
An Edge-Less Approach to Horizon Line Detection

Touqeer Ahmad∗, George Bebis∗, Monica Nicolescu∗, Ara Nefian†, Terry Fong†

∗Department of Computer Science and Engineering
University of Nevada, Reno

{ahmad, bebis, monica}@cse.unr.edu
†NASA Ames Research Center
{ara.nefian, terry.fong}@nasa.gov

Abstract—Horizon line is a promising visual cue which can
be exploited for robot localization or visual geo-localization.
Prominent approaches to horizon line detection rely on edge
detection as a pre-processing step which is inherently a non-stable
approach due to parameter choices and underlying assumptions.
We present a novel horizon line detection approach which uses
machine learning and Dynamic Programming (DP) to extract the
horizon line from a classification map instead of an edge map.
The key idea is assigning a classification score to each pixel,
which can be interpreted as the likelihood of the pixel belonging
to the horizon line, and representing the classification map as a
multi-stage graph. Using DP, the horizon line can be extracted by
finding the path that maximizes the sum of classification scores.
In contrast to edge maps which are typically binary (edge vs
no-edge) and contain gaps, classification maps are continuous
and contain no gaps, yielding significantly better solutions. Using
classification maps instead of edge maps allows for removing
certain assumptions such as the horizon is close to the top of
the image or that the horizon forms a straight line. The purpose
of these assumptions is to bias the DP solution but they fail to
produce good results when they are not valid. We demonstrate our
approach on three different data sets and provide comparisons
with a traditional approach based on edge maps. Although our
training set is comprised of a very small number of images
from the same location, our results illustrate that our method
generalizes well to images acquired under different conditions
and geographical locations.

I. INTRODUCTION

Horizon line detection or sky segmentation is the problem
of finding a boundary between sky and non-sky regions
(ground, water or mountains) given a gray scale or color image.
This has many applications including smooth navigation of
small unmanned aerial vehicles (UAVs) [7], [22], [27] and
micro air vehicles (MAVs) [9], [10], [28], augmented reality
[25], visual geo-localization and annotation of mountain/desert
imagery [5], [6], [19], [20], [29], port security and ship
detection [11], [12], outdoor robot/vehicle localization [13],
[14], [26] and autonomous vehicle navigation [24]. Previous
attempts to horizon line detection can be categorized into two
major groups; (i) methods modeling sky and non-sky regions
using machine learning [7], [9], [10], [11], [22], [28] and
(ii) methods relying on edge detection [16], [18]. Recently,
some attempts [2], [15], [25] have been made to combine
these two approaches by eliminating non-horizon edges using
classification; however, these attempts also fall under the
second category as horizon detection is effectively based on
edges. It should be mentioned that earlier methods to horizon
detection suffer from the assumption that the horizon boundary
is linear and hence are limited.

McGee et al. [22] proposed a sky segmentation approach to
find a linear boundary between sky and non-sky regions using
an SVM classifier trained only on color information. They use
sky segmentation as an obstacle detection tool for small scale
UAVs. Their underlying assumption of the horizon boundary
being linear is violated very often and probably is acceptable
only for UAVs navigation. Ettinger et al. [10] proposed a flight
stability and control system for micro air vehicles (MAVs)
which relies on horizon detection. They model the sky and
non-sky regions by Gaussian distributions and try to find an
optimum boundary segmenting them. Their model is based
on two assumptions: first, the horizon boundary is linear and
second, the horizon line separates the image into two regions
of significantly different appearance (i.e., sky and non-sky).
However, these assumptions might not always be true. The
approach of Fefilatyev et al. [11] is also based on the horizon
boundary being linear and uses color and texture features such
as mean intensity, entropy, smoothness, uniformity etc. to train
various classifiers. Croon et al. [9] extended the features used
in[11] by including cornerness, grayness and Fisher discrimi-
nant features to train a shallow decision tree classifier. Their
approach has been tested in the context of MAVs obstacle
avoidance and is able to detect non-linear horizon boundaries.
In [19] Liu et al. have proposed a sensor fusion approach
to estimate horizon using textured Digital Elevation Model
(DEM), airport model, GPS, AHRS and vision sensors. Their
objective was to estimate an accurate linear horizon boundary
from an aircraft in low visibility conditions and the approach
does not generalize to non-linear horizons.

