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Abstract

In this paper, we present a new approach to eye-gaze
estimation using eigenspaces. The context of our applica-
tion is monitoring car drivers. Within this context, eye-
gaze information will be an important component in the
development of systems that monitor the driver and alert
him/her of any insecure driving conditions. Based on the
requirements of our application, accurate gaze estimates
are not really necessary. On the other hand, speed is very
important. The approach we have taken involves classify-
ing gaze into five directions ("straight", "up", "down",
"left", and "right"). Each gaze direction is modeled by a
distinct eigenspace. Novel gaze directions are classified
as one of the above five gaze directions by computing the
distance of the novel direction from each eigenspace. The
eigenspace associated with the smallest distance deter-
mines the classification result. The proposed approach is
very simple and fast. Also, it is not intrusive and does not
required extracting any special features. Our preliminary
results illustrate that it is a promising approach.

Keywords: eye-gaze estimation, principal components
analysis, eigenspace.

1. Introduction
The problem of eye-gaze estimation has received a

lot of attention lately mainly because of its potential
applications in building advanced interaction devices to
improve human-machine communication [1]-[3]. The
goal of eye-gaze estimation is to determine where a sub-
ject is looking from the appearance of the subject’s eyes.
The context of our application is using eye-gaze for mon-
itoring car drivers. Eye-gaze information regarding the
movement of a driver’s line of sight may have the poten-
tial to indicate a driver’s intention and his/her physical or
mental conditions. For normal driving, the line of sight is
front. When people are drowsy or drunken, for example,
their visual awareness cannot cover a wide enough area.
Consequently, eye-gaze information will be an important
component in the development of systems that monitor
the driver and alert him/her of any insecure driving con-
ditions.

In general, the problem of eye-gaze estimation
involves two steps: first, the orientation of the subject’s
head needs to be estimated ("global" gaze direction) and
second, the orientation of the subject’s eyes within their
sockets needs to be estimated ("local" gaze direction).
The overall gaze direction can be obtained by integrating
the global and local directions. Most techniques in the
literature deal with the "local" direction only, assuming
that the position of the head is fixed. Although this might
be a valid assumption in certain applications (e.g., medi-
cal applications), it is a rather restrictive assumption in
many other applications. To build a general purpose eye-
gaze estimation system, both problems need to be tack-
led. Here, we concentrate on the estimation of the
"local" gaze direction only.

Methods for eye-gaze estimation usually rely on
techniques such as measuring the reflection of some light
that is shone onto the eye, measuring the electric poten-
tial of the skin around the eyes or applying special con-
tact lenses [4][5]. Although these techniques work rela-
tively well, they are intrusive, thus, not acceptable in
ev ery application domain. Recently, a lot of emphasis has
been on using no-intrusive computer vision techniques
[1]-[3]. These techniques are aimed at extracting visual
characteristics from images of the subject. Several criti-
cal steps are involved when gaze estimation is based on
image data. First, the face of the subject needs to be
detected. Methods based on neural networks [6] and
skin-color [3] are very popular in this case. Then, the
locations of the eyes need to be found within the face
region. Among the numerous methods proposed for this
in the literature [1]-[3], the method in [7] is fast and reli-
able since it is based on the fact that humans must peri-
odically blink to keep their eyes moist. After the eyes
have been detected, the last step is the gaze estimation
step.

The most common probably approach to gaze esti-
mation is based on the reflection of some light shone
onto the eye. Specifically, the gaze direction is estimated
from the relative position between the pupil and the glint
(i.e., the brightest light spot on the eye due to light reflec-
tion) [2][5][8]. This approach is not completely non-
intrusive and requires good localization of the pupil and
the glint. To avoid localizing these features explicitly, the
use of neural networks has been proposed [8]. In [9], the
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gaze direction was estimated using the shape of the iris
or the pupil in the image. Since circles are projected on
the image plane as ellipses, the idea was to estimate the
pose of the iris from the distortion of its projection (i.e.,
ellipse) in the image. Then, the gaze is estimated based
on the recovered pose. The main challenge with this
approach is that it requires a close view of the eye.

