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Due to the maturing of digital image processing techniques, there are many tools that can forge an 

image easily without leaving visible traces and lead to the problem of the authentication of digital 

images. Based on the assumption that forgery alters the texture micro-patterns in a digital image and 

texture descriptors can be used for modeling this change; we employed two stat-of-the-art local 

texture descriptors: multi-scale Weber's law descriptor (multi-WLD) and multi-scale local binary 

pattern (multi-LBP) for splicing and copy-move forgery detection. As the tamper traces are not 

visible to open eyes, so the chrominance components of an image encode these traces and were used 

for modeling tamper traces with the texture descriptors. To reduce the dimension of the feature space 

and get rid of redundant features, we employed locally learning based (LLB) algorithm. For 

identifying an image as authentic or tampered, Support vector machine (SVM) was used. This paper 

presents the thorough investigation for the validation of this forgery detection method. The 

experiments were conducted on three benchmark image data sets, namely, CASIA v1.0, CASIA 

v2.0, and Columbia color. The experimental results showed that the accuracy rate of multi-WLD 

based method was 94.19% on CASIA v1.0, 96.52% on CASIA v2.0, and 94.17% on Columbia data 
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set. It is not only significantly better than multi-LBP based method, but also it outperforms other 

state-of-the-art similar forgery detection methods.     

Keywords: image forgery detection; Weber local descriptor; local binary pattern; splicing forgery; 

copy-move forgery; multi-scale method. 

1.   Introduction 

Nowadays, we are living in an age, where digital imaging has grown and developed to 

become the widespread technology. It plays a significant role in human life, where the 

digital images are currently considered a rich means of capturing pictorial information, 

which is being used in daily newspapers, magazines, military, and may be used as an 

evidence in court of law or in medical diagnose field [1]. With the increasing applications 

of digital imaging, different types of software have been introduced for image processing. 

Such software can do an alteration in a digital image by changing regions of an image or 

combining two images without leaving noticeable effects of the modification in the 

forged image. These modifications cannot be noticed by human eyes. The image 

forgeries can wipe off an important object from a proof image, which can be used to 

mislead the court of law. Therefore, the security of digital images is a very serious topic 

of research. The most commonly used forgery is copy-move forgery (CMF), where a 

region is copied and pasted to another place in the same image in order to conceal an 

important object from the original image. The copied block may be changed by some pre-

processing operation such as rotation, scaling, additive noise, etc. to match the copied 

area with the whole image. In another similar type of forgery, one part of an image is 

copied and pasted to another image. This type of forgery is known as image splicing. The 

detection of these two types of forgeries is the subject of this paper.  

Many techniques have been developed for validating the authenticity of digital 

images. These techniques can be broadly divided into intrusive (active) and non-intrusive 

(blind or passive) techniques [2]. The intrusive techniques can further be classified into 

two categories: (1) those that embed a watermark in an image and (2) digital signature-

based techniques. In these methods, particular information is embedded in digital images 

for supporting multimedia digital authentication and rights safety. Once the image 

contents are modified, the embedded information will also be altered. The image 

authenticity is verified by checking whether the true signature matches the signature that 

is retrieved from the suspicious test image. These techniques are restricted because of the 

inability of many digital cameras to embed the signature. Due to the restrictions of active 

techniques, the researchers tend to develop non-intrusive techniques for validating the 

authenticity of digital images. These techniques examine images without the assumption 

of embedded information such as signatures or watermarks.  

Different approaches have been adopted for non-intrusive image forgery detection [2, 

16]. The techniques based on supervised learning use specific features to discriminate the 

forged image from authentic ones. These techniques have been fairly successful in 

identifying whether an image is original or forged, but the number of false 

positives/negatives is high. Assuming that forgery disturbs the texture micro-patterns of 



 Instructions for Typing Manuscripts (Paper’s Title) 

 

3 

 

an image, we employed texture descriptors to encode the structural changes in an image 

caused by forgery. We employed multi-WLD descriptor, which is one of the best stat-of-

the-art descriptors, and got promising results for copy-move and splicing forgery 

detection [25, 26]. This paper extends the previous work [27, 28] on the multi-WLD. 

Optimal parameter values are obtained. These optimum values are used with the multi-

WLD on three data sets. These results are thoroughly compared with the multi-LBP. 

Extensive analysis with various scale combinations indicates the multi-WLD 

outperforms.  

The forgery can be either copy-move or spliced. Multi-WLD and multi-LBP features 

are extracted from the chrominance components of a color image. Feature selection is 

applied to reduce the dimension of the feature space and to get rid of redundant features. 

SVM is used for classification purpose. The forgery detection method based on multi-

WLD has been evaluated on three publicly available benchmark data sets (CASIA v1.0, 

CASIA v2.0, and Columbia color) developed for forgery detection. The method based on 

multi-LBP has been evaluated only on CASIA v1.0 data set; we tested different variants 

of LBP. A comparison between multi-WLD and multi-LBP descriptors has been given. 

We found that multi-WLD based forgery detection method not only outperforms multi-

LBP based method, but it also achieved high detection rate on the three benchmark data 

sets as compared to state-of-the-art methods.  

The rest of the paper is organized as follows. Section 2 review some related work 

while Section 3 presents the detail of image forgery detection methods. Section 4 deals 

with experimental setup. Section 5 describes the detection performance with multi-WLD 

while Section 6 presents the detection performance with multi-LBP. Section 7 discusses 

the results. Section 8 gives a comparison with other methods, and finally Section 9 draws 

the conclusion. 

2.   Related Work 

Non-intrusive image forensics is focused on developing technologies to decide about a 

suspicious image, whether it is authentic or tampered without assuming any embedded 

watermark or digital signatures. This area attracted the attention of some researchers 

during the past few years, and many techniques for digital image forgery detection have 

been introduced. In the following paragraphs, we give just an overview of some related 

methods. For detail, an interested is referred to [2, 16].  

An improved DCT (discrete cosine transform)-based technique was proposed to 

discover CMF in digital images [3]. In this method, first an image is subdivided into 

blocks, and DCT is computed. Then the DCT coefficients are lexicographically sorted 

and used to compare different blocks. This technique is robust against JPEG 

compression, additive white Gaussian noise and blurring distortion. Cao et al. [4] 

proposed another technique based on improved DCT for locating the duplicated regions 

in a given image. This method uses circular blocks for representing the image applying 

DCT coefficient.  
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Muhammad et al. [5] proposed an image forgery detection method that is based on 

noise pattern. In this method, first noise pattern is obtained by subtracting the denoised 

image from the input image. Then, histograms of noise from different segments of the 

image are compared to find the distortion caused by image forgery. Peng et al. [6] used 

sensor noise pattern for detecting image forgery. Instead of employing the histogram, 

they used four statistical measures namely, variance, entropy, signal-to-noise ratio, and 

average energy gradient calculated from the noise pattern.  

