
December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

Coupling Dynamic Programming with Machine Learning for Horizon

Line Detection

Touqeer Ahmad

Dept. of Computer Science and Engineering, University of Nevada
Reno, 89557, NV, USA

sh.touqeerahmad@gmail.com

George Bebis

Dept. of Computer Science and Engineering, University of Nevada
Reno, 89557, NV, USA

bebis@cse.unr.edu

Emma Regentova

Dept. of Electrical and Computer Engineering, University of Nevada

Las Vegas, 89154, NV, USA

emma.regentova@unlv.edu

Ara Nefian

NASA Ames Research Center

Moffett Field, 94035, CA, USA
ara.nefian@nasa.gov

Terry Fong

NASA Ames Research Center

Moffett Field, 94035, CA, USA
terry.fong@nasa.gov

Received (Day Month Year)

Revised (Day Month Year)
Accepted (Day Month Year)

In this paper, we consider the problem of segmenting an image into sky and non-sky

regions, typically referred to as horizon line detection or skyline extraction. Specifically,

we present a new approach to horizon line detection by coupling machine learning with
dynamic programming. Given an image, the Canny edge detector is applied first and
keeping only those edges which survive over a wide range of thresholds. We refer to the
surviving edges as Maximally Stable Extremal Edges (MSEEs). The number of edges
is further reduced by classifying MSEEs into horizon and non-horizon edges using a

Support Vector Machine (SVM) classifier. Dynamic programming is then applied on
the horizon classified edges to extract the horizon line. Various local texture features

and their combinations have been investigated in training the horizon edge classifier
including SIFT, LBP, HOG, SIFT-LBP, SIFT-HOG, LBP-HOG and SIFT-LBP-HOG.
We have also investigated various nodal costs in the context of dynamic programming

1

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

2 Ahmad et al.

including binary edge scores, normalized edge classification scores, gradient magnitude
and their combinations. The proposed approach has been evaluated and compared with

a competitive approach on two challenging data sets, illustrating superior performance.

Keywords: Horizon Line Detection;Skyline Extraction;Sky Segmentation;Dynamic Pro-
gramming

1. Introduction

Horizon line detection or sky segmentation is the problem of finding a boundary

between sky and non-sky regions (ground, water or mountains) in a gray scale

or color image. This has many applications including smooth navigation of small

unmanned aerial vehicles (UAVs)4,7,8 and micro air vehicles (MAVs),5,6,9 visual

geo-localization of mountain images,17,18 port security and ship detection19,20 and

outdoor robot/vehicle localization.10,11,12 Previous attempts to horizon line de-

tection can be categorized into two major groups; (i) methods modeling sky and

non-sky regions using machine learning4,5,6,7,9,19 and (ii) methods employing edge

detection.3,21 Recently, some attempts1,2 have been made to combine these two

approaches by eliminating non-horizon edges using classification; however, these at-

tempts also fall under the second category since horizon detection is effectively based

on edges. It should be mentioned that earlier methods to horizon detection suffer

from the assumption that the horizon boundary is linear and hence are limited.

McGee et al.7 proposed a sky segmentation approach to find a linear boundary

between sky and non-sky regions using an SVM classifier trained only on color

information. They use sky segmentation as an obstacle detection tool for small

scale UAVs. Their underlying assumption of the horizon boundary being linear is

violated very often and probably is acceptable only for UAVs navigation. Ettinger

et al.6 proposed a flight stability and control system for micro air vehicles (MAVs)

which relies on horizon detection. They model the sky and non-sky regions by

Gaussian distributions and try to find an optimum boundary segmenting them.

Their model is based on two assumptions: first, the horizon boundary is linear and

second, the horizon line separates the image into two regions of significantly different

appearance (i.e., sky and non-sky). However, these assumptions might not always be

true. The approach of Fefilatyev et al.19 is also based on the horizon boundary being

linear and uses color and texture features (e.g., mean intensity, entropy, smoothness,

uniformity etc.) to train various classifiers. Croon et al.5 extended the features used

in19 by including cornerness, grayness and Fisher discriminant features to train a

shallow decision tree classifier. Their approach has been tested in the context of

MAVs obstacle avoidance and is able to detect non-linear horizon boundaries.