Todorovic et al. [28] circumvent the assumption of the
horizon boundary being linear in [10] by building priors for
sky and non-sky regions based on color and texture features.
Unlike their earlier work, they focused on both color (Hue,
Intensity) and texture (Complex Wavelet Transform) features
to model the priors due to great appearance variations between
sky and non-sky regions. Using a Hidden Markov Tree model
they built a robust horizon detection approach capable of de-
tecting non-linear horizon boundaries. [30] proposed a fusion-
based approach where they combine the outputs of a Neural
Network (NN) classifier with K-means clustering. They use
the mean intensity and texture features, similar to [9], [11], to
train the NN classifier. Although their approach demonstrates
reasonable results, their system is based on various heuristics
and parameter settings that might not generalize well to
different data sets. In [7], a clustering based horizon line
detection approach for robust UAV navigation was presented.
The main assumption is the presence of a dominant light

field between sky and ground regions which they detect using
intensity information and K-means clustering. In general, the
assumption about the light field does not hold and they have
identified cases where their method requires modifications for
the clustering process to produce good results. Thurrowgood
et al. [27] used horizon detection for UAV attitude estimation.
By learning a transformation from the RGB space and a single
dimensional space, an optimum threshold can be found to
segment sky/non-sky regions based on histograms and priors
about sky and non-sky regions. Their approach is limited only
to UAV navigation due to the assumption that sky and ground
pixels are equi-probable.

The most prominent method belonging to the second
category is that of Lie et al. [18] where horizon detection is
formulated as a graph search problem. Their approach relies
on edge detection and assumes a consistent edge boundary
between sky and non-sky regions. The detected edge map
is represented as a multi-stage graph where each column of
the image becomes a stage of the graph and each edge pixel
becomes a node. The shortest path is then found extending
from the left-most column to the right-most column using
DP. The assumption that the horizon boundary is a consistent
edge boundary is rarely true in practice due to environmental
conditions (e.g., clouds) and edge gaps. To address the issue of
gaps, [18] have proposed a gap-filling approach which highly
depends on the choice of certain parameters. Moreover, they
assume that the horizon line is present in the upper half of
the image which biases the shortest path solution to be in that
region.

Recently, Ahmad et al. [2] and Hung et al. [15] indepen-
dently proposed extensions to the approach of Lie et al. [18]
by introducing a classification step to eliminate non-horizon
edges. The graph is then built using edge pixels classified as
horizon pixels. This is performed by training a classifier using
features from key-points taken from horizon and non-horizon
locations. Ahmad et al. [2] used SIFT features [21] around the
key-points and an SVM classifier whereas Hung et al. [15]
used an SVM classifier with color information as well as the
variance above and below a given training point. In addition
to training a classifier, Ahmad et al. [2] reduce the number
of edges considerably by applying a series of thresholds for
Canny edge detector and keeping only those edges for further
processing which are strong enough to survive for various
thresholds. Somewhat relevant is the approach by Porzi et al.
[25]. Similar to Ahmad et al. [2] they first reduce the number
of edges using a threshold for the Sobel detector and then use
trained Random Ferns to further classify remaining edge pixels
into contour and non-contour edges. Ahmad et al. [2] extended
their work in [3], [1], [4] where they investigated various
textural features and nodal costs respectively for training the
SVM classifier and Dynamic Programming.

In this paper, we extend the approach of Lie et al. [18]
by extracting the horizon line not from an edge map, which
typically contains many gaps and provides no confidence about
the likelihood of an edge point belonging to the horizon line,
but from a classification map. The key idea is classifying each
pixel in an image (or a region of interest) as belonging to
the horizon line or not; we refer to the classification map as
Dense Classifier Score Image (DCSI). This is performed by
training a classifier using both horizon and non-horizon pixels

using a small set of training images. The resulting classification
map contains no gaps but also each pixel is associated with
a classification score which provides information about the
likelihood of the pixel belonging to the horizon line. Represent-
ing the classification map as a multi-stage graph, the horizon
line can be extracted by finding the path that maximizes the
sum of classification scores using DP. We have experimented
with Support Vector Machines(SVM) [8] and Convolutional
Neural Networks(CNNs) [17] and normalized pixel intensities
for features. Using classification maps instead of edge maps
also allows us to remove certain assumptions such as that the
horizon line is close to the top of the image or that the horizon
is a straight line. The purpose of these assumptions is to bias
the DP solution but fail to produce good results when they
are violated which is commonly the case. We demonstrate our
approach on three different data sets and provide comparisons
with a traditional approach using edge maps.

