lines show

the positions of edge points on the left scanline and the

horizontal ones show those on the right scanline. We refer

to the intersections of those lines as nodes. Nodes in this

plane correspond to the stages in dynamic programming

where a decision should be made to select an optimal path

to that node. They represent the candidate matches. Optimal

matches are obtained by the selection of the path, which

corresponds to a minimum value of the global cost. For each

sub-search plane, the optimal path must goes from the upper

left corner to the lower right corner monotonically due to the

condition on ordering. Because of the non reversal ordering

constraint, starting from a node in the search plane, a path

can be extended towards only one of the three directions:

east, south, or southeast.

As depicted in Fig. 3, each sub-search plane consists of

matching the edge points between consecutive MCEPs. As an

example the second sub-search plane #2 is used to match the

edge points situated between eL
1

and eL
2

in the left scanline

sl of the image ILk with the edge points located between eR
1

and eR
2

in the right scanline sl of the image IRk . First, the

disparity range is used to select the valid nodes for the sub-

search plane #2. Second, the cost function (Eq. 1) is used

to fill in the valid nodes. After looking for the optimal path,

the pairs of corresponding edge points between eL
1

and eL
2

in the left scanline and those between eR
1

and eR
2

in the right

scanline are determined. The same process is repeated for

all the sub-search planes. The same method is applied to all

other scanlines for matching the edge points of the whole

image.

Fig. 3. 2D search plane subdivided into sub-search planes. The horizontal
axis corresponds to the left scanline and the vertical one corresponds to the
right scanline. Vertical and horizontal lines are the edge points positions
and path selection is performed at their intersections.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed

approach, we have experimented with virtual and real stereo

sequences. Also, we have compared it to the method pre-

sented in [11] to assess its performance.

First, we used the MARS/PRESCAN virtual stereo images

available in [21]. The size of the images is 512× 512. The

left stereo image of the frame #293 of the virtual stereo

sequences is shown on the left side of Fig. 4. The edge

image, obtained by the canny detector, is depicted in the right

side of Fig. 4. The corresponding disparity map computed

by the new approach is shown in Fig. 5. We have used false

colors for representing the disparity map. Table I summarizes

the matching results obtained with the new method and the

one in [11]. It shows the number of matched edge points

(NME) and the percentage of correct matches (PCM) for

the frame #293. It is clear that the new method gives more

correct matches. The percentage of false matches with the

new method is less than the other one. Table I justifies clearly

the performance of the new method. The same performance

was obtained on the other frames of the virtual sequence.

The proposed method has also been tested on the real

sequence depicted in Fig. 6. The image size is 384 × 288.

The stereo sequence was acquired by a stereo vision sensor

embedded in a moving car. The velocity of the car was 90km

per hour. The stereo vision sensor provides 10 frames per

second. The extracted edge points are shown in the right

image of Fig. 6. The disparity map computed by the new

method is illustrated in Fig. 7.
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Fig. 4. (left) Left stereo image #293 of the virtual stereo sequences and
(right) the edge image extracted by the canny detector.

Fig. 5. The disparity map computed with the new method for the frame
#293.

Method NME PCM

Method in [11] 15934 88.03

New method 37237 94.43

TABLE I

SUMMARY OF THE RESULTS OBTAINED BY THE NEW METHOD AND THE

OTHER PRESENTED IN [11] WHEN APPLIED TO THE VIRTUAL SEQUENCE.

Fig. 6. (left) Left image #4180 of the real stereo sequences and (right) the
corresponding edge image obtained by the canny operator.

Fig. 7. Disparity map computed by the proposed method.

According to the disparity smoothness constraint, the edge

points belonging to the same contour (object) should have

very close or similar disparity values. So, by focusing our

attention to the disparity map, we can observe that the

disparity values are homogeneous at the two cars. If we focus

our attention to the disparity values at the edge curves of the

left and right sides of the right car, we observe that the two

sides of the car have yellow color, which corresponds to

the true value of the disparity. We have applied the method

in [11] to the real sequence. After manually analyzing the

disparities at the edge curves of the two sides of the right car,

we found that the new method yields more pairs of correct

matches. With the new method (resp. the method [11]), we

obtained 140 (resp. 110) pairs of correct matches.

The hardware used for the experiments is a HP Intel(R)

Core(TM)2 Duo CPU 2.09GHZ running under Windows XP.

The running time is less than 0.3 seconds per frame.

Unfortunately, there is no public real stereo sequences

available to test on our algorithm. Our method has been

applied to different real stereo sequences, which we get

from VisLab, University of Parma, Italy. We included only

the results obtained on the stereo sequence shown in Fig.

6 because of the limited space allowed to the publication

of the paper. In our knowledge, the spatio-temporal related

bibliography is not exhaustive, which justifies the reason

we have compared the new method with the other method

proposed with the same authors in [11].

The performance of the new method can be justified as

follows:

• Instead of the declivity operator used in [11], the current

approach uses the Canny operator to detect edge points.

This helps getting more edge points in the stereo images

as the declivity operator is not able to detect horizontal

edge curves. Therefore, the STM method provides more

matched pairs of edge points.

• The IDM is a crucial component in both STM and

TCM methods. The disparity range is derived from

IDM for both STM and TCM approaches. In [11], IDM

is computed from the association between edge points

of the consecutive images together with the correspon-

dences between the edge points of the preceding frame.

However, in the current paper, IDM is derived from the

spatio-temporal matching of the the edge curves of the

consecutive frames. Consequently, the IDM computed

by the new method is more accurate than the one

computed by [11].

• In [11], one search space is used to find correspondences

between edge points of corresponding scanlines. In the

current paper, MCEPs are used to divide the search

space into a number of subspaces. This enforces the

dynamic programming search path to cross the pairs of

matched edge points deduced from IDM. Therefore, the

matching results found by the new method are more

improved compared to those obtained by the method

presented in [11].

1487



V. CONCLUSION

In this paper, we have presented a real-time stereo match-

ing method devoted to road applications. The new method

is based on the temporal consistency between consecutive

stereo pairs of images. It uses dynamic programming for

matching edge points of stereo images. The dynamic pro-

gramming is driven by the MCEPs, which are derived from

the spatio-temporal matching of edge curves of consecutive

frames. The proposed approach has been tested on different

stereo sequences and the results obtained are promising.

It is very fast, which makes it suitable to real-time road

applications. For future work, we wish to use the matching

results for obstacle detection and tracking.
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