Todorovic et al.9 circumvent the assumption of the horizon boundary being lin-

ear in Ref. 6 by building priors for sky and non-sky regions based on color and

texture features. Unlike their earlier work, they focused on both color (Hue, In-

tensity) and texture (Complex Wavelet Transform) features to model the priors

due to great appearance variations between sky and non-sky regions. Using a Hid-

den Markov Tree model they built a robust horizon detection approach capable of

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

Coupling Dynamic Programming with Machine Learning for Horizon Line Detection 3

detecting non-linear horizon boundaries. Yazdanpanah et al.22 proposed a fusion-

based approach where they combine the outputs of a Neural Network (NN) classifier

with K-means clustering. They use the mean intensity and texture features, similar

to Ref. 5 and 19 to train the NN classifier. Although their approach demonstrates

reasonable results, their system is based on various heuristics and parameter set-

tings that might not generalize well to different data sets. In Ref. 4, a clustering

based horizon line detection approach for robust UAV navigation was presented.

The main assumption is the presence of a dominant light field between sky and

ground regions which they detect using intensity information and K-means cluster-

ing. In general, the assumption about the light field does not hold and they have

identified cases where their method requires modifications for the clustering pro-

cess to produce good results. Thurrowgood et al.8 used horizon detection for UAV

altitude estimation. By learning a transformation from the RGB space to a single

dimensional space, an optimum threshold can be found to segment sky/non-sky

regions based on histograms and priors about sky and non-sky regions. Their ap-

proach is applicable only to UAV navigation due to the assumption that sky and

ground pixels are equi-probable.

The most prominent method belonging to the second category is that of Lie

et al.3 where horizon detection is formulated as a graph search problem. Their

approach relies on edge detection and assumes a consistent edge boundary between

sky and non-sky regions. The detected edge map is represented as a multi-stage

graph where each column of the image becomes a stage of the graph and each

edge pixel becomes a node. The shortest path is then found extending from the

left-most column to the right-most column using DP. The assumption that the

horizon boundary is a consistent edge boundary is rarely true in practice due to

environmental conditions (e.g., clouds) and edge gaps. To address the issue of gaps,

Ref. 3 has proposed a gap-filling approach which highly depends on the choice of

certain parameters. Moreover, they assume that the horizon line is present in the

upper half of the image which biases the shortest path solution to be in that region.

Recently, Ahmad et al.1 and Hung et al.2 independently proposed extensions

to the approach of Lie et al.3 by introducing a classification step to eliminate non-

horizon edges. The graph is then built using edge pixels classified as horizon pixels.

This is performed by training a classifier using features from key-points taken from

horizon and non-horizon locations. Ahmad et al.1 used SIFT descriptors 14 around

the key-points and an SVM classifier whereas Hung et al.2 used an SVM classifier

with color information as well as the variance above and below a given point.

2. Background

In this section, we briefly review the method of Lie et al.3 and point out its under-

lying assumptions. Lie et al. formulate the problem of horizon line detection as a

multi-stage graph problem and use DP to find the shortest path extending from left

to right. Their approach is based on the assumptions that a full horizon line exists

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

4 Ahmad et al.

in the image from left to right and that it lies in the upper half of the image. Given

an image of size M ×N , edge detection is performed first to compute a binary edge

map I where 1 implies the presence of an edge pixel and 0 a non-edge pixel. This

edge map is used to build an M × N multi-stage graph G(V,E,Ψ,Φ) where each

pixel in the edge map corresponds to a graph vertex; a low cost l is associated with

edge pixels while a very high cost (i.e., ∞) is associated with non-edge pixels as

shown below:

Ψ(i, j) =

{
l, if I(x, y) = 1.

