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Abstract
In this paper, we introduce a new non-intrusive
approach to estimating the eye position during pursuit
motion of the eye. We introduce a new characterization
for the pursuit eye movement. Our characterization is
based on the decomposition of the pursuit eye motion
into a deterministic component and a random compo-
nent. We use a discrete Kalman filter to estimate the
random component and calculate the deterministic
component. We add the two components to obtain an
estimate of the eye position. Simulation results are pro-
vided to illustrate the eye position estimation.
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1. Introduction

Eye tracking has long been recognized as an important
task in both Computer Vision and Human-Computer Inter-
action (HCI.) In HCI, for example, determining the focus of
attention plays an important role in responding to the user’s
intensions.

Two main HCI applications that require eye tracking are
hands-free cursor control and object movement. In these
applications, accurate tracking of eye position is required.
An automatic text reader is another application that requires
accurate eye position estimation.

In virtual environments, the user should be able to inter-
act with the objects in the environment in natural and easy
ways. Several studies have focused on developing interac-
tion techniques using hands [8] with less emphasis on eye-
based methods.

Current eye tracking approaches rely heavily on intrusive
techniques such as measuring the reflection of some light
(usually infrared) that is shone into the eye, measuring the
electric potential of the skin around the eyes or applying
special contact lenses that facilitate the eye tracking process
[1]. User acceptance for any of these intrusive techniques
has always been a problem when applying them. Other non-
intrusive techniques, such as neural networks [2], have also
been proposed but with less success than the intrusive ones.

In this paper, we introduce a new non-intrusive approach
to tracking eyes undergoing pursuit motion. We use a dis-
crete Kalman filter to track the user’s eye position. The main
advantages of the proposed approach are: 1) it requires no
physical contact with the user, 2) it results in high tracking
accuracy, and 3) low computational complexity so that it can
be implemented for real-time applications.

This paper is organized as follows. Section 2 provides a
short survey of eye tracking techniques. Section 3 presents a
brief overview of different types of eye movement. Section
4 is the core part of the paper in which we introduce the pro-
posed approach. In section 5 we discuss eye motion simula-
tion results using our estimation approach. In section 6 we
provide conclusions and suggestions for future work.

2. Eye Tracking Approaches
We can broadly classify eye tracking techniques into

three major categories according to the way they contact the
user [1]. The first category is based on directing a beam of
light (typically infrared) into the eye and then measuring the
light reflected from the eye. The second category is based on
measuring the potential of the skin around the eye. The last
category is based on applying special type of contact lenses
that facilitate eye tracking.

2.1 Measuring light reflectance techniques

Four tracking techniques use the light reflected from the
eye. These techniques are:

1. Limbus tracking (Limbus is the boundary between the
white sclera and the dark iris.)

2. Pupil tracking (the boundary between the pupil and the
iris is usually used.)

3. Purkinje Images tracking (Purkinje Images are the dif-
ferent reflections from the boundaries of the lens and cor-
nea. See Figure 1.)

4. Corneal Reflections tracking.

2.2 Electric Potential of the Skin

This class of techniques is based on the fact that there
exists an electrostatic field that rotates along with the eye.
By recording small differences in the skin potential around
the eye, the position of the eye can be detected.

2.3 Contact Lenses
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In this class of techniques, the user wears a special type
of contact lenses that allows accurate detection of the direc-
tion of the gaze.

As expected, any intrusive technique is not easily
accepted by the users and cannot be used in everyday life.
For example, intrusive techniques are not suitable for HCI
applications. This motivates the development of new non-
intrusive techniques that achieve same level of accuracy.

3. Eye Movements

Eye movement is generally classified into four main
types [3], based on what the eye is viewing at a specific
moment. These four classes are described as follows.

1. Saccadic Eye Movements

Saccades are very fast jumps from one eye position to
another. The velocity of saccades can be as high as 800
degrees/second [3]. This kind of eye movement is usually
used while following a rapidly moving object or scene.

2. Pursuit Eye Movements

As its name implies, this type of eye movement is used
while tracking (or pursuiting) a slowly moving object. It
consists of two components: a slowly varying motion com-
ponent plus a saccadic component. This saccadic compo-
nent occurs occasionally as a correction mechanism for the
eye position [3]. The saccadic component occurs when the
eye current eye position is not accurate with respect to the
moving object.