It should be noted that we have intentionally chosen to
compare the proposed approach against Lie et al. [18] instead
of recent extensions such as Ahmad et al. [2] and Hung et
al. [15]. This is because these approaches employ machine
learning to reduce the number of non-horizon edges which
yields a smaller graph and speeds-up Dynamic Programming.
Since our emphasis here is on dealing with edge gaps rather
than speeding-up computations, we have decided to use Lie et
al. [18] for comparison purposes as it is more straightforward
to implement. Also these approaches [2], [15] can result into
increased number of gaps due to misclassification.

The rest of paper is organized as follows. In section 2,
we review the approach of Lie et al. [18]. Section 3 describes
the steps of our proposed approach. Section 4 presents our
data sets, experimental results. Finally, section 5 provides our
conclusions and directions of future research.

II. BACKGROUND

In this section, we briefly review the method of Lie et al.
[18] and point out its underlying assumptions. Lie et al. [18]
formulate the problem of horizon line detection as a multi-
stage graph problem and use DP to find the shortest path
extending from left to right. Their approach is based on the
assumptions that a full horizon line exists in the image from
left to right and that it lies in the upper half of the image. Given
an image of size M ×N , edge detection is performed first to
compute a binary edge map I where 1 implies the presence of
an edge pixel and 0 a non-edge pixel. This edge map is used
to build an M × N multi-stage graph G(V,E,Ψ,Φ) where
each pixel in the edge map corresponds to a graph vertex; a
low cost l is associated with edge pixels while a very high cost
(i.e., ∞) is associated with non-edge pixels as shown below:

Ψ(i, j) =

{
l, if I(x, y) = 1.

∞, if I(x, y) = 0.
(1)

Ψ(i, j) is the cost associated with vertex i in stage j (i.e.,
vij). The graph can be visualized as an N (columns) stage
graph where each stage contains M nodes (rows). To deal
with edge gaps, they propose a gap filling approach. Given a
node i in stage j, its neighborhood in the next stage j + 1
is defined by a δ parameter, that is, the number of nodes to

Fig. 1. Steps of Horizon Detection by Lie et al.

which i could be connected in stage j + 1. The edges from i
to its neighbors are associated with costs equal to the vertical
absolute distance from it as shown in the equation below.

Φ(i, k, j) =

|i− k|, if I(i, j) = I(k, j + 1) = 1

and |i− k| ≤ δ
∞, otherwise.

(2)

If a node i in stage j cannot be connected to any node in
stage j+1 with in δ neighborhood, a search window is defined
using δ and tolerance-of-gap (tog). Specifically, an edge node
is searched in this search window and once such an edge node
is found the gap filling is performed by introducing dummy
nodes between node i in stage j and node k found within
the search window j+tog. A high cost is associated with the
dummy nodes introduced by the gap filling step.

Once the gaps are filled with high cost dummy nodes, the
cost of the nodes in stage 1 and N is increased based on the
vertical position of the nodes according to the equation below:

Ψ(i, j) =

{
(i+ 1)2, if j = 1 or j = N

Ψ(i, j), otherwise.
(3)

This enforces the assumption that the horizon line is present
in the upper half of the image and hence biasing the DP
solution towards a shortest path present in the upper half. Next,
two nodes, a source s and a sink t are added to the left of the
left most stage (i.e. stage 1) and to the right of the right most
stage (i.e. stage N) respectively. A zero cost is associated with
each one of them. The s node is connected with all the nodes
in stage 1 and all the nodes in stage N are connected to node
t. A shortest path is then found extending from node s to t
using DP which conforms to the detected horizon boundary.