∞, if I(x, y) = 0.
(1)

Ψ(i, j) is the cost associated with vertex i in stage j (i.e., vij). The graph can

be visualized as an N (columns) stage graph where each stage contains M nodes

(rows). To deal with edge gaps, they propose a gap filling approach. Given a node i

in stage j, its neighborhood in the next stage j+1 is defined by a δ parameter, that

is, the number of nodes to which i could be connected in stage j+1. The edges from

i to its neighbors are associated with costs equal to the vertical absolute distance

from it as shown in the equation below.

Φ(i, k, j) =

|i− k|, if I(i, j) = I(k, j + 1) = 1

and |i− k| ≤ δ
∞, otherwise.

(2)

If a node i in stage j cannot be connected to any node in stage j + 1 with

in δ neighborhood, a search window is defined using δ and tolerance-of-gap (tog).

Specifically, an edge node is searched in this search window and once such an edge

node is found the gap filling is performed by introducing dummy nodes between

node i in stage j and node k found within the search window j+tog. A high cost is

associated with the dummy nodes introduced by the gap filling step.

Once the gaps are filled with high cost dummy nodes, the cost of the nodes in

stage 1 and N is increased based on the vertical position of the nodes according to

the equation below:

Ψ(i, j) =

{
(i+ 1)2, if j = 1 or j = N

Ψ(i, j), otherwise.
(3)

This enforces the assumption that the horizon line is present in the upper half

of the image and hence biasing the DP solution towards a shortest path present in

the upper half. Next, two nodes, a source s and a sink t are added to the left of

the left most stage (i.e. stage 1) and to the right of the right most stage (i.e. stage

N) respectively. A zero cost is associated with each one of them. The s node is

connected with all the nodes in stage 1 and all the nodes in stage N are connected

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

Coupling Dynamic Programming with Machine Learning for Horizon Line Detection 5

Fig. 1. Highlighting bias problem inherent to Lie et al. (a) edge (black) and non-edge (white)

pixels, (b) a search window for node 5 in stage 5, (c) current node being connected to the nodes

found in search window, (d) dummy nodes introduced with high costs (blue), (e) nodes in first
and last stage being initialized with their vertical position (enforcing bias).

to node t. A shortest path is then found extending from node s to t using DP which

conforms to the detected horizon boundary.

Figure 1 illustrates the steps of Lie et al. for a sample image. An edge map is

shown in Figure 1-(a) where black and white rectangles represent edge and non-

edge pixels. A search window is shown in Figure 1-(b) for the edge node in stage

j = 5 using δ = 1 and tog = 4. Within the search window j+tog, two edge nodes

are discovered which are then connected to node j by introducing dummy nodes

as shown in Figure 1-(c,d) (highlighted in blue). The nodes in stage 1 and N are

set to a higher cost associated with their vertical position; this is reflected by an

increasing intensity in Figure 1-(e). Two nodes s and t are then introduced, as

described above, and DP is applied on this graph. As it is clear from Figure 1-(e),

there exist two equal paths in the above sample graph (ignoring source (s) and sink

(t) nodes); however, DP will select the upper path due to the assumption of the

horizon line being present in the upper half. However, it might be possible that the

true horizon line is actually the lower one and that the upper edge segment was

only due to some clouds.

3. Classification of Horizon Edges

The complexity of the Lie et al.3 approach depends on the number of edges detected

in an image while its performance can be affected by nearby edges (e.g., due to

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

6 Ahmad et al.

Fig. 2. Effect of MSEE: (a) input image, (b) output of the Canny, (c) discarded edges by MSEE

and (d) survived edges i.e. MSEE image. Note the reduction in number of edges due to MSEE
computation.

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

Coupling Dynamic Programming with Machine Learning for Horizon Line Detection 7

clouds) or edge gaps. We address these issues by detecting the most stable edges in

an image (i.e., MSEEs), and applying classification using SVMs to eliminate non-

horizon edges. To address the issue of edge gaps, we replace the binary edge map

in the Lie et al.3 approach with a continuous map based on gradient magnitude

information or classification scores.