3. Fixation Eye Movements

During fixating on a static scene or object, the eye actu-
ally undergoes three different types of movements [3]. The
first is a continuos high frequency tremor component. The
frequency of this component ranges from 30 to 80 cycles
per second. The second eye movement component during
fixation is a slow drift of the eyeballs in a random direction.
The last component is a flickering eye movement that cor-
rects the eye position that changed by the drift component.

4. Nystagmus Eye Movement

This pattern of eye movement occurs when viewing a
fast moving repetitive scene (the train window phenome-
non.) It consists of pursuit motion in one direction to follow
a position in the scene followed by fast motion in the oppo-
site direction to select a new position in the scene.

4. Kalman Filter Tracker

The Kalman filter has been used extensively in Com-
puter Vision research. Most of the applications that utilize
Kalman filter focus on the problems of object tracking and
structure from motion [7]. To the best of our knowledge,
Kalman filter has not been used to track eye movements. In
this paper, we apply the Kalman filter to track the pursuit
motion of the eye.

As discussed in Section 3, the pursuit eye movement
occurs when the eye is tracking a slowly moving object.
Figure 2 shows that the pursuit eye movement can be
decomposed into two components. One component is a
simple position-velocity-acceleration motion and the other
one is the saccadic component. This saccadic component
could be thought of as a random component that corrects
the position of the eye.

The saccadic component has a random time of occur-
rence, a random duration and a random amplitude. The
duration of these saccadic movements typically range from
30 to 120 milliseconds, while their velocity can be as large
as 800 degrees/second. This means that, the acceleration of
the saccadic component increases rapidly and decreases
rapidly causing a fast move and an accurate stop at the
required position. We, therefore, model the acceleration of
this motion as a Gauss-Markov process [6]. The autocorre-
lation function of this process is shown in Figure 3 and is
given by the equation

(1)

Figure 1: Purkinje Images Figure 2: Decomposition of Pursuit Eye Motion
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The power spectral density of Gauss-Markov process is

(2)

Because the standard Kalman filter formulation requires
the noise to be Gaussian white noise, we use a shaping fil-
ter. The spectral decomposition for the Gauss-Markov pro-
cess is

(3)

We characterize the pursuit eye movement by the fol-
lowing state-space equations

(4)

(5)

where , and represents the position, velocity and
Gauss-Markov random acceleration component
respectively.

We augment the state vector x with an additional state
variable to account for the Gauss-Markov process as fol-
lows

(6)

(7)

where is a unity Gaussian white noise. In the discrete
form, the model is

(8)

(9)

where , is the process Gaussian white noise
and is the measurement Gaussian white noise.

To determine the covariance matrix of the process
noise for the model of equation (8) and (9), we use the
Van-Loan procedure [5]. We now have the discrete state-
space system model and the noise characterization needed
to design a discrete Kalman filter.

5. Results and Discussion

The objective of the proposed technique is to develop a
tracker for the pursuit motion of the eye. According to our
formulation of the tracking problem, the input to the Kal-
man filter can be considered as a zero-mean Gaussian white
noise.

To test the performance of the proposed tracker, we have
simulated the actual (true) position of the eye by generating
slowly varying sequences of numbers that represent the
actual eye position (e.g. large wavelength sinusoidal sig-
nal.) The generated sequences were then corrupted by zero-
mean Gaussian white noise. The composite signal repre-
sents the measured (corrupted) position of the eye. The
composite signal is fed into the filter to estimate the original
signal, the correct eye position.

Figures 4a-7a show four simulations to the input signal
to the filter, the measured eye position. Figures 4b-7b show
the filtering results of the four simulation experiments. The
figures on the left row show the input signal to the filter,
which is composed of the true eye position corrupted by
zero-mean Gaussian white noise. The figures on the right
row show the filtering results superimposed on the original
signal. The filtered signals represent the correct eye posi-
tion. Table 1 shows the error levels of the corrupting noise
and the noise variance in each case of the four experiments.
We have implemented the proposed approach using MAT-
LAB. The time needed to process 1800 samples was 0.3
seconds (i.e. 0.17 ms/sample) on a 1GHz P-III machine
running MS-Windows 2000 operating system. This time is
the time required to filter one sample of the corrupted signal
to obtain the original one. This time does not include the
time required to measure the eye position from the eye
image.