Figure 1 illustrates the steps of Lie et al. [18] for a sample
image. An edge map is shown in Figure 1-(a) where black
and white rectangles represent edge and non-edge pixels. A
search window is shown in Figure 1-(b) for the edge node in
stage j = 5 using δ = 1 and tog = 4. Within the search
window j+tog, two edge nodes are discovered which are then
connected to node j by introducing dummy nodes as shown
in Figure 1-(c,d) (highlighted in blue). The nodes in stage 1

and N are set to a higher cost associated with their vertical
position; this is reflected by an increasing intensity in Figure 1-
(e). Two nodes s and t are then introduced, as described above,
and DP is applied on this graph. As it is clear from Figure 1-
(5), there exist two equal paths in the above sample graph
(ignoring source (s) and sink (t) nodes); however, DP will
select the upper path due to the assumption of the horizon line
being present in the upper half. However, it might be possible
that the true horizon line is actually the lower one and that
the upper edge segment was only due to some clouds. Also, if
the gap happen to be bigger than the chosen parameter (tog)
values, DP could miss parts of the actual horizon.

We provide specific examples in the experimental results
section, illustrating how this method fails to detect a portion
of horizon line due to this assumption.

III. PROPOSED APPROACH

The proposed approach does not rely on the assumptions of
[18] or the assumption that the horizon curve is linear; more-
over, the horizon line could be anywhere in the image. Our
only assumption is that the horizon line extends from left to
right. Specifically, our approach applies DP on a classification
map that associates with each pixel a classification score which
can be interpreted as the confidence of the pixel being part of
the horizon line. Most importantly, it does not rely on edge
detection, therefore, it does not require performing gap filling
or introducing dummy nodes. Moreover, we do not force the
nodes in stages 1 and N to be associated with their vertical
position since the assumption of the horizon line being present
in the upper half of the image could be violated (e.g., due to the
rover moving on a peak and looking towards the horizon). The
resulting DCSI is used to form an M ×N multi-stage graph
without any node initialization. Once we have introduced the
source/destination nodes s/t and decided on the value of δ, any
shortest path finding algorithm can be used to find the path that
maximizes the sum of classification scores. We will later show
that the number of nodes per stage can be significantly reduced
by only considering the pixels with the m highest classification
scores where m is a parameter; we refer to this reduced map
as mDCSI map. Using fewer nodes per stage does not affect
accuracy while it speeds up computations considerably. Figure
2 illustrates the main steps of the proposed approach.

A. Pixel Classification

For classification, we have experimented with two classi-
fiers: SVM[8] and a CNN [17]. Each classifier is trained using
horizon and non-horizon image patches from a set of training
images where the horizon line has been extracted manually
(ground truth). Specifically, for each training image, we select
N points uniformly from the ground truth; an equal number
of points is randomly selected from non-horizon locations. We
take a 16× 16 normalized image patch around each sampled
point and the resulted 256-D vector is used for training the
classifiers. It should be mentioned that we have experimented
with different features in the past (e.g., SIFT features similar
to [2]), however, normalized pixel intensities seem to work
better and are faster to compute. The pixel intensities are
normalized between -1 and 1. For the CNN classifier, we use
an architecture comprising of 2 Convolution(C)-Sub-sample(S)
layers. The first C-S layer is comprised of 4 levels with a

Fig. 2. Main steps of the proposed horizon line detection approach.

convolution(C) mask of 5× 5 and a sub-sampling(S) mask of
2× 2. The second C-S layer is comprised of 8 levels with a C
mask of 3×3 and an S mask of 2×2. For the SVM classifier,
we use a linear kernel as it was found to be equally good as
the RBF and polynomial kernels. We have only used 9 images
for training the classifiers with 343 positive (horizon) and 343
negative (non-horizon) examples extracted from each image.
Figure 3 shows an example of horizon (red) and non-horizon
(blue) training samples.

B. Dense Classifier Score Image (DCSI)

Once the classifiers have been trained, the DCSI can be
generated for a given test image. For each pixel location in
the test image, a 16× 16 patch of pixel intensities around the
pixel is extracted. The normalized intensities are then used to
form a 256-D vector V (x, y), which is fed to the classifier. The
classification score is then associated with that pixel location.
Classification scores are normalized in the interval [0, 1]; the
resultant scores form the DCSI which is denoted as D(x, y). In
essence, D(x, y) can be interpreted as a probability map which
reflects the likelihood of a pixel belonging to the horizon line.
Figure 4 shows the DCSI for a sample query image.