Depending on the application at hand, the accuracy
of the eye-gaze estimation system can vary. In the area of
human-computer interfaces, for example, eye-gaze is
used as an input device to control the screen cursor or for
menu selections. In this case, eye-gaze estimates must be
very accurate. This is also the case when eye-gaze is
used in medical applications. In the context of our appli-
cation, however, we believe that a rough estimate of the
driver’s eye-gaze, computed fast and reliably, will proba-
bly be enough. It should be mentioned that eye-gaze is
not the only characteristic taken into consideration when
monitoring a driver. Other characteristics include head
inclination, degree of eye openness, sluggish in facial
expression, and sagging posture [10].

In this paper, we propose an eigenspace approach for
eye-gaze estimation. Eigenspace methods have attracted
a lot of interest lately mainly because of their simplicity,
speed, and relative success in numerous application
areas, especially in face recognition (eigenface
approach) [11]-[14]. The main idea is very simple: Prin-
cipal Components Analysis (PCA) [11][12] is used to
linearly project images of objects to a low dimensional
subspace (eigenspace). This subspace is defined by the
principal components (eigenvectors) of the distribution of
images (i.e., the most important eigenvectors of the
covariance matrix). Using this approach each object is
represented as a linear combination of eigenvectors.
Objects under novel appearances are classified by com-
puting their distance from the eigenspace. Here, our
intention is to classify eye-gaze into five directions: (1)
looking straight, (2) looking up, (3) looking down, (4)
looking left, and (5) looking right. Each gaze direction, is
represented by a separate eigenspace. New gaze direc-
tions are classified to one of the five predefined direc-
tions by computing the smallest distance among the dis-
tances from all the eigenspaces. The proposed approach
is very simple, fast, and does not require any special fea-
tures to be extracted (e.g., glint).

The rest of the paper is organized as follows: In
Section 2, we present an overview of the proposed
approach. Section 3 contains a review of the eigenspace
approach while Section 4 presents our methodology in
more detail. In Section 5, we present our preliminary
results. Finally, Section 6 contains our conclusions.

2. Method Overview
In the proposed approach, eye-gaze is estimated by

quantizing it into five directions: (1) looking straight, (2)
looking up, (3) looking down, (4) looking left, and (5)
looking right. A finer quantization is possible if better
accuracy is required. Each eye-gaze direction is repre-
sented by an eigenspace which is built using face images,
containing mostly the eyes, of people looking into the
corresponding direction. Given a novel image (a person
looking at some direction), we extract the subimage con-
taining the eyes and compute the distance (dffs, see next
section) from each one of the eigenspaces. The direction
associated with the eigenspace having the smallest dis-
tance determines the gaze direction of the person in the
novel image. Figure 1 illustrates this idea. In the next
section, we review the theory of eigenspace-based recog-
nition.

Looking Right

Looking Up

Looking Down

Looking Straight Looking Left

Input Image

EIGENSPACES

Project onto each eigenspace

Compute dffs from each eigenspace

(smallest dffs)
Look Left

Figure 1. The proposed approach for coarse eye-gaze estimation.

3. Review of the eigenspace approach
The original formulation of the eigenspace method

is based on Principal Component Analysis (PCA)
[11][12], a standard statistical technique for reducing the
dimensionality of data while attempting to preserve as
much of information as possible in terms of variance.
The key idea is to represent each data in a low dimen-
sional space defined by the most important eigenvectors
of the covariance matrix of the data distribution. A com-
plete description of the eigenspace approach, applied on
face recognition, can be found in [11][12].