Our results show a significant tracking error reduction
with the use of the Kalman filter compared to directly using
the measurement of the eye position. This error reduction is
the main advantage of the proposed approach at a small cost
of additional computational time to filter the measurements.

The simulation results shown are for pursuit motion in
one direction. However, to implement the tracker in the 2D
space (spatial dimensions of images), two independent fil-
ters must be used, one filter for each spatial dimension. The
two filters can be independently designed assuming that the
motion in one direction is statistically independent of the
motion in the other direction.

Figure 3: Autocorrelation Function of Gauss-
Markov Process

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
0

0 . 2

0 . 4

0 . 6

0 . 8

1
x 1 0

- 4

t

R ( t )

Sn s( ) 2σ2β
s2– β2+

--------------------=

S s( ) 2σ2β
s β+

----------------
2σ2β
s– β+

----------------=

x·1

x·2

0 1

0 0

x1

x2

0

n t( )
+=

z 1 0
x1

x2

=

x1 x2 n t( )

x1
·

x2
·

x3
·

0 1 0

0 0 1

0 0 β–

x1

x2

x3

0

0

1

u t( )+=

z 2σ2β 0 0

x1

x2

x3

=

u t( )

xk φk wk+=

zk Hkxk vk+=

φ F∆t( )exp= w

v

Q

w



Figure 4.a: Experiment 1: Test Sequence
Simulating Measured Eye Position
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Figure 5.a: Experiment 2: Test Sequence
Simulating Measured Eye Position
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Figure 6.a: Experiment 3: Test Sequence
Simulating Measured Eye Position
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Figure 5.b: Experiment 2: Filtering Results
Superimposed on True Eye Position

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0

0

5

1 0

1 5

2 0

t

Tru e E y e P o s it io n
E s t im a te d E y e P o s it io n

Figure 6.b: Experiment 3: Filtering Results
Superimposed on True Eye Position
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Table 1: Experimental Results

Noise
Variance

Noise-to-Signal
%

Estimation Error-
to-Signal %

Error
Reduction

Experiment 1 1 7.381% 1.619% 78.061%

Experiment 2 4 14.377% 2.637% 81.658%

Experiment 3 1 12.294% 3.22% 73.792%

Experiment 4 4 25.491% 5.439% 78.6631%

Figure 4.b: Experiment 1: Filtering Results
Superimposed on True Eye Position



6. Conclusions and Future Work

In this paper, we propose a new non-intrusive approach
for tracking the position for an eye undergoing pusuit
movement. Our approach is based on the physiological fact
that the pursuit motion can be decomposed into a regular
position-velocity-acceleration component and a random
component that occurs occasionally.

We presented some simulation results based on com-
puter generated simulation data. Our simulation results
show that the Kalman filter can be used effectively to esti-
mate the true eye position during pursuit motion. The three
main advantages of the proposed approach are: (1) this is a
non-intrusive approach which will not be rejected by the
users compared to intrusive techniques, (2) the proposed
approach significantly reduces the measurement error of the
eye position, and (3) the short time required to process the
measurements represents a low computational overhead.
This processing time does not include the time needed to
process the image to measure the eye position. The low
computational complexity of the algorithm arises from the
scarcity of the model matrices, which simplifies the matrix
multiplications and inversions when running the Kalman
loop. This low computational complexity characteristic of
the proposed approach makes it suitable for real-time appli-
cations.

The next step in our research is to test the tracker perfor-
mance using real image data. To develop a feature extractor
that measures the eye position reliably, we need to have a
head-mounted camera to eliminate the effect of head and
body movements. Hence, we can obtain image sequences
for the eye without the superimposed head and body move-
ments. An alternative approach, that does not require the
use of the costly camera, is to augment the current model to
compensate for the head and body motion. This would
allow us to implement the proposed approach without the
use of a costly head-mounted camera.
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Figure 7.b: Experiment 4: Filtering Results
Superimposed on True Eye Position
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