3.1. Maximally Stable Extremal Edges (MSEEs)

The idea of extracting MSEEs was inspired from the idea of extracting Maximally

Stable Extremal Regions (MSER).25 Given a gray scale image, we compute the

edge image using the Canny edge detector with sigma (σ) parameter being fixed

to a chosen value while varying the low and high thresholds. This results in the

generation of N binary images assuming N combinations of parameter values, call

them I1 to IN . An edge at pixel location (x, y) is considered stable if it is detected

as an edge pixel for k consecutive threshold values. The image comprised of these

stable edges is referred to as Maximally Stable Extremal Edge Image and denoted

as E. Mathematically,

E(x, y) =

{
1, if

∑N
i=1 I(x, y)i > k.

0, otherwise.
(4)

In our experiments, we varied the high threshold of the Canny edge detector, Th,

between 0.05 and 0.95 with a step of 0.05; the lower threshold T l was set 0.4× Th.

It was found through experimentation that σ = 2 and k = 3 were optimal choices.

The computation of MSEE Image reduces the number of edges considerably while

not damaging important edges (i.e., horizon edges). Figure 2 below shows a sample

gray scale image, the output of the Canny edge detector and the MSEEs. As it

can be observed, the number of edges has remarkably been reduced in MSEE while

maintains the edges belonging to the horizon line.

3.2. Learning to Classify Horizon Edges

To further reduce the number of edges, an SVM classifier is applied on the MSEEs

in order to eliminate non-horizon edges. To train the SVM classifier, we use both

positive (i.e., horizon) and negative (i.e., non-horizon) examples by computing lo-

cal features at horizon and non-horizon key point locations. To select the positive

examples, we manually label the horizon line in each training image and choose a

number of key points along it uniformly. Figure 3 shows a few images with ground

truth information marked as red. The negative examples are selected randomly

from non-horizon MSEE locations. Figure 4 shows an example of positive (red) and

negative (blue) examples selected from a training image.

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

8 Ahmad et al.

Fig. 3. Ground truth horizon lines; highlighted in red.

Fig. 4. Positive (red) and negative (blue) key point locations for a training image.

3.3. Feature Extraction and Classifier Training

To train an SVM classifier we take a 16 × 16 window around each +ive/-ive key

point and compute a local descriptor. We have investigated three local descrip-

tors: Scale Invariant Feature Transform(SIFT)14, Local Binary Patterns(LBP)13

and Histogram of Oriented Gradients(HOG).15 We compute these descriptors using

Vlfeat16 which provides 128, 58 and 31 dimensional vectors for SIFT, LBP and HOG

respectively. We have investigated the performance of individual descriptors as well

as their combinations to train the SVM classifier. The combinations are formed by

mere concatenation of the descriptor vectors for each training and testing instance.

The feature combinations and their size are: SIFT-LBP (186 features), SIFT-HOG

(159 features), LBP-HOG (89 features) and SIFT-LBP-HOG (217 features). We

have found the SIFT-HOG combination as the best choice when compared with

individual descriptors and other combinations as described in the results section.

Figure 5 shows a flow diagram for the training phase of our proposed approach.

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

Coupling Dynamic Programming with Machine Learning for Horizon Line Detection 9

Fig. 5. Flow diagram for the training phase of the proposed approach.

4. Horizon Line Detection

4.1. MSEEs Filtering

During testing, the MSEE image E(x, y) is generated for a given query image accord-

ing to equation 4. To remove non-horizon MSEEs, each MSEE location is treated

as a key point; a local descriptor is then computed at that location which is used

to classify that MSEE location as belonging to the horizon or not. We refer to

the resultant MSEE map as E+. Assuming binary classifications, then E+ can be

expressed as follows:

E+(x, y) =

{
1, if E(x, y) = 1& Classifier[D(E(x, y))] = 1.