D(x, y) = Γ(V (x, y)) (4)

C. Reduced Dense Classifier Score Image (mDCSI)

Although the full DCSI can be used for horizon line
detection, we have found that keeping only the m highest
classification scores in each column does not compromise
accuracy while reducing computations. This is because the
highest classification scores are typically concentrated within
a small band around the horizon line. We refer to the reduced
DCSI as mDCSI . The multi-stage graph corresponding to the
mDCSI contains fewer vertices; as a result, fewer paths need
to be considered when searching for the shortest path which

Fig. 3. Locations of horizon (red) and non-horizon (blue) training samples.

Fig. 4. Sample test image (row1), DCSI (row2), mDCSI (row3), shortest
path solution (row4, highlighted in red), and detected horizon line (row5,
highlighted in red).

results in considerable speedups. In our experiments, we have
found that by keeping the highest 50 classification scores yields
accurate horizon line detections. From an implementation point
of view, the mDCSI is computed as follows:

mD(x, y) =

{
D(x, y), if x ∈ L(m)y
l, otherwise; l < 0.

(5)

where, mD corresponds to the mDCSI and D corresponds
to the DCSI. If the x-th pixel (node) in column (stage) y

belongs to the list L(m)y of indices corresponding to the
highest m classification scores, the classification score from
D(x, y) is used; otherwise, the score is set to a low score
l where l is smaller than the smallest score returned by the
classifier. Figure 4 shows example of the respective mDCSI.

D. Horizon Line Detection as a Shortest Path Problem

In earlier approaches eg [2], [15], [18], the edge map (or
classified edge map) was used to form the multi-stage graph; in
these approaches, gap filling is an essential step in extracting
the horizon line. Since our approach does not rely on edge
maps, we do not need to worry about gap filling. In our
approach, the mDCSI is used to create an M × N graph
G(V,E,Ψ,Φ) with node costs initialized to mD(x,y).

Ψ(i, j) = mD(x, y) (6)

Since the resulted graph is a dense graph, each node
i in stage(column) j is connected to three nodes i, i − 1
and i + 1 in stage(column) j + 1 (i.e., δ = 1). These
connections are considered as edges with zero costs. This
is in contrast to conventional approaches where the absolute
difference between the positions of nodes in two stages is used
as an edge cost.

Φ(i, k, j) =

{
0, if |i− k| ≤ δ
∞, otherwise.

(7)

Since, the horizon line might not always appear in the upper
half of the image, we do not set the nodes in stages 1 and N
proportional to their vertical positions. Two dummy nodes, s
and t, are introduced to the left of stage 1 and to the right of
stage N respectively. The edge weights from s to every node
in stage 1 and from every node in stage N to node t are set
to zero. The shortest path in this graph can be found using
Dijkstra’s algorithm.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

A. Data Sets and Quantitative Evaluation

To evaluate the performance of the proposed approach,
we have experimented with three different data sets: the City
data set, the Basalt Hills data set and Web data set. The City
data set consists of 13 images of a small city surrounded by
mountains. The Basalt Hills data set is a subset of a data set
which was generated by placing cameras on an autonomous
robot navigating through Basalt Hills [23]. We have chosen
45 images from this data set with considerable viewpoint
and scene changes. The most challenging of our data sets is
the Web data set which consists of 80 mountainous images
that have been randomly collected from the web. This data
set includes various viewpoints, geographical and seasonal
variations. Our training set consists of only 9 images from
Basalt Hills data set. The resolution of all images in our data
sets is 519× 1388.

To quantitatively evaluate the performance of the proposed
approach, we have manually extracted the horizon line (ground
truth) in all the images of our data sets. To evaluate the
proposed approach, the detected and true horizon lines are

compared by calculating a pixel-wise absolute distance S
between them. For each column, the absolute distance between
the detected and ground truth pixels is computed and summed
over the entire number of columns in the image. The resultant
distance is normalized by the number of columns in the image,
yielding the average absolute error of the detected horizon line
from ground truth. Since nodes in a particular stage are not
allowed to be connected to nodes in the same stage, the true
and detected horizon lines are bound to have the same number
of columns/stages in the image/graph. Hence, there is a one-
to-one correspondence between the pixel locations in the true
and detected horizon pixel locations:

S =
1

N

N∑
j=1

|Pd(j) − Pg(j)| (8)

where Pd(j) and Pg(j) are the positions (rows) of the
detected and true horizon pixels in column j and N is the
number of columns in the test image. Figure 5 shows some
representative results of our horizon detection approach using
images from our data sets. Table 1 shows the average absolute
error for all the images in each data set, both for the SVM and
CNN classifiers. For comparison purposes, we also provide
results based on the method of Lie et al. [18]. It is interesting
to note that although our method was trained using a very
small number of images from the same data set, it generalizes
very well to images from other data sets, such as the Web data
set which is very different from the training data set. Next, we
provide a detailed analysis of our results.