He et al. [7] proposed a method that relies on approximate run length (ARL) to detect 

CMF. First, the edge-gradient array of a given image is calculated, and then ARL is 

computed along edge-gradient orientations. Zhao et al. [8] used chrominance spaces with 

RLRN (run-length run-number) for CMF detection. First, the input color image is 

transformed into YCbCr color space. Then RLRN is used to extract the features from the 

de-correlation of chrominance components. SVM is used for classification purpose. This 

method gives better performance with JPEG images than TIFF images.  

Undecimated wavelet transform (UWT) based image forgery detection method was 

proposed in [9]. Approximation and detailed coefficients from UWT decompositions of 

overlapping blocks of an image are used to find the similarity between the blocks. The 

method is robust against JPEG compression and a certain degree of rotation and scaling.  

Scale invariant feature transform (SIFT) based forgery detection methods were 

proposed in [10-12]. They are quite robust against rotation and scaling post-processing.  

Shi et al. [13] proposed statistical features based on 1D and 2D moments, and 

transition probability features based on Markov chain in DCT domain for image splicing 

detection [13]. On the CASIA v2.0 database [14], the method achieved 84.86% accuracy. 

Later, He et al. [15] improved the method by combining transition probability features in 

DCT and DWT domains. For classification, they used SVM together with recursive 

feature elimination (RFE). Their method obtained 89.76% accuracy on the CASIA v2.0 

database.  

Most of the non-intrusive techniques, which have been proposed so far, face many 

challenges such as doing more robust fully automatic forgery detection, reducing the rate 

of false positives/negatives, robustness for tamper detection in any kind of image format, 

etc. In this research, our focus is on reducing the number of false positives/negatives and 

robustness against any kind of image format. 

3.    Image Forgery Detection System 

In this section, we give an overview of the Image Forgery Detection System that was 

initially proposed in [25]. Figure 1 shows a block diagram of this system. The first step is 

preprocessing; input color image is converted from RGB space into YCbCr space. The 

second step is feature extraction where a chrominance component (either Cb or Cr) is 

used to extract texture features employing multi- WLD and multi-LBP. LLB algorithm 

[19] for feature subset selection is used to eliminate irrelevant features for decreasing the 

complexity of the system. In the last step, SVM is used to identify an input image as 

authentic or forged.    



 Instructions for Typing Manuscripts (Paper’s Title) 

 

5 

 

3.1.   Preprocessing (Conversion from RGB to YCbCr Space) 

 Image forgers generally do image tampering in RGB space and attempt to wrap 

manipulated traces. As human eyes are less sensitive to chrominance components of 

YCbCr space, so the tapering traces are filtered into chrominance components. As such 

for detecting copy-move or splicing forgery in a digital image, chrominance components 

are more effective [8]. Keeping in view this observation, first the input color image is 

transformed into YCbCr space. The chrominance components are computed by 

subtracting luminance component from red (Cr = R-Y) and blue (Cb = B-Y). The 

transformation from RGB to YCbCr space is given below: 

                                           𝑌   =      0.299 𝑅 +   0.587 𝐺  +  0.114 𝐵                                   (1) 

                                          𝐶𝑟  =      0.701 𝑅 −   0.587 𝐺  −  0.114 𝐵                                   (2) 

                                           𝐶𝑏 = − 0.299 𝑅 −   0.587 𝐺  +  0.886 𝐵.                                  (3) 

YCbCr space stores the color information in terms of luminance and chrominance 

components. Figure 2 shows an image in RGB space and the component images in 

YCbCr space.  

3.2.   Feature extraction 

For a robust forgery detection system, it is very important how the tampering traces are 

molded. The accuracy of the system is based mainly on this modeling. We assume that 

tampering disturbs the texture patterns in an image, and this change can be modeled using 

texture descriptors. For this purpose, we employ two stat-of-the-art texture descriptors:  

multi-scale WLD and multi-scale LBP. In the following subsections, we give an 

overview of these descriptors. 

3.2.1.   Multi-scale WLD (multi-WLD) 

WLD is a robust local descriptor, which is based on Weber's law, which quantifies the 

fact that human sensitivity of a sample relies on the change of the original stimulus 

intensity [17]. WLD is a local texture descriptor. It has many interesting characteristics 

such as edge detection and robustness against illumination and noise changes. It has two 

components: differential excitation (D) and orientation (Φ).  

According to Weber’s law, the ratio of the increment threshold to the intensity of the 

background is a constant, which is formulated as follows:   

                                                                        
∆𝑥

𝑥
= 𝐶,                                                                      (4) 

where x is the background intensity, Δx is the increment threshold (noticeable 

distinction), and C is a constant. This formula is used to compute differential excitation 

(D). The D(pc) of a pixel pc  is calculated using the filter f00 (shown in Figure. 3) as 

follows:  

                                                  𝐷(𝑝𝑐) = 𝑎𝑟𝑐𝑡𝑎𝑛 [∑(
𝑝𝑖 − 𝑝𝑐

𝑝𝑐

𝑁−1

𝑖=0

)]                                              (5) 

where pi is the ith neighbor of pixel pc and N is the total number of neighbors.  
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WLD orientation component Φ is the gradient orientation. For pixel pc, it is calculated as 

follows: 

                                                          𝛷(𝑝𝑐) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑘𝑠

11

𝑘𝑠
10)                                                        (6)              

(a) Image in RGB sapce. (b) Luminance component (Y). 

(c) Chrominance component (Cb). 

 
(d) Chrominance component (Cr). 

 

 
Figure 2. Image in RGB space and corresponding luminance and chrominance 

components. 

Figure 1. Diagram of the image forgery detection method based on texture 

descriptors. 
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where, ks
11 and ks

10 are the outputs of the filters f11 and f10 (shown in Figure 3), 

respectively. 

The range of Φ is [-π, π], first it is mapped to Φ’ whose range is [0, 2π] and then it is 

quantized into T dominant orientations.  