In this approach, each image I (x, y) is represented
as a N x N vector Γi . First, the average image Ψ is com-

puted: Ψ =
1

R

R

i=1
Σ Γi , where R is the number of images in

the training set. Next, the difference Φ of each image
from the average image is computed Φi = Γi − Ψ, and
the covariance matrix is estimated:
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C =
1

R

R

i=1
Σ ΦiΦT

i = AAT

where, A = 

Φ1 Φ2 . . . ΦR



. The eigenspace can then

be defined by computing the eigenvectors ui of C. Since
C is very large (N 2 x N 2), computing its eigenvectors
will be very expensive. Instead, we can compute vi , the
eigenvectors of AT A, an R x  R matrix. Then, ui can be
computed from vi as follows (the details are given in
[11]):

ui =
R

j=1
Σ vijΦ j, j = 1, . . . , R

Usually, we only need to keep a smaller number of
eigenvectors R′, corresponding to the largest eigenvalues.
Given a new image Γ, we subtract the mean (Φ = Γ − Ψ)

and we compute its projection: Φ̂ =
R′

i=1
Σ wiui , where

wi = uT
i Φ are the coefficients of projection.

Let us assume that our training set contains face
images. A new image is considered to be a face if the
mean square error (called the distance from face (dffs))
between its representation using the most important
eigenvectors and its normalized counterpart (e.g., the dif-
ference of the input image and the mean image), is small.

Extract subimages with eyes

Histogram Equalization
Light-correction and 

Training Data

 Images with different
gaze directions

PCA

 Input Image

Extract subimage with eyes

Align eye-subimages

Smallest distance determines
eye gaze direction

Eigenspaces

(b) Estimation
(a) Training

Preprocessing

Project onto Eignespaces

Preprocessing

Figure 2. The main steps during training and estimation
phases.

4. Methodology
In this section, we discuss the steps of the pro-

posed methodology (see Figure 2). To build the
eigenspaces (training phase), we use images (i.e., subim-
ages containing mostly the eyes) of people looking at all

five directions. During eye-gaze estimation (estimation
phase), the image of a subject is presented to the system.
Then, the subject’s eye-gaze is estimated by computing
the distance of the subimage containing the eyes from
each eigenspace. The smallest distance determines the
classification.

4.1. Preprocessing
To compute the eigenspaces corresponding to dif-

ferent gaze directions, first we extract the subimages cor-
responding to the eye-region and then we align them
together. The procedure used to align the subimages is
similar to that used in [6]. Specifically, the center of the
eyes and the tip of nose (picked manually) are used to
normalize each eye-region to same scale, orientation and
position. The steps are described below:

Step1: Let F be a vector which contains the aver-
age positions of each labeled feature over all
subimages. Initialize F with the feature locations
in the first subimage F1.

Step2: The feature coordinates in F are trans-
formed so that the average locations of the eyes
(P1 and P2) and tip of the nose (P3) appear at pre-
determined locations (P f

1 ,P f
2 ,P f

3 respectively) in a
N x M window (see Figure 3). A 40 x 50 window
was used in our experiments. An affine transforma-
tion is used to register the images:

P f
1 = AP1 + b

P f
2 = AP2 + b

P f
3 = AP3 + b

The above equations can be rewritten as

Pc1 = px

Pc2 = py

where

P =





X1

X2

X3

Y1

Y2

Y3

1

1

1






px =





X f
1

X f
2

X f
3






, py =





Y f
1

Y f
2

Y f
3






, c1 =





a11

a12

b1






, c2 =





a21

a22

b2






(c1 and c2 are the parameters of the affine transfor-
mation).

Step3: For every subimage i in the training set, we
compute the best affine transformation to align the
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features (eyes, tip of the nose) Fi with the average
feature locations F . Let’s call the aligned feature
locations F ′

i .

Step4: Update F by averaging the aligned feature
locations F ′

i for each subimage i.

Step5: If the error between F and F , calculated in
the previous iteration, is less than some threshold,
then stop; otherwise go to step 2.

P1 P2

P3

Figure 3. A typical face showing the features of interest.

