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ABSTRACT

Accurately segmenting fluid in 3D optical coherence tomog-
raphy (OCT) images is critical for detecting eye diseases but
remains challenging. Traditional autoencoder-based meth-
ods struggle with resolution loss and information recovery.
While transformer-based models improve segmentation, they
aren’t optimized for 3D OCT volumes, which vary by ven-
dor and extraction technique. To address this, we propose
SwinVFTR, a transformer architecture for precise fluid seg-
mentation in 3D OCT images. SwinVFTR employs channel-
wise volumetric sampling and a shifted window transformer
block to improve fluid localization. Moreover, a novel vol-
umetric attention block enhances spatial and depth-wise at-
tention. Trained using multi-class dice loss, SwinVFTR
outperforms existing models on Spectralis, Cirrus, and Top-
con OCT datasets, achieving mean dice scores of 0.72, 0.59,
and 0.68, respectively, along with superior performance in
mean intersection-over-union (IOU) and structural similarity
(SSIM) metrics.

Index Terms— Fluid Segmentation, Optical Coherence
Tomography, Swin Transformer, OCT Segmentation

1. INTRODUCTION

Fluid buildup, or macular edema in retinal layers, is a com-
mon reason for blindness and retinal degeneration. Pos-
sible factors include Drusen, Choroidal neovascularization
(CNV), Age-related macular degeneration (AMD), and Dia-
betic retinopathy (DR) [1]. Age-related macular degeneration
causes irreversible blindness in approximately 8.7% of people
worldwide and is a leading cause of vision loss. Similarly,
Diabetic retinopathy affects one-third of every diabetic pa-
tient [2], which is 2.8% of the world’s population and the
second leading cause of blindness. As a result, early diag-
nosis, localization, and segmentation of retinal layer fluid
accumulation can help with effective treatments. Optical
coherence tomography (OCT) is a non-invasive retinal imag-
ing method that yields 3D volumetric cross-sectional images
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for viewing the morphology of retinal layers and underlying
pathologies. Although the image is extracted through this
approach, the differential diagnosis and fluid localization are
supervised by an expert ophthalmologist.

Manual annotation and segmentation of sub-retinal fluid
are time-consuming, error-prone, and tedious. To address
this, traditional image-processing and machine learning [3]
techniques were introduced but relied heavily on handcrafted
features, struggled with spatial and depth features, and lacked
generalization ability. With deep learning, automated seg-
mentation in medical imaging gained traction due to its high
accuracy in pixel-wise segmentation and volumetric data. 2D
U-Net-like auto-encoder models [4] have been widely used
for retinal fluid segmentation, showing good results in multi-
layer segmentation. However, they struggle with fine fluid
boundaries and detecting small deposits. Vision transformer-
based models have recently improved small fluid segmenta-
tion by using multi-headed [5] or shifted-window [6] atten-
tion to capture local context. However, these models operate
on both 2D and 3D slices but lack depth information. While
early 3D U-Net models showed potential, progress has stag-
nated. We propose an approach to overcome these limitations:

• A novel architecture termed Swin Volumetric Feature-
learning Transformer (SwinVFTR) that utilizes a swin-
transformer as an encoder and joins it to a 3D convolution-
based decoder at distinct resolutions via novel volumetric
spatial and depth attention block. Moreover, we modify
the swin-transformer block with a novel Multi-receptive
field residual block instead of MLP.

• Our model employs a channel-wise overlapped sampling
technique to crop OCT volumes only in the depth axis
while retaining spatial information. We minimize data
loss due to resizing 3D volumes by replacing it with
channel-wise sampling for inference.

• To validate our work, we compare four different 3D con-
volution and transformer-based architectures for medi-
cal image segmentation on three vendor-specific OCT
datasets: Spectralis, Cirrus, and Topcon [7]. From Fig. 2,
it is apparent that our architecture segments retinal fluid
with high dice-score and mean-IOU.



Fig. 1. Proposed SwinVFTR architecture which takes 3D OCT volume input with channel-wise sampling technique and outputs
a 3D segmentation map of the fluid accumulation. The SwinVFTR encoder incorporates a new swin-transformer block consist-
ing of Shifted window attention, Multi-headed attention and Multi-Receptive Field (MRF) sub-block with both convolution and
dilated convolution layers. The encoder features are sequentially added with the decoder using a skip-connection consisting of
a volumetric attention (VA) block.