0, otherwise.
(5)

where, D is the feature vector around at MSEE location E(x, y). In addition

to the reduction of edges caused by the MSEE step, as shown in figure 2, MSEE

classification reduces the number of non-horizon edges significantly. Figure 6 shows

an example to highlight the significant reduction of non-horizon edges for a query

image.

4.2. Graph Formulation

Instead of using the output of the edge detector in the context of Dynamic Pro-

gramming, we use the classified MSEE image E+ to formulate the multi-stage graph

G(V,E,Ψ,Φ). Therefore, equations 2 and 3 are modified accordingly:

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

10 Ahmad et al.

Fig. 6. Effect of trained classifier: (a) sample novel image, (b) corresponding MSEE and (c)
MSEE+ (c) images. Note the reduction in number of edges due to the classifier.

Ψ(i, j) =

{
l, if E+(x, y) = 1.

∞, if E+(x, y) = 0.
(6)

Φ(i, k, j) =

|i− k|, if E+(i, j) = E+(k, j + 1) = 1

and |i− k| ≤ δ
∞, otherwise.

(7)

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

Coupling Dynamic Programming with Machine Learning for Horizon Line Detection 11

Since, the number of candidate horizon edges are reduced considerably using the

classified MSEE image, we do not enforce the bias that the horizon line in the upper

half of the image. However, any kind of gaps are filled following the conventional

method as explained in Section 2. Next, a source node and a sink node are added

to the graph and linked with nodes in stages 1 and N assuming a zero cost. Finally,

Dynamic Programming is applied to find the horizon line.

4.3. Nodal Costs

Lie et al.3 have proposed using binary costs to encode whether a node in the multi-

stage graph represents an edge pixel or not; dummy nodes are initialized to a high

cost. Although we have reduced the number of non-horizon edges considerably us-

ing the classified MSEE image, we believe that using only binary costs to initialize

the nodal costs is not enough. For example, Dynamic Programming might choose

falsely classified horizon edges as part of the solution. In this paper, we have exper-

imented with various nodal costs in order to provide additional information about

the possibility of a positively classified MSEE location being part of the horizon line.

Specifically, we have experimented with using the following information in defining

the nodal costs:

• Gradient Information

• Classified Binary Edges

• Classified Edge Score

• Classified Edge Score + Gradient Information

4.3.1. Gradient Information

In contrast to Lie et al.3 and others who have formulated the multi-stage graph

using edges only, we propose building a dense multi-stage graph where each pixel

in the image corresponds to a node which is connected to its neighbors in the next

stage. To initialize the nodal costs, we use gradient magnitude information. When

applying Dynamic Programming, the objective is finding a solution where the sum

of gradient magnitudes is maximized. To ensure good continuity, we enforce the

constraint that the difference between the gradient magnitudes of adjacent pixels

is minimized. It should be noted that gradient magnitude based approach does not

involve any kind of training.

Given a query image Q(x, y), the gradient magnitude at each pixel of the image

is computed as follows:

∇(x, y) = Γ[Q(x, y)] (8)

where, Γ is the function which takes a gray scale image as input and returns

the gradient magnitude image ∇. We have used the Canny edge detector in our

experiments. Next, the difference of the gradient magnitude image is computed.

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

12 Ahmad et al.

Since a node i in stage j can be connected to as many nodes in stage j + 1, as

defined by the δ parameter, several gradient magnitude difference images need to

be generated. The equation below shows the gradient magnitude difference image

assuming that we connect nodes at the same level between stages:

d∇(i, j) = |∇(i, j)−∇(i, j + 1)| (9)

Since we want to maximize the gradient magnitude while minimizing the differ-

ence of gradient magnitudes, we normalize the gradient magnitude and difference

images between 0 and 1. The nodal costs Ψ(i, j) of the multi-stage graph are defined

as a weighted combination of these two images as shown in the equation below:

C1(i, j) = Ψ(i, j) = w ∗ d∇(i, j) + (1− w) ∗ (1−∇(i, j)) (10)

where w is the weight parameter; in our experiments, we have set w = 0.5.