After calculating differential excitation and gradient orientation, WLD histogram is 

calculated using D and Φ’, the detail can be found in [17]. The computation of WLD 

histogram involves three parameters: the number of dominant orientations (T), the 

number of differential excitation segments (M), and the number of bins in each 

differential excitation segment. Simple WLD descriptor uses 3x3 neighborhood about the 

central pixel. It is not capable of capturing the detail of all local texture micro-patterns, 

which exist with different scales. Multi-WLD can capture the detail of texture micro-

patterns with different scales and it is computed using symmetric square neighborhoods 

(P, R) with varying P (the number of neighboring pixels) and R (the radius that represents 

scale). For multi-WLD, we employed three neighborhoods: (8, 1), (16, 2), and (24, 3). 

Figure 4 shows f00 filters for (16, 2) and (24, 3) scales. The histograms computed with 

three neighborhoods are concatenated to produce the multi-WLD that forms the 

representation of the image. Figure 5 shows WLD histograms of a tampered image with 

three scales. Figure 6 shows histograms of multi-WLD (after concatenation of histograms 

with three neighborhoods) of Cr component of an authentic image and a spliced image. 

The multi-WLD histograms of Cr component of authentic image and the corresponding 

copy-move forged image without doing any preprocessing on the copied region are 

illustrated in Figure 7. Multi-WLD histograms of Cr component of an authentic image 

and the corresponding copy-move image forged with performing a rotation on the copied 

region are shown in Figure 8. 

3.2.2.   Multi-scale LBP (Multi-LBP) 

LBP has been confirmed to be a very effective local texture descriptor. It encodes local 

texture micro-patterns and has been successful in many fields. LBP offers a unified 

description comprising both structural and statistical characteristics of texture patterns, 

thus it is robust for texture analysis. LBP descriptor has low computational cost and is 

robust against monotonic illumination changes. An LBP operator associates a binary code 

with each pixel p taking into account its N neighborhood pixels located on a circle of 

radius R. Formally, it is defined as follows:   

                                             𝐿𝐵𝑃𝑁,𝑅 = ∑ 𝑠(𝑝𝑛 − 𝑝𝑐)2𝑛                                                            (7)

𝑁−1

𝑛=0

 

        f11 
   

-1  +1 

   

 

        f00 
+1 +1 +1 

+1 -8 +1 

+1 +1 +1 

 

        f10 
 -1  

   

 +1  

 

Figure 3. Filters used in simple WLD calculation 
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where the thresholding function s(x) is specified as follows: 

                                         𝑠(𝑝𝑛 − 𝑝𝑐) = {
1                𝑝𝑛 − 𝑝𝑐 ≥ 0
0                𝑝𝑛 − 𝑝𝑐 < 0.

                                          (8) 

Here pc is the grayscale value of pixel pc and pn (n= 0, 1, …, N-1) are the gray-scale 

values of its neighbors.  
There are three variants of LBP operator: (1) rotation invariant LBP denoted by 

𝐿𝐵𝑃𝑁,𝑅
𝑟𝑖 , (2) uniform LBP denoted by 𝐿𝐵𝑃𝑁,𝑅

𝑢2 , and (3) uniform rotation-invariant LBP 

denoted by 𝐿𝐵𝑃𝑁,𝑅
𝑟𝑖𝑢2 [18]. The rotation invariant LBP is computed using the following 

equation:  

                                𝐿𝐵𝑃𝑁,𝑅
𝑟𝑖 = 𝑚𝑖𝑛{𝑅𝑂𝑅(𝐿𝐵𝑃𝑁,𝑅 , 𝑖)| 𝑖 = 0,1, … , 𝑁 − 1}                           (9) 

 

Simple LBP operator considers only 3×3 neighborhood of a pixel for computing its 

LBP code.  Similarly to WLD, LBP cannot encode texture micro-patterns at multiple 

scales. Like multi-WLD, multi-LBP is defined using multiple neighborhoods (P, R) of 

varying P (the number of neighboring pixels) and R (the radius that defines scale).  In our 

experiments, we employed three scales: P = 8, 12, 16 and R = 1, 1.5, 2. 

1 1 1 1 1 

1 0 0 0 1 

1 0 -16 0 1 

1 0 0 0 1 

1 1 1 1 1 

 a)  f00 filter of (16,2) scale 

1 1 1 1 1 1 1 

1 0 0 0 0 0 1 

1 0 0 0 0 0 1 

1 0 0 -24 0 0 1 

1 0 0 0 0 0 1 

1 0 0 0 0 0 1 

1 1 1 1 1 1 1 

 b)  f00 filter of (24,3) scale 

Fig. 4. f00 filters for (16,2) and (24,3) scales. 

a)  Tampered Image b)  WLD histogram with (8, 1) scale 

c)  WLD histogram with (16, 2) scale d)  WLD histogram with (24, 3) scale 

Fig. 5. WLD histograms of a tampered image with three scales. 
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Multi-WLD histogram of authentic image                                  Multi-WLD histogram of forged image                                  

Fig. 7.  Multi-WLD histograms of Cr component of an authentic image (left) and a 

copy-move image (right) forged without any preprocessing on the copied region. 

Multi-scale WLD histogram bins of 

authentic image                                  
Multi-scale WLD histogram bins of 

forged image   

Fig. 6. Multi-WLD histograms of Cr chrominance component of an authentic image 

(left) and a spliced image (right). 
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Fig. 8.  Multi-WLD histograms of Cr component of an authentic image (left) and a 

copy-move image (right) forged with performing rotation on the copied region. 

3.3.   Feature Subset Selection 

Each of multi-WLD and multi-LBP descriptor contains a lot of redundant features, which 

not only causes the curse of the dimensionality problem but also tends to reduce the 

performance accuracy of a classifier. Local learning based (LLB) feature subset selection 

method [19] is computationally efficient and is not sensitive to the large number of 

irrelevant features. The main design of this algorithm is to decompose randomly a 

complicated non-linear problem into a group of locally linear problems by using local 

learning, and then to learn feature relevance globally in the maximum margin framework. 

Though LLB is a filter method for feature subset selection, but we use it as a rapper 

method with SVM. 

3.4.   Classification  

To identify an image as authentic or tempered is a two-class classification problem and 

for this purpose, we employed SVM, which has better generalization. SVM is modeled 

using training patterns (xi, yi), i = 1, 2, …, M, where xi ∈ Rd and is a feature vector, yi ∈ 

{−1,+1} and is a class label,  −1 and +1 label authentic and tampered images, 

respectively.  SVM modeling process builds an optimal hyper-plane with maximum 

margin that ensures better generalization performance. The margin is defined as the 

distance between the nearest data points of each class and the hyper-plane [20]. Basically, 

SVM is a linear classifier but usually the samples of two classes are not linearly 

separable, to overcome this problem kernel trick is used that transforms the original space 

to a higher-dimensional space, where the problem becomes linear, using a kernel 

function.  Different choices for kernel functions are possible, but the most commonly 
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used kernels are RBF and polynomial kernels, which have performed well in most of the 

application. RBF and polynomial kernels are employed in the experiments of the paper. 