2. METHODOLOGY

2.1. Channel-wise Volumetric Sampling

Sampling OCT B-scans at different depths can affect the
outcome of recognizing retinal disease pathology for ac-
curate diagnosis. Although U-Net-like architectures are
flexible in handling OCT volumes of different depths, cur-
rent transformer-based architecture cannot take OCTs with
smaller depths. For example, UNETR [8] and Swin-UNETR
[9], two state-of-the-art models for medical image segmen-
tation, utilize patch-merging layer to downsample ×32. As
a result, any OCT with less than 64 B-scans cannot be used
out-of-the-box for these models. Since we are working on
diversified OCT volumes with B-scans of 49 to 128, utilizing
volumetric cropping would be ideal. However, we want to
retain the spatial information while sampling a section of the
original B-scans. So we introduce a channel-wise sampling
technique that samples a cropped image with dimension
of RH×W×D, from an image with RH×W×C dimensions,
where D < C and D = 32. We also utilize one less swin-
transformer and patch-merging block to make our downsam-
pling ×16. While producing the output, we do channel-wise
overlapped volume stitching (25% overlap), which is given in
Fig. 1.

2.2. Proposed Swin-Transformer Block

Regular window-based multi-head self-attention (W-MSA),
which was incorporated in Vision Transformer (ViT) [10],
employs a single low-resolution window for constructing a
global feature map and has quadratic computation complex-
ity. Contrastly, the Swin Transformer architecture proposed
in [11] integrates shifted windows multi-head self-attention
(SW-MSA), which builds hierarchical local feature maps
and has linear computation complexity. Recently, Swin-
UNETR [9] adopted this swin-transformer block without
making any fundamental changes and achieved state-of-the-
art dice scores in different 3D medical image segmentation
tasks. One of the most significant drawbacks of these blocks
is using a Multi-layer perceptron block (MLP) after the post-
normalization layer. MLP utilizes two linear (dense) layers,
which are computationally more expensive than a 1D convo-
lution with a small kernel. For example, a linear embedding
output from a swin-transformer layer having dimension X
(where X ∈ RH×W×D), and input channel, Cin and out-
put channel, Cout will have a total number of parameters,
RX×Cin×Cout . In contrast, a 1D Conv with kernel size, k
with the same input and output will have less number of
parameters, Rk×Cin×Cout . Here, we did not consider any
parameters for bias and the value of k = {1, 3}. On the
other hand, using 1D convolution will drastically affect per-
formance, given that small receptive fields only account for
local features, not global ones. Hence, we employ a multi-



branch residual block with vanilla and dilated convolution
termed Multi-receptive field Block (MRF) to address this.
So for subsequent layers, l and l + 1, the proposed swin-
transformer block can be defined as Eq. 1.

dl =W -MSA(ψ(dl−1)) + dl−1

dl =MRF (ψ(dl)) + dl

dl+1 = SW -MSA(ψ(dl)) + dl

dl+1 =MRF (ψ(dl+1)) + dl+1

(1)

In Eq. 1, we visualize the first sub-block of the swin-
transformer consisting of LayerNorm (ψ) layer, multi-head
self-attention module (W-MSA), residual connection (+), and
Multi-receptive field block (MRF). Similarly, the second sub-
block of the swin-transformer consisting of LayerNorm (ψ)
layer, shifted window multi-head self-attention module (SW-
MSA), residual skip-connection (+), and Multi-receptive field
block (MRF). Moreover, l signifies the layer number, and d is
the feature-map. The MRF block can be further elaborated in
Eq. 2.

x1 = δ(Conv(xin))

x2 = δ(Depthwise Conv(x1))

x3 = δ(Dilated Conv(xin))

xout = δ(Conv(x1 + x2 + x3))

(2)

In Eq. 2, we first use convolution with kernel size, k = 1,
and stride, s = 1 to extract local features with a small re-
ceptive field. Then, we insert the output of these layers into
a depth-wise convolution layer (k = 1, s = 1). In a parallel
branch, we use a dilated convolution (k = 3, s = 1) with a di-
lation rate of d = 2 to extract features with a larger receptive
field. Finally, we add all these outputs from these three con-
volution layers and then apply a convolution (k = 1, s = 1)
to get the final result. Here, δ signifies the GELU activation,
which is applied to all convolution layers.