The alignment algorithm converges usually within seven
iterations. For each subimage, it yields an affine transfor-
mation that maps that subimage to the 40 x 50 window.
To avoid gaps in the normalized subimage, each point in
the desired subimage was actually determined through
the inverse affine transformation. Figure 4 shows some
examples of images before and after normalization.

Figure 4. Examples before and after normalization.

After the alignment of all subimages, each subimage is
processed to account for different lighting conditions [6].
First, we fit a linear model to the intensities of the image,
having the following form:

f (x, y) = ax + by + cxy + d

where f (x, y) denotes the image and a,b,c,d are the
coefficients to be determined. To solve for the coeffi-
cients, we use a least squares approach. Then, the linear
fit image is subtracted from the original image to account
for lighting differences. Then, histogram equalization is
performed to improve contrast. The results of these pre-
processing steps are illustrated in Figure 5.

Figure 5. Examples showing images after light correc-
tion and histogram equalization.

4.2. Eigenspace representation
All the images in the training set were prepro-

cessed as explained in the previous section. Then, these
images were subjected to PCA to generate the
eigenspaces. Figure 6 shows the most important eigenim-
ages of the "looking straight" set.

Figure 6. (top) Some of the images in the dataset "look
straight", (bottom) the mean image and the top four
eigenimages of this dataset.

4.3. Eye-gaze estimation
During eye-gaze estimation, the image of the sub-

ject is captured and his face is detected using a skin-color
algorithm [3]. Then, the eyes are detected and a subim-
age around the eyes is cropped out and mapped to a
40 x 50 window, followed by light-correction and his-
togram equalization. No alignment is performed at this
step. Also, the eyes are detected using an iterative thresh-
olding approach [3]. To estimate the gaze direction asso-
ciated with the input subimage, we project it onto each
eigenspace. Then, for each eigenspace, we reconstruct
the input subimage using the most important eigenvec-
tors of this eigenspace and we compare it against the
original subimage. The comparison yields an error (dffs)
which is considered to be the distance of the subimage
from the eigenspace under consideration. The smaller
the error the closer the image is to that eigenspace. The
gaze direction associated with the eigenspace having the
smallest distance determines the gaze direction of the
subject.

5. Experimental Results
In this section, we report a number of preliminary

experimental results to illustrate the performance of the
proposed approach. In these experiments, we captured 65
images (5 images from 13 individuals, one image per
gaze direction ). For training, we used 8 of the individu-
als (40 images) while the rest 5 (25 images) were kept
for testing. Figure 7 shows the images used to construct
the "looking straight" eigenspace. It should be mentioned
that the lighting conditions were not changed signifi-
cantly in our experiments. Although we apply several
normalization steps to account for lighting changes (see
section 4), the original eigenspace approach -used here-
is not very robust to different lighting conditions.
Improved versions of the the eigenspace approach, how-
ev er, are more successful in tolerating changes in lighting
[14].
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Figure 7. The training data used to build the eigenspaces
("look-straight").

Figures 8-12 show the test cases considered. Since our
focus is on estimating the "local" gaze direction only, we
have asked all the subjects to move their eyes only, trying
to keep their head at a fixed location. Besides the sub-
jects’ effort to keep their head still, there are differences
in the head orientation as we can see below (most of
them, however, were very well tolerated by the proposed
approach). Tables 1-5 show the distance of the input
images (i.e., eye-regions only) from each eigenspace (the
smallest distance is shown in boldface).

In test case 1, all five gaze directions were estimated cor-
rectly (the smallest distance corresponds to the
eigenspace associated with the correct gaze direction).
What is interesting to note about this subject is that he
has not kept his head still while moving his eyes. Despite
the changes in head orientation, the proposed approach
was able to estimate the gaze direction correctly.

Figure 8. The first test case.

Table 1. The smallest computed distances for test1 (Fig 8).