4.   Experimental Setup 

In this section, we describe the datasets, the evaluation policy and performance measures 

that were used for the performance evaluation of our method. 

4.1.   Datasets 

The proposed method was evaluated on three benchmark datasets that are designed for 

image forgery detection. The three databases are CASIA TIDE v1.0 and v2.0 [14], and 

Columbia authentic and spliced color image dataset [23].  

CASIA v1.0 dataset was released in January 2010. It consists of two sets of images: 

800 authentic images and 921 tampered images. All images have 384×256 sizes and they 

are in JPEG format. The original images are categorized into eight groups: animal, scene, 

character, plant, nature, architecture, texture and article. The authentic images from every 

group were arbitrarily chosen to create the tampered images. The tampering was done by 

copy-and-paste process; in some cases geometric transformations such as rotation, 

resizing were applied on copied regions before pasting. The tool used to generate the 

tampered images was Adobe Photoshop. Out of 921 forged images, 459 are copy-move 

forged and the remaining are spliced. 

CASIA v2.0 dataset consists of 7491 authentic and 5123 forged images, which are in 

JPEG, BMP, and TIFF formats and the image sizes vary from 240×160 to 900×600 

pixels. For some forged images, scaling and rotation operations have been applied on 

copied regions before pasting.  

Columbia color image dataset consists of 183 authentic and 180 spliced images, 

which are in TIFF format. The image size is 1152×768. The spliced images were created 

using the authentic images, without any pre-processing. 

4.2.   Evaluation policy 

The feature descriptors, feature subset selection method and the classifier involve free 

parameters, which need tuning for optimal performance. 

Three scales (8, 1), (16, 2) and (24, 3) of multi-WLD can be combined in different 

ways to get the scales from C1 to C7, where  C1 means (8, 1), C2 corresponds to (16, 2), 

C3 refers to (24, 3), C4 is a combination of (8, 1) and (16, 2), C5 is a combination of (8, 

1) and (24,3), C6 is a combination of (16, 2) and (24, 3), and finally, C7 is the 

combination of all the scales (8, 1), (16, 2) and (24, 3). We examined all these scales to 

find the one that gives best performance. In addition, multi-WLD has three parameters 

(T, M, S), various combinations of these parameters were tried to see the effects of these 

parameters on the detection accuracy.  

Similarly to multi-WLD, the three scale of multi-LBP were combined in different 

ways to from the scales from C1 to C7, where  C1 means (8, 1), C2 corresponds to (12, 

1.5), C3 refers to (16, 2), C4 is a combination of (8, 1) and (12, 1.5), C5 is a combination 

of (8, 1) and (16,2), C6 is a combination of (12, 1.5) and (16, 2), and finally, C7 is the 
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combination of all the scales (8, 1), (12, 1.5) and (16,2). There are four variants of LBP, 

we performed experiments will all to find out which variant gives the best performance. 

SVM classifier with RBF and polynomial has also free parameters. We used grid 

search method with 5-fold cross validation to find the optimal values of these parameters. 

The optimal parameter values for RBF kernel are C = 216 and g = 2-14, while those for 

polynomial kernel are C = 2-3, g = 2-3, cf = 10, and d = 2. LIBSVM was utilized for SVM 

implementation [24].  

To evaluate the forgery detection system, we employed 10-fold cross validation and 

used the performance measures of true negative rate (TNR), true positive rate (TPR), 

accuracy (ACC) and area under ROC curve (AUC). TPR is a measure of classification 

accuracy of true cases and it is calculated as  

 TPR = (100 * TP / (TP +FN))                                (10)  

TNR is a measure of classification accuracy of false cases and it is calculated as  

 TNR = (100 * TN / (FP + TN))                                (11)  

Accuracy is percent ratio between correctly classified images over total number of 

images and is expressed as  

 ACC = 100 * (TP + TN) / (TP + TN + FN + FP)                     (12)  

where TP (true positive) is the number of tampered images which were classified as 

tampered images, FN (false negative) is the number of tampered images misclassified as 

authentic images, FP (false positive) is the number of authentic images misclassified as 

tampered images, and TN (true negative) is the number of authentic images, which are 

correctly classified as authentic images. 

The value of AUC is between 0 and 1 and calculating using ROC curve.  

5.   Detection Performance with Multi-WLD 

In this section, we present the detection results with multi-WLD in detail on three 

datasets and discuss its impact on various factors related to the copied region.  

5.1.   Experiments with CASIA v1.0 

First we discuss the tuning of multi-WLD parameters, described in Section 4.2. For 

experiments with CASIA v1.0 dataset, we considered three experiment cases: splicing 

detection, copy-move detection and forgery detection (splicing + copy-move). Then we 

present results for the detection of splicing and copy-move forgeries, and finally discuss 

the impact of various factors related to copied region.   

5.1.1.   Parameter tuning 

First we discuss the effect of T, M, S parameters of multi-WLD. Figure 9 shows the 

effects of these parameters with C7 scale and Cr component, the effects with Cb are 

similar; these results are without feature selection. These results indicate that the best 

accuracy is achieved when T = 4, M = 4 and S = 20. For the results given in the following 

sections, we use only these parameter values. 
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The effects of multi-WLD scales C1-C7 are shown in Figure 10 for forgery detection  

(splicing + copy-move) with Cr component; these results are obtained with the 

parameters: T = 4, M = 4, and S = 20, LLB feature subset selection and SVM using 

polynomial kernel.  Out of individual scales (C1, C2, C3), C3 gave the best performance, 

but overall scale C7 (the combination of C1, C2, C3) resulted in the highest detection  

 

Fig. 9. Effects of T, M, S parameters on forgery detection with Cr chrominance 

component and C7 scale. 

 

accuracy. The scale C7 achieved accuracies of 92.62% and 88.66% with Cr and Cb 

components, respectively. It experimentally proves that multi-WLD performs better than 

individual single WLD scales in case of image forgery detection. Each single WLD scale 

produces 320 features (bins in the histogram), and C7 has a total of (320×3=) 960 

features. All the subsequent results are with C7.  