2.3. Encoder

We transform the OCT volumetric images before the encoder
can take the input with dimensions RH×W×D. We employ
a patch partition step to create a sequence of 3D tokens
with a dimension of RH

P ×W
P ×D

P and these features are then
projected to an embedding space with dimension C. Specifi-
cally, our encoder has a non-overlapping patch with a size of
2 × 2 × 2 and a feature dimension of 2 × 2 × 2 × 1 = 8 by
considering one channel of the OCT. We assign the embed-
ding space size, C=24, in our encoder. So the feature output
of the patch-parition layer is RH

2 ×W
2 ×D

2 ×24 . Likewise,
each encoder stage downsamples the features by utilizing
two swin-transformer blocks followed by a patch-merging
block. So, the features size changes from RH

2 ×W
2 ×D

2 ×C

to RH
4 ×W

4 ×D
4 ×2C , from RH

4 ×W
4 ×D

4 ×2C to RH
8 ×W

8 ×D
8 ×4C ,

and from RH
8 ×W

8 ×D
8 ×4C to RH

16×
W
16×

D
16×8C , successively.

We incorporate two swin-transformer blocks after the last
patch-merging layer to finalize the encoder.

2.4. Volumetric Attention Block

In 3D UNet-like architectures [8], skip connections concate-
nate the encoder and decoder features to retain loss of infor-
mation. However, to make these features more robust, Swin-
UNETR incorporated residual attention block with two con-
volution layers [12, 13]. The problem with this approach is
that it utilizes regular convolution, which only applies atten-
tion spatially and ignores any channel-wise attention. To al-
leviate this, we propose a volumetric attention (VA) block of
separate branches. In the first branch, we have a 3 × 3 × 3
followed by a 1 × 1 × 1 convolution for attention in the spa-
tial dimension (H ×W ). In the following branch, we have
a 1 × 1 × 1 depth-wise convolution followed by a 1 × 1 × 1
point-wise convolution for depth and channel-wise attention
(D×C). In the final branch, we have an identity function that
copies the input features. Consequently, we add these features
to generate our last output feature.

2.5. Decoder

Similar to our encoder, we design a symmetric decoder com-
posed of multiple transposed convolution blocks and a volu-
metric concatenation layer between each stage of the encoder
and decoder features. At each stage n (n ∈ 1, 2, 3) in the
encoder and bottleneck (n = 4), the volumetric feature rep-
resentations are reshaped to R H

2n × H
2n × H

2n and inserted into
a residual convolution block with two 3 × 3 × 3 convolution
followed by instance normalization layer. Each decoder’s fea-
ture maps are doubled in size using a transposed convolution
layer. Moreover, each encoder’s skip feature maps through
the VA blocks are concatenated with the outputs of the previ-
ous decoder. Finally, a residual convolution block is applied
to the feature with two 3× 3× 3 convolutions followed by an
instance normalization layer. The final segmentation output is
generated using a 1×1×1 convolutional layer and a softmax
activation function.

3. EXPERIMENTS

3.1. Dataset and Preprocessing

For benchmarking, we use the RETOUCH public dataset [7],
which contains three image sets from three unique vendor de-
vices and, in total, has 70 volumes. Out of this, 24 volumes
were obtained with Cirrus (Zeiss), 24 volumes with Spectralis
(Heidelberg), and 22 volumes with T-1000 and T-2000 (Top-
con) devices. The numbers of B-scans (volume depths) were
128, 49, and 128, with resolutions of 512×1024, 512×496,
and 512×885, respectively, for each of these vendor devices.



Fig. 2. SwinVFTR segments fluid with better precision than
other 3D CNN and Transformer architectures. The row
contains Cirrus, Spectralis and Topcon data-sets. Whereas
the column contains ground-truths and segmentation maps
for SwinVFTR, SwinUNETR, UNETR, ResUNet-3D and
Attention-UNet-3D. Here, IRF, SRF, and PED fluids are col-
ored as Red, Yellow and Blue.

We only resize Cirrus and Topcon volumes to 512× 512 res-
olution. The volume contained three different fluids such as
intra-retinal fluid (IRF), sub-retinal fluid (SRF), and pigment
epithelial detachment (PED), . We separate the original im-
age sets into training-validation and test set. So for Cirrus and
Spectralis, we had 19 training-validation and 5 test volumes,
whereas, for Topcon, we had 18 training-validation and 4 test
volumes. We utilize 5-fold cross-validation to find the model
with the highest dice score. For image transformations, we
apply Random Intensitity Shift ( +/- 10 with 50% probability)
and Random Channel-wise volumetric cropping.