Our experimental results illustrate that the proposed ap-
proach outperforms the traditional approach of [18] based on
edge maps. In particular, both the average error and standard
deviation of the traditional approach are much higher than
the proposed approach based on SVM or CNN classifiers. To
better illustrate the performance of the traditional approach, we
have identified specific examples where it fails to detect the
true horizon line or it misses parts of it. The main reason for
this is due to the presence of big gaps in the edge map. This
might happen due to different reasons, for example, horizon
edges might not be strong enough or stronger edges might
exist close to the horizon line due to various environmental
effects such as clouds. Although Lie et al. have proposed a
gap filling approach by introducing dummy nodes with high
costs, this does not always work well, for example, when gaps
are long and edges from clouds are close to the horizon line.
In these cases, it is likely that the DP approach might find a
low cost path by taking an alternative path. Figure 6 (row 1)
shows two examples where the method of Lie et al. has failed
to find a good solution due to edge gaps and the presence of
clouds; the proposed method was able to find the true horizon
line with high accuracy in both cases (row 2). Figure 7 shows
zoomed sub-images of the left column images of 6 (i.e., Lie
et al.) for better visualization.

Another reason affecting the performance of Lie et al. is
the underlying assumption of the horizon boundary is close to
the top of the image. When clouds are present in an image, a
portion of the true horizon may be missed if the true horizon
line is below the clouds due to the bias introduced towards
solutions closer to the top of the image. Figure 8 shows some

Fig. 5. Sample results illustrating our horizon line detection approach: Basalt Hills data set (row1) and Web data set (row 2 through 4). Detected horizon lines
are highlighted in red/green.

TABLE I. AVERAGE ABSOLUTE ERRORS

Proposed Approach
Data Set SVM-mDCSI CNN-mDCSI Lie et al. [18]

µ σ µ σ µ σ
City 0.7244 0.1777 1.2129 2.3597 6.2342 10.8206

Basalt Hills 1.0101 0.2887 0.7573 0.2295 5.5548 9.4600
Web 1.2854 1.1988 1.4121 1.4860 9.1500 17.9196

Fig. 6. Examples illustrating: [row 1] missing the horizon line or parts of
it due to edge gaps (Lie et al.), and [row 2] detecting the true horizon line
using our approach (SVM).

Fig. 7. Zoomed sub-images of the left column images of Figure 6

examples where the approach of Lie et al. has found solutions
consisting of both horizon line segments as well as cloud edge
segments. Our approach, on the other hand, was able to find
the correct solution for these cases as it does not make such
assumptions.

Comparing the two classifiers used in our experiments, the
CNN classifier outperforms the SVM classifier for the Basalt
Hills data set while SVM outperforms CNN on the other two
data sets. This indicates that the features found by the CNN
classifier might not generalize well to different data sets. Figure
9 shows some representative DCSI results using the SVM and
CNN classifiers. It is worth noting that the CNN classifier
provides a crispier DCSI, having a narrower band around the

Fig. 8. Examples illustrating: [row 1] missing parts of the horizon line due
to the assumption that the horizon line is close to the top of the image (Lie et
al.), and [row 2] detecting the true horizon line using the proposed approach
(SVM).

true horizon line as compared to the DCSI produced by SVM.
It might be possible to further improve our best results by
combining the SVM and CNN classifiers but we have not
experimented with this idea.

Fig. 9. Test images (column1), corresponding SVM-DCSIs (column2) and
corresponding CNN-DCSIs (column3).