In the next experiment, Cr and Cb histograms were fused and we call it feature level 

fusion (FLF), in this case the feature vector is of dimension 1920 (=960×2), which is 

reduced to 770 features after feature subset selection. FLF performs better than individual 

chrominance components, it achieved 94.19% accuracy for full CASIA v1.0 dataset 

(splicing + copy-move) with SVM using polynomial kernel. False positive rate and false 

negative rate are 6.3 and 3.7, respectively.  
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Fig. 10. The accuracy of image forgery detection with multi-WLD scales C1-C7 and 

Cr component. 
 

Further to examine the effect of kernel on the performance of SVM, we performed 

experiments with RBF and polynomial kernels. Table 1 gives a comparison between 

polynomial and RBF kernels when FLF system is used. Polynomial kernel performed 

better than RBF kernel in our experiments, so we report results only with polynomial 

kernel in the following experiments. 

 

Table 1. The performance comparison between RBF and polynomial kernels on 

CASIA v1.0 with FLF. 

Kernel ACC(%)±Std AUC± Std FP FN #Features 

Poly 94.19 ± 1.60 0.942 ± 0.022 6.3 3.7 770 

RBF 92.50 ± 2.20 0.930 ± 0.030 7.7 5.2 923 

 

Table 2. Performance of different channels with C7 scale of WLD in splicing 

detection. 

Channel ACC(%)±Std AUC± Std TPR(%) TNR(%) 

Cr 94.29±2.50 0.94±0.02 94.80 93.44 

Cb 90.60±3.82 0.91±0.04 92.25 89.53 

FLF(Cr+Cb) 94.52±1.84 0.94±0.02 95.05 93.86 

Y 54.64±4.02 0.50±0.09 98.91 2.52 

5.1.2.   Results on Splicing Detection 

Using the optimal parameters as discussed in Section 5.1.1, we performed experiments 

for splicing detection with individual chrominance component, their fusion and 

luminance component; the results are shown in Table 2. The Cr component and FLF both 

gave comparable results in terms of AUC but FLF performed slightly better in terms 

79.71

83.66 83.72

88.02

90.41 90.76
92.62

70

75

80

85

90

95

C1 C2 C3 C4 C5 C6 C7

A
cc

u
ra

cy
 (

%
)

WLD Scales

Effects of multi-WLD scales with Cr component (CASIA V1.0)



 Instructions for Typing Manuscripts (Paper’s Title) 

 

15 

 

accuracy, TPR and TNR. Luminance component resulted in the worst detection 

performance. 

5.1.3.   Results on copy-move forgery detection 

For copy-move forgery detection, the results are shown in Table 3 with individual 

chrominance component, their fusion, and luminance component; for experiments we 

employed the optimal parameters discussed in Section 5.1.1. In this case, the Cr 

component gave an accuracy of 91.11±3.35, which is better than those obtained by Cb, 

FLF and Y but in terms of AUC, TPR and TNR, ELF performed slightly better than Cr.  

The performance of luminance component Y is poor also for copy-move detection. 

 

Table 3. Performance of different components with multi-WLD on copy-move 

detection. 

Channel ACC(%)±Std AUC± Std TPR(%) TNR(%) 

Cr 91.11±3.35 0.88±0.05 95.43 83.64 

Cb 87.22±3.19 0.85±0.04 95.23 77.92 

FLF(Cr+Cb) 90.97±2.72 0.90±0.05 96.73 83.90 

Y 68.33±5.09 0.59±0.08 93.43 24.35 

 

If we compare Table 2 and Table 3, we find that copy-move forgery detection has 

lower accuracy (90.97%) than splice detection accuracy (94.52%) with FLF system. This 

can be attributed to the fact that in copy-move forgery, the hidden noise pattern remains 

almost same, while in splicing there are two different background patterns as they come 

from two different images. This indicates that it is comparatively easier to detect splicing 

than copy-move forgery. 

5.1.4.   Results on Forgery Detection (Splicing + Copy-move) 

Results for forgery detection are shown in Table 4 with multi-WLD (C7).  The 

chrominance components (Cb and Cr) gave better accuracies than the luminance 

component (Y). When the chrominance components were fused (FLF case), the accuracy 

increased to 94.19%. In terms of AUC, TPR and TNR, FLF gave better detection 

performance. Figure 11 shows ROC curves of chrominance components and FLF.  

A comparison of the effect of multi-WLD for splicing, copy-move and forgery 

detection with Cr, Cb and FLF is given in Figure 12. The performance of multi-WLD is 

better for splicing and forgery (splicing+copy-move) detection than copy-move detection. 

Overall, FLF stands first in the detection accuracy, Cr is its close competitor for splicing 

detection. The overall performance of Cb is poor.  

 

Table 4. Performance of different components with multi-WLD for forgery 

detection. 

Channel ACC(%)±Std AUC±Std TPR(%) TNR(%) 

Cr 92.62 ± 2.26 0.93 ± 0.02 94.45 90.45 

Cb 88.66 ± 2.49 0.88 ± 0.03 91.46 85.44 

FLF(Cr+Cb) 94.19 ± 1.60 0.94 ± 0.02 96.02 92.05 

Y 61.80± 2.85 0.61± 0.04 67.71 55.27 
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Fig. 11. ROC curves for forgery detection with multi-WLD on CASIA v1.0. 

 
 

 

 

Fig. 12. Accuracy of the detection method using multi-WLD on CASIA v1.0. 

5.1.5.   The impact of multi-WLD on forgery detection with transformation 

Sometimes the copied region is pasted after applying some transformation such as 

rotation, scaling and deformation. We performed experiments to examine how much 

multi-WLD is robust against these transformations. Table 5 illustrates the results for 

splicing detection. There are three common types of transformation: (a) deform, (b) resize 

and (c) rotate the copied region before pasting. Column 2 of Table 5 shows the number of 

authentic (Au) and forged (Fg) images that fall into the corresponding transformation 

CASIA v1.0 Full Splicing Copy-move
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category in the data set. From the table, we find that rotation gives the least accuracy of 

88.57%, while deform gives the best accuracy of 95%. However, this trend might be 

related to the number of images in the category, for the case of rotation, the number of 

images is small. 

Table 6 gives the results for copy-move detection for the case transformation. The 

highest accuracy of 90.82% was achieved with no transformation. The results are not 

conclusive in this case because the number of samples is very small, which is not enough 

to properly train SVM. 