3.2. Hyper-parameter Initialization

We used Adam optimizer, with learning rate α = 0.0001,
β1 = 0.9 and β2 = 0.999. We train with mini-batches
with batch size, b = 1 for 600 epochs using PyTorch and
MONAI library.It took between 8-12 hours to train our model
on NVIDIA A30 GPU. The inference time is 0.5 second per
volume. The code repository is provided in this link.

3.3. Quantitative Evaluation

We compared our architecture with some best-performing 3D
CNN and Transformer architectures, including ResUNet-3D
[13], AttentionUNet-3D [12], UNETR [8] and SwinUNETR
[9] as illustrated in Fig. 2. We trained and evaluated all four
architectures using their publicly available source code on the

Table 1. Quantitative comparison on Spectralis (S), Cirrus
(C), & Topcon (T) [7].

Data Method SSIM MIOU Dice Score Mean Dice
IRF SRF PED w/o BG w/ BG

S

Attn-UNET3D [12] 0.914 0.439 0.608 0.394 0.096 0.366 0.517
ResUNet-3D [13] 0.985 0.595 0.602 0.574 0.602 0.592 0.694

UNETR [8] 0.984 0.546 0.567 0.493 0.544 0.534 0.651
SwinUNETR [9] 0.985 0.613 0.601 0.544 0.662 0.602 0.701

SwinVFTR 0.987 0.625 0.624 0.578 0.670 0.624 0.718

C

Attn-UNET3D [12] 0.928 0.446 0.664 0.472 0.011 0.382 0.527
ResUNet-3D [13] 0.983 0.490 0.648 0.622 0.012 0.427 0.570

UNETR [8] 0.987 0.487 0.635 0.594 0.081 0.436 0.577
SwinUNETR [9] 0.986 0.452 0.682 0.338 0.131 0.384 0.537

SwinVFTR 0.988 0.492 0.691 0.507 0.146 0.448 0.587

T

Attn-UNET3D [12] 0.894 0.412 0.526 0.542 0.083 0.383 0.519
ResUNet-3D [13] 0.974 0.526 0.534 0.648 0.419 0.534 0.649

UNETR [8] 0.979 0.495 0.592 0.416 0.427 0.478 0.607
SwinUNETR [9] 0.980 0.483 0.583 0.451 0.331 0.455 0.590

SwinVFTR 0.981 0.553 0.638 0.523 0.548 0.571 0.678

three datasets. SwinUNETR utilizes a swin-transformer en-
coder as a backbone and a step-wise decoder with transposed
convolution and residual blocks to upsample the features. In
contrast, the UNETR employs a vision transformer with self-
attention layers as encoders and deconvolution layers for up-
sampling. ResUnet-3D and Attention-UNet-3D are simple
modifications of UNet 3D architectures, with the first using
residual layers and the second incorporating attention layers.
In Fig. 2, we visualize segmentation results for intra-retinal
fluid (IRF), sub-retinal fluid (SRF), and pigment epithelium
detachments (PED). It is apparent from the figure that our
model’s prediction is more accurate than other transformer
and CNN-based architectures, and the segmentation bound-
ary is finer and less coarse than SwinUNETR and UNETR.
We used SSIM to assess structural integrity in segmentation.
Next we quantitatively evaluate all five models using mean-
intersection-over-union (mIOU), dice scores, and structural
similarity index (SSIM) as shown in Table. 1. We also provide
fluid-wise dice scores for IRF, SRF, and PED. Table. 1 shows
that our model’s overall dice score, SSIM, and mIOU far ex-
ceed other architectures. Although our model’s segmentation
performance for Cirrus and Topcon is a little worse for SRF
fluid against ResUNet-3D, the dice score PED is almost 10×
better for Cirrus and 1.2× better for Topcon. We also cal-
culate dice score with (w/ BG) and without background (w/o
BG), as background contains the majority of the pixels, and
it can skew the results with high false-positive rates. As the
table shows, our model outperforms other architectures with
a higher dice score for both with and without background.

4. CONCLUSION

We proposed SwinVFTR, a 3D transformer-based architec-
ture leveraging channel-wise sampling, volumetric attention,
and multi-receptive field swin-transformer blocks for precise
fluid segmentation for three relevant metrics. We hope to ex-
tend this work to other ophthalmic modalities.
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