The link costs may be initialized using equation 7; however, in our experiments we

consider all link weights to be equal and have set them to zero due to using a small

neighborhood (i.e. δ = 1) due to the fact that we do not need to deal with gaps.

Figure 7 shows the gradient magnitude image for a given image, the difference of

gradient magnitude image, and their weighted combination.

Fig. 7. Gradient Information;(a) original image,(b) gradient magnitude image,(c) difference of

gradient magnitude Image and (d) combined magnitude and difference image.

4.3.2. Classified Binary Edges

This formulation is fairly similar to the one in Lie et al.3, that is, we use binary edge

information to define the nodal costs. The only difference between their approach

and our approach is that the graph is formulated using the classified MSEE image.

Therefore, equations 5 - 7 are used to initialize the graph and set the nodal/link

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

Coupling Dynamic Programming with Machine Learning for Horizon Line Detection 13

costs. Classification is performed using SIFT-HOG features as they outperform all

other combinations that we have explored.

4.3.3. Classified Edge Score

Representing edge pixels using binary classification provides no information about

the likelihood of an edge pixel being a horizon or non-horizon edge pixel. To enforce

this information, we propose a two fold use of our classification framework. First, we

use our classification results to distinguish between horizon and non-horizon edges as

realized by equation 5 and second, to provide some confidence about and horizon-

ness of an edge pixel. In this context, we normalize the raw classification scores

between 0 and 1. The nodal costs are then initialized by the actual classification

scores instead of setting all positively classified edges to a fixed cost. We have

modified equation 6 to reflect this information where Ω is the classification score in

the interval [0–1]. Since, Dynamic Programming is applied to find the shortest path

in the graph, we have reversed the classification score values so that the smaller the

classification score value is the more likely is that the pixel is a horizon pixel.

C2(i, j) = Ψ(i, j) =

{
Ω(E+(x, y)), if E+(x, y) = 1.

∞, if E+(x, y) = 0.
(11)

4.3.4. Classified Edge Score + Gradient Information

In this formulation, we have combined the classifier information with the gradient

information. By combining equations 10 and 11, the nodal costs can be initialized

as follows:

Fig. 8. Classifier edges and gradient Information;(a) original Image,(b) classified edge score,(c)
gradient magnitude and difference of gradient magnitude and (d) gradient information combined

with classified edge scores.

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

14 Ahmad et al.

Ψ(i, j) =

{
w2 ∗ C2(x, y) + (1− w2) ∗ C1(x, y), if E+(x, y) = 1.

∞, if E+(x, y) = 0.
(12)

where, w2 is a weight parameter; we have set w2 = 0.5 in our experiments. Figure

8 shows the gradient information image, classifier score image and their combination

for a sample query image from our web data set.

The steps of our testing phase are shown in figure 9 .

Fig. 9. Flow diagram for the testing pahse of the proposed approach.

5. Experiments and Results

5.1. Data Sets

We have experimented with two different data sets: the Basalt Hills data set and

Web data set. The Basalt Hills data set consists of 45 images chosen from a larger

data set based on a field study for outdoor robots. The Web data set consists of

80 mountainous images that have been randomly collected from the web. This data

set is much more challenging than the Basalt Hills data set and includes various

viewpoints, geographical and seasonal variations. To quantitatively evaluate the

performance of the proposed approach, we have manually extracted the horizon

line (ground truth) in all the images of our data sets.

5.2. Edge Reduction Using MSEE

To evaluate the effectiveness of MSEE in reducing the number of edges, we have

computed the MSEE image for all the images in our data sets. Then, we have

compared the original number of edges with the number of edges survived after

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

Coupling Dynamic Programming with Machine Learning for Horizon Line Detection 15

applying the MSEE approach. Table 1 shows the average percentage of reduction

for each data set.