 

Table 5. Performance for splicing detection involving transformation with multi-

WLD 

Type 
#images 
(Au / Fg) 

Component  ACC(%)± Std AUC± Std 

Deform 39 / 41 Cr 91.25± 15.65  0.93±0.11 

Cb 78.75± 14.49 0.79±0.20 
FLF 95.00±  6.45 0.93±0.12 

Resize 183 / 165 Cr 92.06±  5.20 0.92±0.05 

Cb 88.82±  4.96 0.91±0.06 
FLF 91.47±  4.48 0.91±0.05 

Rotate 18 / 18 Cr 88.57± 11.95 0.86±0.13 

Cb 82.85± 15.65 0.76±0.22 
FLF 88.57± 11.95 0.93±0.07 

No transformation 156 / 152 Cr 92.00±  5.26 0.95±0.03 

Cb 88.00±  6.70 0.89±0.08 
FLF 93.00±  6.93 0.93±0.07 

 

Table 6. Performance for copy-move detection involving transformation with multi-

WLD 

Type 
#images 
(Au / Fg) 

Component Acc(%)± Std AUC± Std 

Deform 12/12 Cr 90.00 ± 13.69  0.95±0.11 

Cb 80.00 ± 11.18 0.83±0.24 
FLF 80.00 ± 20.92 0.83±0.24 

Resize 23/23 Cr 75.56 ± 14.49 0.71±0.16 

Cb 68.89 ± 14.49 0.68±0.12 
FLF 75.56  ±  4.97 0.75±0.11 

Rotate 7 /7 Cr 90.00 ± 22.36 - 

Cb 70.00 ± 27.39 - 
FLF 90.00 ± 22.36 - 

No transformation 406 / 204 Cr 90.98 ±   4.84 0.90±0.05 

Cb 88.20 ±   2.42 0.84±0.04 
FLF 90.82 ±   2.39 0.90±0.07 

5.1.6.   The impact of multi-WLD on the shape of the tampered region  

The tampered region can be of different shapes and can put difficulty for detection. 

CASIA v1.0 involves three shapes of the tampered region: (a) rectangular, (b) circular 

and (c) arbitrary or irregular.  Table 7 and Table 8 give the detection performance for 
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splicing and copy-move, respectively, of multi-WLD when the database has been 

grouped based on the shape of tampered region. In the case of splicing detection, 94.43% 

accuracy was obtained with arbitrary shape, while 90% and 85% accuracies are achieved 

with circular and rectangular shapes, respectively. In the case of copy-move forgery 

detection, Cr performs better than the combined chrominance channels in most of the 

shape cases. 

 
Table7. Performance for splicing detection with multi-WLD based on the shape of 

tampered region 

Type 
#images 
(Au / Fg) 

Component ACC(%)±Std AUC±Std 

Arbitrary 325 / 372 Cr 92.41±2.98 0.92±0.03 
Cb 90.25±2.67 0.90±0.03 
FLF 94.43±2.08 0.95±0.03 

Circular 12 / 12 Cr 90±13.69 0.87±0.18 
Cb 85±13.69 0.88±0.16 
FLF 90±13.69 0.90±0.22 

Rectangular 21 / 21 Cr 82.5±11.18 0.82±0.19 
Cb 70±6.85 0.70±0.11 
FLF 85±5.59 0.90±0.09 

 

Table 8. Performance for copy-move detection with multi-WLD based on the shape 

of tampered region 

Type 
#images 
(Au / Fg) 

Component ACC(%)±Std AUC±Std 

Arbitrary 111 / 110 Cr 88.18±6.14 0.89±0.06 
Cb 88.64±7.50 0.90±0.08 
FLF 87.27±7.96 0.88±0.09 

Circular 102 / 102 Cr 83.00±8.56 0.81±0.11 
Cb 75.00±7.45 0.75±0.13 
FLF 77.00±10.06 0.79±0.11 

Rectangular 148 / 148 Cr 82.41±6.59 0.79±0.09 
Cb 75.17±10.38 0.77±0.09 
FLF 79.66±10.08 0.80±0.11 

Triangular 101 / 101 Cr 79±8.10 0.79±0.10 
Cb 77.5±5.89 0.79±0.08 
FLF 75±9.13 0.75±0.12 

 

5.1.7.   The impact of multi-WLD on the size of the tampered region 

The spliced and copy-move images are split into three groups based on the size of the 

tampered region: (a) large tampered region, (b) medium tampered region and (c) small 

tampered region. The reported results in Tables 9 and 10 are based on this categorization 

and SVM with RBF kernel.  In the case of splicing detection, multi-WLD with Cr 

component gives better accuracy whatever the size of the tampered region. The accuracy 

is 93.0% for the large tampered region but it is 91% with medium and small size of the 

tampered region. In the case of copy-move forgery detection, the accuracy is 86.67% 

with feature level fusion when the size of the tampered region is large. These results 
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indicate that the size of the tampered region has impact on the detection accuracy, which 

is less in case of splicing as compared to copy-move forgery. 

  

Table 9. Performance for splicing detection with multi-WLD based on the size of 

tampered region 

Type 
#images 
(Au / Fg) 

Component  ACC(%)±Std AUC±Std 

Large 50/50 
 

Cr 93.0±8.23 0.94±0.10 
Cb 91.0±9.94 0.92±0.11 
FLF 92.0±10.33 0.91±0.14 

Medium 50/50 Cr 91.0±7.38 0.92±0.12 
Cb 89.0±9.94     0.92±0.09 
FLF 90.0±9.43  0.94±0.10 

Small 50/50 Cr 91.0±8.76  0.92±0.12 
Cb 78.0±14.76 0.86±0.13 
FLF 87.0±4.83 0.88±0.08 

 

Table 10. Performance for copy-move detection with multi-WLD based on the size 

of tampered region 

Type 
#images 
(Au / Fg) 

Component ACC(%)±Std AUC±Std 

Large 30/30 
 

Cr 81.67±18.34 0.80±0.28 
Cb 80.00±20.49 0.77±0.30 
FLF 86.67±15.32 0.89±0.14 

Medium 30/30 Cr 81.67±16.57 0.85±0.22 
Cb 75.00±16.20     0.73±0.22 
FLF 75.0±19.64  0.81±0.24 

Small 30/30 Cr 81.67±14.59  0.79±0.18 
Cb 81.67±16.57 0.76±0.26 
FLF 80.00±15.32 0.85±0.23 

5.2.   Experiments with CASIA v2.0 

We did through analysis of the impact of multi-WLD on the forgery detection using 

CASIA v1.0, which gives the idea of the strengths and weakness of multi-WLD keeping 

in view different factors. CASIA v1.0 is relatively small database and all images are in 

JPEG format. To further investigate the robustness of multi-WLD against different image 

formats, we also performed experiments with CASIA v2.0, which is larger database and 

involves images of different formats. Table 11 shows the results with multi-WLD based 

forgery detection method without and with feature selection. The dimension of the 

feature vector is 960 with Cb and Cr components and 1920 for FLF case before selection. 