Attempting to better understand why the proposed ap-
proach sometimes finds poor solutions, we have identified two
main reasons. First, disallowing nodes in some stage to connect
with nodes in the same stage but only with nodes in the next
stage. In the multi-stage graph formulation of Lie et al., a node
at stage j is only allowed to be connected to nodes at stage
j+1 which is problematic when the horizon line has high slope
(i.e., steep peaks). Figure 10 (row 1) shows an example due

to this issue. This issue can be easily rectified by allowing
the nodes in some stage to be connected both with nodes in
the next stage as well as nodes in the same stage. Figure 10
(row 2) shows the solution obtained by allowing connections
within the same stage. Allowing connections within the same
level will of course increase time requirements as it increases
the number of paths that need to be explored.

Fig. 10. [row 1] effect of not allowing node connections within the same
stage; [row 2] solution obtained by allowing node connections within the same
stage.

The second most important reason affecting the perfor-
mance of the proposed approach is due to using a very small set
of training images (i.e., only 9 images from the same data set).
Figure 11 shows examples where our method has failed to find
good solutions. This issue can be addressed by increasing the
train set and making it more versatile. By carefully analyzing
our results on the Web data set, our approach failed to find a
good solution in 9 out of the 80 images due to using a small
training set. Removing these images from the data set improves
the average error of our approach using the SVM classifier
from 1.2854 to 0.9227 and reduces the variance from 1.1988
to 0.3637.

Fig. 11. Examples illustrating the inability of the proposed method to find
a good solution due to the lack of sufficient training data.

V. CONCLUSION

We have proposed a novel horizon detection approach
which does not rely on edge detection as a pre-processing
step. The key idea is classifying each pixel as horizon or non-
horizon and applying DP on the classification map to extract

the horizon line. The proposed approach does not make any
assumption about the horizon being a straight line or being
close to the top of the image. The proposed approach uses a
very small number of images to train the horizon classifiers
and outperforms traditional approaches based on edge maps
on three challenging data sets. For future work, we plan
to perform extensive experiments using much larger training
and test sets and different types of features. Moreover, we
plan to combine classification scores with gradient magnitude
information to improve the DP solutions. Our long term goal is
to investigate the suitability of the proposed horizon detection
method for pose estimation and localization of planetary rovers
and UAVs.

ACKNOWLEDGEMENTS

This work is supported by NASA EPSCoR under Coop-
erative Agreement No. NNX11AM09A, and in part by NSF
PFI.

REFERENCES

[1] T. Ahmad, G. Bebis, M. Nicolescu, A. Nefian, and T. Fong. Fusion
of edge-less and edge-based approaches for horizon line detection.
In Proceedings of 6th IEEE International Conference on Information,
Intelligence, Systems and Applications (IISA), 2015.

[2] T. Ahmad, G. Bebis, E. Regentova, and A. Nefian. A machine learning
approach to horizon line detection using local features. In Proceedings
of 9th International Symposium on Visual Computing, pages 181–193,
2013.

[3] T. Ahmad, G. Bebis, E. Regentova, A. Nefian, and T. Fong. An
experimental evaluation of different features and nodal costs for horizon
line detection. In Proceedings of 10th International Symposium on
Visual Computing, pages 193–205, 2014.

[4] T. Ahmad, G. Bebis, E. Regentova, A. Nefian, and T. Fong. Coupling
dynamic programming with machine learning for horizon line detection.
International Journal on Artificial Intelligence Tools (IJAIT), 24(4),
2015.

[5] G. Baatz, O. Saurer, K. Koser, and M. Pollefeys. Large scale visual
geo-localization of images in mountainous terrain. In Proceedings of
12th European Conference on Computer Vision, pages 517–530, 2012.

[6] L. Baboud, M. Cadik, E. Eisemann, and H.-P. Seidel. Automatic
photo-to-terrain alignment for the annotation of mountain pictures. In
Computer Vision and Pattern Recognition (CVPR), 2011.

[7] N. S. Boroujeni, S. A. Etemad, and A. Whitehead. Robust horizon
detection using segmentation for uav applications. In IEEE 2012 Ninth
Conference on Computer and Robot Vision, pages 346–352, 2012.

[8] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[9] G. C. H. E. de Croon, B. D. W. Remes, C. D. Wagter, and R. Ruijsink.
Sky segmentation approach to obstacle avoidance. In IEEE Aerospace
Conference, pages 1–16, 2011.