Table 1. Effect of MSEE

Data Set Average % Reduction

Basalt Hills 66.37
Web 43.45

5.3. Reduction of Non-Horizon Edges using Classification

To evaluate the effectiveness of different features in classifying edge pixels as horizon

or non-horizon pixels, we have performed a 5-fold cross-validation using the Basalt

Hills data set. In each fold, the data set is divided into non-overlapping training (9

images) and test sets (36 images). Table 2 shows the percentage false positives and

false negatives averaged over the five folds and the respective standard deviations.

Figure 10 shows a graphical representation of the same results. Since, reducing the

false negative rate is more important for horizon line extraction, we have chosen

the classifier based on SIFT-HOG features for further evaluation, as highlighted in

table 2. Out of the 5-folds we have chosen the classifier which resulted into the least

false negative error for further experiments detailed in next subsection.

Table 2. Mean and standar deviations for % False Positive and

False Negative Errors due to Various Features and their Combinations

%FN %FP

Feature Mean Std. Dev. Mean Std. Dev.

SIFT 1.0224 0.7890 17.8090 5.6089
LBP 5.0332 8.3747 10.6366 8.0770

HOG 2.3285 2.3498 11.2331 5.6616
SIFT+LBP 0.6915 1.1827 10.6065 5.8949

SIFT+HOG 0.6624 0.7436 11.0801 5.1797

LBP+HOG 3.3647 3.6415 10.0737 6.394
SIFT+LBP+HOG 7.1887 8.1177 4.8302 4.0438

5.4. Horizon Line Extraction Using Different Nodal Costs

In this section, we provide a comparison between the proposed nodal cost formu-

lations presented in Section 4 and the approach of Lie et al.3 In each case, the

detected and true horizon lines are compared by calculating a pixel-wise absolute

distance S between them as shown below. For each column, the absolute distance

between the detected and ground truth pixels is computed and summed over the

entire number of columns in the image. The resultant distance is normalized by the

number of columns in the image, yielding the average absolute error of the detected

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

16 Ahmad et al.

Fig. 10. Mean of % False Positive and False Negative rates when various features and their

combinations are used for training the SVM classifier

horizon line from ground truth. Since nodes in a particular stage are not allowed

to be connected to nodes in the same stage, the true and detected horizon lines

are bound to have the same number of columns/stages in the image/graph. Hence,

there is a one-to-one correspondence between the pixel locations in the true and

detected horizon pixel locations. Specifically, S is computed as follows:

S =
1

N

N∑
j=1

|Pd(j) − Pg(j)| (13)

where Pd(j) and Pg(j) are the positions (rows) of the detected and true horizon

pixels in column j and N is the number of columns in the test image. For each

method, we computer the average and standard deviation over all images in the

data set listed as shown in table 3. Clearly, using edge classification scores based

on SIFT+HOG features outperforms all other approaches. Our results reinforce the

fact that using only edge information for the nodal costs is not enough.

Figure 11 shows several examples from each data set where our method has

successfully detected the horizon line while Figure 12 shows examples where our

method has failed to detect portions of the horizon line reliably. There are several

reasons why the proposed approach does not perform well in some cases. One reason

is due to the fact that we disallow nodes in some stage of the graph to connect with

nodes in the same stage (i.e., only with nodes in the next stage). This is problematic

when the horizon line has high slope (i.e., steep peaks). Allowing connections within

the same stage will lead to more accurate horizon line detection at the expense

of higher time requirements. Another reason is due to using a very small set of

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

Coupling Dynamic Programming with Machine Learning for Horizon Line Detection 17

training images (i.e., only 9 images from the Basalt Hill data set). This issue can

be addressed by increasing the training set and making it more versatile. Finally,

due to false negatives, a few horizon edges may be missed. Although gap filling tries

to fill up the gaps, it does not always produce satisfactory results, especially when

the gap is large. Similarly, false positives could lead to non-horizon consistent edges

which might become part of the horizon line solution.

Fig. 11. Examples of horizon line detection using the proposed method; Balsat Hill data set [row

1 and 2], Web data set [rows 3 through 9]

6. Conclusion

We have presented a horizon line detection approach based on coupling dynamic

programming with machine learning. In this context, we have investigated various

local features and their combinations to reduce the number of non-horizon edges.