After feature selection, the dimension is reduced to 379, 185, 359 for the cases of Cb, Cr 

and FLF, respectively. Figure 13 shows ROC curve of the forgery detection method for 

CASIA v2.0 using FLF system. The results show that, as in the case of CASIA v1.0, both 

Cr and FLF yield good results, and FLF results in slightly better detection performance. 

These results have been obtained using the optimal parameter values that we found using 

CASIA v1.0. The results also indicate that the forgery detection method is robust against 

different image formats and the overall detection performance is better than that in case 
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of CASIA v1.0, this is probably due to the reason that the classifier has more patterns to 

learn well the structure of tampered and authentic images. 

 

Table 11. Performance of the multi-WLD based forgery detection method on 

CASIA v2.0. 

Selection 
Information 

Component ACC(%)±Std AUC± Std # Features 

Without  Cr 96.38 ± 0.36 0.966 ± 0.005 960 
Selection Cb 96.61 ± 0.49 0.969 ± 0.004 960 

 FLF 96.28 ± 0.675 0.960 ± 0.008 1920 

With Cr 95.70 ± 0.745 0.958 ± 0.008 185 

Selection Cb 96.29 ± 0.77 0.960 ± 0.008 379 

 FLF 96.52 ±0.583 0.970 ± 0.007 359 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 13. ROC curve of the multi-WLD based forgery detection method on CASIA 

v2.0 using FLF case 

 

5.3.    Experiments with Columbia Colour 

To further validate the detection performance of the multi-WLD based forgery detection 

method, we also performed experiments on Columbia color dataset which is small but 

contains images of larger size and in TIFF format. Table 12 shows the results for this 

dataset with feature selection. The multi-WLD based method with FLF achieved 94.17% 

accuracy, which is better than previously reported best results by the method in [22]. The 

number of features in FLF after feature selection is 316. These results are comparable 

with those on CASIA v1.0 and further validate the fact that the method is robust against 

different image formats. 
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Table 12. Performance of the multi-WLD based forgery detection method on 

Columbia dataset 

Channel ACC(%)±Std AUC± Std ACC (%) of [22] 

Cr 92.50 ± 4.73 0.93 ± 0.05  

Cb 92.78 ± 3.51 0.93 ± 0.05 93.14 

FLF 94.17 ± 3.57 0.93 ± 0.05  

 

6.    Detection Performance with Multi-LBP 

In this section, we present the detection results with multi-LBP, which is also a local 

texture descriptor, for the sake of comparison, for detail see [*]. Different variants of 

LBP have been considered to show which one performs best for forgery detection. For 

validation, the experiments were performed on CASIA v1.0.    

To see the effect of multi-LBP on forgery detection, we employed SVM with RBF 

kernel. We examined the effect of different scales (C1-C7) and found that C7 gives better 

detection performance, so we report only the results with C7. Table 13 presents the 

results with multi-LBP and chrominance components for forgery detection (i.e. on full 

dataset) when different LBP variants are used. We notice that the number of features 

differ due to the type of LBP variant. LBPri has 4504 features when C7 scale is used 

without using LLB selection. The number of features decreases with LBPu2 to 437 

features. LBPriu2 has the smallest number of features 42. The best accuracy is obtained 

with LBPu2 and Cr component.  

 

Table 13. Forgery detection results with multi-LBP and chrominance components 

on full dataset 

LBP  
variants 

Feature Selection  Component Acc(%)±Std AUC±Std # Features 

LBPri Without selection Cr 85.35 ± 2.77 0.85 ± 0.03 4504 
  Cb 84.42 ± 2.87 0.85 ± 0.04 4504 

 
With selection Cr 

Cb 
85.41 ± 3.02 0.85 ± 0.03 4495 

 84.30 ± 2.78 0.85 ± 0.04 4414 
LBPu2 Without selection Cr 86.51 ±3.29 0.86 ± 0.03 437 
  Cb 86.40 ±3.48 0.87 ± 0.03 437 
 With selection Cr 85.93 ±4.95 0.86 ± 0.04 248 
  Cb 85.52 ± 2.91 0.86 ± 0.04 274 
LBPriu2 Without selection Cr 80.29 ±3.64  0.80 ± 0.03 42 
  Cb 77.56 ± 2.05 0.76 ± 0.03 42 
 Without selection Cr 80.70 ± 3.73 0.81 ± 0.04 38 
  Cb 79.48 ±2.26 0.79 ±0.03 34 

 

6.1 Results on Splicing Detection  

In this section, we present the results for splicing detection only. Table 14 illustrates the 

results with different variants of multi-LBP when C7 scale and chrominance components 

are used. In this case, again LBPu2 gives the best result with small number of features 256 

features. We notice that small number of features can be used to detect image splicing 
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due to the nature of forgery. In splicing, there are two different background texture 

patterns as they come from two different images. Also Cr gives better results than Cb 

chrominance component on splicing detection. Figure14 demonstrates ROC curves of the 

detection method based on multi-LBP with different LBP variants and Cr component for 

spliced images. 

 

Table 14. The results for multi-LBP based splicing detection method 

LBP  
variants 

Feature Selection  Component Acc(%)±Std AUC±Std # Features 

LBPri Without selection Cr 84.64 ± 4.68 0.84 ± 0.06 4504 
  Cb 82.26 ±3.66 0.82 ± 0.05 4504 
 With selection Cr 

Cb 
88.21 ±3.70 0.89 ± 0.05 76 

 86.55 ±3.60 0.86 ± 0.04 117 
LBPu2 Without selection Cr 89.17 ± 3.05 0.89 ± 0.04 437 
  Cb 86.07 ±2.69 0.85 ± 0.03 437 
 With selection Cr 90.36 ±2.94 0.90 ± 0.04 256 
  Cb 86.55 ±2.81 0.86 ± 0.04  115 
LBPriu2 Without selection Cr 90.24 ± 3.76 0.90 ± 0.04 42 
  Cb 86.43 ±3.51 0.87 ± 0.04 42 
 With selection Cr 90.48 ±4.20 0.90 ± 0.05 37 
  Cb 86.67 ± 3.96 0.88 ± 0.05  39 

 

6.2 Results on Copy-move Detection 

This section gives the results for copy-move detection only. The results are shown in 

Table 15, it indicates that, as usual, Cr component gives better results than Cb for copy-

move detection. Also, LBPu2 gives better results than other LBP variants for copy-move 

forgery. Copy-move forgery detection needs more features as a result of forgery nature 

where the copied and pasted region is from the same image and the hidden noise pattern 

remains almost same. Figure15 demonstrates ROC curves of multi-LBP based copy-

move detection method with different LBP variants and Cr component. 