[10] S. M. Ettinger, M. C. Nechyba, P. G. Ifju, and M. Waszak. Vision-
guided flight stability and control for micro air vehicles. In Proceedings
of IEEE International Conference on Intelligent Robots and Systems,
pages 2134–2140, 2002.

[11] S. Fefilatyev, V. Smarodzinava, L. O. Hall, and D. B. Goldgof. Horizon
detection using machine learning techniques. In Proceedings of 5th
International Conference on Machine Learning and Applications, pages
17–21, 2006.

[12] E. Gershikov, T. Libe, and S. Kosolapov. Horizon line detection in
marine images: Which method to choose? International Journal on
Advances in Intelligent Systems, 6(1).

[13] V. Gupta and S. Brennan. Terrain-based vehicle orientation estimation
combining vision and inertial measurements. Journal of Field Robotics,
25(3):181–202, 2008.

[14] N. Ho and P. Chakravarty. Localization on freeways using the horizon
line signature. In International Conference on Robotics and Automation,
2014.

[15] Y. Hung, C. Su, Y. Chang, J.Charig, and H. Tyan. Skyline localization
for mountain images. In Proceedings of International Conference on
Multimedia and Expo, pages 1–6, 2013.

[16] B. Kim, J. Shin, H. Nam, and J. Kim. Skyline extraction using a
multistage edge filtering. World Academy of Science, Engineering and
Technology, 2011.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient based learning
applied to document recognition. PIEEE, 86(11):2278–2324, 1998.

[18] W. Lie, T. C. I. Lin, T. Lin, and K. Hung. A robust dynamic
programming algorithm to extract skyline in images for navigation.
Pattern Recognition Letters, 26(2):221–230, 2005.

[19] C. Liu, Y. Zhang, K. Tan, and H. Yang. Sensor fusion method
for horizon detection from an aircraft in low visibility conditions.
IEEE Transactions on Instrumentation and Measurement, 63(3):620–
627, 2014.

[20] W. Liu and C. Su. Automatic peak recognition for mountain images. In
Advanced Technologies, Embedded and Multimedia for Human-centric
Computing, pages 1115–1121, 2014.

[21] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[22] T. G. McGee, R. Sengupta, and K. Hedrick. Obstacle detection for
small autonomous aircraft using sky segmentation. In Proceedings of
International Conference on Robotics and Automation, pages 4679–
4684, 2005.

[23] A. V. Nefian, X. Bouyssounouse, L. Edwards, T. Kim, E. Hand,
J. Rhizor, M. Deans, G. Bebis, and T. Fong. Planetary rover localization
within orbital maps. In International Conference on Image Processing,
2014.

[24] A. M. Neto, A. C. Victorino, I. Fantoni, and D. E. Zampieri. Robust
horizon finding algorithm for real-time autonomous navigation based
on monocular vision. In International Conference on Intelligent
Transportation Systems, 2011.

[25] L. Porzi, S. R. Bulo, P. Valigi, O. Lanz, and E. Ricci. Learning contours
for automatic annotations of mountains pictures on a smartphone. In
ACM/IEEE International Conference on Distributed Smart Cameras,
2014.

[26] S. J. Steven and P. W. Gibbens. Efficient terrain-aided visual horizon
based attitude estimation and localization. Journal of Intelligent &
Robotic Systems, 2014.

[27] S. Thurrowgood, D. Soccol, R. J. D. Moore, D. Bland, and M. V.
Srinivasan. A vision based system for attitude estimation of uavs. In
Proceedings of IEEE International Conference on Intelligent Robots
and Systems, pages 5725–5730, 2009.

[28] S. Todorovic, M. C. Nechyba, and P. G. Ifju. Sky/ground modeling for
autonomous mav flight. In Proceedings of International Conference on
Robotics and Automation, pages 1422–1427, 2003.

[29] E. Tzeng, A. Zhai, M. Clements, R. Townshend, and A. Zakhor. User-
driven geolocation of untagged desert imagery using digital elevation
models. In Computer Vision and Pattern Recognition Workshops
(CVPRW), 2013.

[30] A. P. Yazdanpanah, E. E. Regentova, A. K. Mandava, T. Ahmad, and
G. Bebis. Sky segmentation by fusing clustering with neural networks.
In Proceedings of 9th International Symposium on Visual Computing,
pages 663–672, 2013.