Smallest Distances

Input Front Left Right Up Down

Front 1821.5 2044.8 2195.3 2012.9 2062.2

Left 2134.0 1772.7 2459.3 2264.6 2348.7

Right 2109.1 2444.3 1908.4 2304.9 2437.0

Up 2366.2 2425.9 2450.6 2262.5 2498.7

Down 2101.3 2227.5 2246.9 2232.4 1711.8

Test case 2 is a rather good test case since the subject has
kept his head as still as possible. All five directions have
been estimated correctly.

Figure 9. The second test case.

Table 2. The smallest computed distances for test2 (Fig. 9).

Smallest Distances

Input Front Left Right Up Down

Front 1560.8 1930.1 1821.7 1679.3 1952.1

Left 1936.1 1624.2 1993.9 1827.9 1919.3

Right 1739.0 1943.5 1698.4 1804.5 1714.3

Up 1845.1 2166.2 2076.2 1705.9 2327.5

Down 1686.6 1785.3 1758.3 1686.4 1658.3

In test case 3, all the gaze directions were estimated cor-
rectly without any problems. The subject has kept his
head still and the different gazes are clearly distinguish-
able.

Figure 10. The third test case.

Table 3. The smallest computed distances for test3 (Fig 10).

Smallest Distances

Input Front Left Right Up Down

Front 1609.1 1933.4 1870.1 1650.2 1734.9

Left 1618.7 1612.5 1848.2 1626.7 1722.1

Right 1739.0 1943.5 1698.4 1804.5 1714.3

Up 1570.0 1888.5 1729.8 1567.5 1717.9

Down 1580.0 1818.6 1746.2 1656.6 1450.4

In test case 4, the "look-left" gaze direction was misclas-
sified as "look-up". However, the difference in the dis-
tance computed for the "look-left" direction is very
small.

Figure 11. The fourth test case.

Table 4. The smallest computed distances for test4 (Fig 11).

Smallest Distances

Input Front Left Right Up Down

Front 1514.2 1920.4 1657.9 1521.1 1611.5

Left 1618.5 1579.7 1866.3 1530.8 1783.9

Right 1605.8 1780.0 1521.5 1566.0 1802.5

Up 1666.4 1853.7 1750.4 1470.2 1734.6

Down 1582.4 1799.7 1786.7 1579.8 1465.9

The subject of test case 5 was asked to sit not very close
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to the camera. This is to test the robustness of the method
to scale changes. Among the five input directions, three
were classified correctly and the other two incorrectly.
The "look-up" direction was classified as "look-straight".
In fact, looking carefully at the test image, it is not clear
whether the subject is looking up or straight. Also, the
"look-down" test case was misclassified.

Figure 12. The fifth test case.

Table 5. The smallest computed distances for test5 (Fig. 12).

Smallest Distances

Input Front Left Right Up Down

Front 1151.4 1329.7 1333.6 1323.5 1238.1

Left 1345.3 1246.7 1525.2 1377.8 1501.1

Right 1163.2 1455.0 1152.1 1201.2 1352.7

Up 1124.8 1343.3 1279.6 1164.4 1280.5

Down 1137.5 1296.9 1320.6 1221.3 1238.1

6. Conclusions
In this paper, we presented a number of prelimi-

nary results on the problem of eye-gaze estimation using
an eigenspace approach. From additional experiments we
have performed, it seems that the most often confused
cases are the "look-straight", "look-up" and "look-down".
This is not unreasonable since the differences among
these cases are not that great. We believe, howev er, that
one of the reasons that has contributed to this problem is
the fact that the camera was set up at the same level with
that of the subjects’ face. We believe that moving the
camera lower will allow us to capture images where the
differences among the confused directions are better
emphasized.

In addition, our training set was rather small con-
taining only 8 subjects. Increasing the size of the train-
ing set will improve the performance of the method.
Another problem with the subimages used in our experi-
ments is that they contain not only the eyes but also the
eyebrows and the nose of the subject. This information,
however, might confuse the eigenspace approach.
Finally, we believe that improved versions of the
eigenspace approach (i.e., using Linear Discriminant
Analysis [14]) will further increase classification accu-
racy.
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