 

Table 14. The results for multi-LBP based copy-move detection method  

LBP  
variants 

Information 
Selection  

Component Acc(%)±Std AUC±Std # Features 

LBPri Without selection Cr 82.64 ± 5.75 0.81 ± 0.05 4504 
  Cb 83.33 ± 4.94 0.79 ± 0.08 4504 
 With selection Cr 

Cb 
85.56 ± 4.91 0.83 ± 0.06 1203 

 85.83 ± 5.31 0.83 ± 0.08 3842 
LBPu2 Without selection Cr 86.81 ± 2.10 0.84 ± 0.02 437 
  Cb 80.56 ± 4.04 0.77 ± 0.09 437 
 With selection Cr 85.28 ± 3.48 0.81 ±0.04 114 
  Cb 80.69 ± 3.49 0.78 ± 0.06 147 
LBPriu2 Without selection Cr 78.06 ± 5.55 0.75 ± 0.08 42 
  Cb 73.47 ± 4.70 0.67 ± 0.05 42 
 With selection Cr 75.14 ± 4.65 0.71 ± 0.07 33 
  Cb 72.64 ± 3.59 0.66 ± 0.05 34 
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Fig. 14. ROC curves of multi-LBP based splicing detection method with Cr 

component. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 15. ROC curves of multi-LBP based copy-move detection method with Cr 

component. 

7 Discussion 

Image forgery detection problem has been investigated. Though the tampered image 

looks natural, the texture micro-patterns go under change, and these tampered traces are 
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left in the chrominance channels. We investigated the effect of two state-of-the-art local 

texture descriptors multi-scale WLD and multi-scale LBP for developing a robust system 

for detecting two types of forgeries (splicing and copy-move forgery). The impact of 

multi-WLD was investigated thoroughly, and the results presented in previous sections 

indicate that multi-WLD based method is robust forgery detection method. This method 

involves different parameters; WLD parameters T = 4, M = 4, S = 20, and scale C7 

(which is the concatenation of C1, C2, and C3), and SVM with polynomial kernel give 

the best results. The experiments were performed on CASIA v1.0 with luminance and 

chrominance components and their concatenation (FLF), it was found that chrominance 

component Cr and FLF gave better and almost similar results for splicing detection (i.e. 

accuracies of 94.29±2.50 and 94.52±1.84, respectively) as well as for copy-move 

detection (i.e. accuracies of 91.11±3.35 and 90.97±2.72, respectively), but only FLF gave 

a better result for forgery detection (i.e. accuracy of 94.19±1.60). The detection accuracy 

for splicing detection is higher than that for copy-move detection, the reason is that in 

case of copy-move forgery, the copied and pasted regions are from the same image and 

so the change in texture micro-patterns is less noticeable. Further the experiments were 

performed to see the robustness of multi-WLD method against transformations (deform, 

resize, rotate), shapes (arbitrary, circular and rectangular) and sizes (large, medium and 

small) of copied regions. Also, we performed experiments with CASIA v2.0, which is a 

larger database and contain images in different formats, the results indicate that multi-

WLD method is robust against different image format, and it achieved an accuracy of 

96.52±0.58 with FLF. The experiments on Columbia color database gave an accuracy of 

94.17±3.57 with FLF.  

      For the sake of comparison, we also performed experiments with multi-LBP using 

different LBP variants. The results presented in Section 6 indicate that overall LBPu2 

gives better results for splicing, copy-move and forgery detection with Cr component and 

C7 scale, but these results are not better than those with multi-WLD. Figure 16 gives a 

comparison between multi-WLD, and multi-LBP with different LBP variants for forgery 

detection. The multi-WLD method is more robust for image forgery detection and gives 

better accuracy with both Cr and Cb components than multi-LBP on CASIA v1.0. 

Rotation invariant LBP and uniform LBP give better results than rotation invariant 

uniform LBP. As the accuracy of multi-WLD with both Cr and Cb is better than that of 

multi-LBP, so we did not perform experiments with FLF, because there is no chance of 

improvement.  

8 Comparison with other Methods 

Multi-WLD based forgery detection method was compared with other recent methods 

[13, 15, 21]. We implemented the method described in [21] that also uses chrominance 

components and evaluated it on the full CASIA v1.0 data set using Cr component. The 

method in [21] obtained 78.53% accuracy, which is much less than 92.62% achieved by 

the multi-WLD method using Cr component. Table 15 lists the results for splicing, copy-

move and forgery (full data set) detection. The method based on multi-WLD outperforms 

the method [21] and multi-LBP on CASIA v1.0 database. Further it is far superior to 

other state-of-the-art methods [13, 15] when evaluated on CASIA v2.0. 
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Fig. 16. Comparison between multi-WLD and multi-LBP for forgery detection  

 

Table 15. Performance comparison between different methods 

Forgery  

Type 

Dataset  

Type 

Multi-

WLD 

Multi-

LBP 

Method 

[13] 

Method 

[15] 

Method 

[21] 

Splicing CASIA v1.0 94.29% 90.48% - - 79.90% 

Copy-move CASIA v1.0 91.25% 85.56% - - 76.30% 

Full dataset CASIA v1.0 92.62% 85.93% - - 78.53% 

Full dataset CASIA v2.0 96.52% - 84.86% 89.76% - 

9 Conclusion 

In an image forgery detection method, the challenging issue is to model the structural 

changes that take place in an image because of tampering. Assuming that image 

tampering disturbs the texture micro-patterns in an image and this change can be modeled 

with texture descriptors, two state-of-the-art local texture descriptors multi-WLD and 

multi-LBP were employed for image forgery detection. The impact of these descriptors 

was explored thoroughly and found that multi-WLD outperforms multi-LBP. The 

features were extracted from the chrominance components of a color image, and SVM 

was used for classification purpose. The chrominance component Cr performs better than 

Cb component and SVM with polynomial kernel is better than that with RBF kernel for 

forgery detection. The best results achieved with multi-WLD based method for forgery 

detection (i.e. on full dataset) are 94.19% on CASIA v1.0, 96.52% on CASIA v2.0, and 

94.17% on Columbia color image databases. These accuracies are better than previously 

reported results on these datasets. The focus of this work was to identify whether an 

image is tampered or not, it does not deal with localization problem, i.e. to identify which 
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region in an image is tampered. A future work is to localize the forgery in a tampered 

image. 
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