Furthermore, we have considered dynamic programming for horizon line extraction

and experimented with various nodal costs. Our experimental results show consider-

able improvements compared to the tradition edge-based horizon detection method

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

18 Ahmad et al.

Fig. 12. Examples where the proposed approach misses portions of the horizon line.

Table 3. Average absolute errors between the detected and ground truth

horizons for various choices of Nodal Costs used for Dynamic Programming

Basalt Hills Web

Nodal Costs Mean Std. Dev. Mean Std. Dev.

Lie et al. (Edges) 5.5548 9.4599 9.1500 17.9195
Gradient Info. 3.9908 6.3530 11.8641 26.8084

SIFT+HOG Edges 0.5783 1.0227 0.8698 1.0366

SIFT+HOG Scores 0.4124 0.8120 0.9704 1.5698
SIFT+HOG Scores + Gradient 0.4358 0.8124 1.3016 3.9814

of Lie et al.3 using two challenging data sets. For future work, we intend to explore

horizon line as a localization cue in a GPS denied environments (e.g., planetary

rover localization).

Acknowledgments

This work was supported by NASA EPSCoR under Cooperative Agreement No.

NNX10AR89A.

References

1. T. Ahmad, G. Bebis, E. Regentova and A. Nefian, A Machine Learning Approach to
Horizon Line Detection using Local Features, Proceedings of 9th International Sym-
posium on Visual Computing (ISVC). 2013.

2. Y. Hung, C. Su, Y. Chang, J. Chang and H. Tyan, Skyline Localization for Mountain
Images, Proceedings of International Conference on Multimedia and Expo (ICME).
2013.

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

Coupling Dynamic Programming with Machine Learning for Horizon Line Detection 19

3. W. Lie, T. C.-I. Lin , T. Lin , and K.-S. Hung, A robust dynamic programming
algorithm to extract skyline in images for navigation, in Pattern Recognition Letters,
26(2)(2005.)221–230.

4. Nasim S. Boroujeni, S. Ali Etemad and Anthony Whitehead: Robust Horizon De-
tection Using Segmentation for UAV Applications. Proceedings of IEEE 2012 Ninth
Conference on Computer and Robot Vision, 2012.

5. G. C. H. E. de Croon, B. D. W. Remes, C. De Wagter, and R. Ruijsink: Sky Segmen-
tation Approach to Obstacle Avoidance. IEEE Aerospace Conference, 2011.

6. Scott M. Ettinger, Michael C. Nechyba, Peter G. Ifju, and Martin Waszak: Vision-
Guided Flight Stability and Control for Micro Air Vehicles. Proceedings of Interna-
tional Conference on Intelligent Robots and Systems(IEEE/RSJ), 2002.

7. Timothy G. McGee, Raja Sengupta, and Karl Hedrick: Obstacle Detection for Small
Autonomous Aircraft Using Sky Segmentation. Proceedings of International Confer-
ence on Robotics and Automation (ICRA), 2005.

8. Saul Thurrowgood, Dean Soccol, Richard J. D. Moore, Daniel Bland, and Mandyam
V. Srinivasan: A Vision Based System for Altitude Estimation of UAVs. Proceedings
of International Conference on Intelligent Robots and Systems(IEEE/RSJ), 2009.

9. Sinisa Todorovic, Michael C. Nechyba, and Peter G. Ifju: Sky/Ground Modeling for
Autonomous MAV Flight. Proceedings of International Conference on Robotics and
Automation (ICRA), 2003.

10. Vishisht Gupta and Sean Brennan : Terrain Based Vehicle Orientation Estimation
Combining Vision and Inertial Measurements. Journal of Field Robotics, 25(3):181 -
202, 2008.

11. Nghia Ho and Punarjay Chakravarty: Localization on Freeways using the Horizon
Line Signature. Proceedings of International Conference on Robotics and Automation
(ICRA), 2014.

12. Steven J. Dumble and Peter W. Gibbens: Efficient Terrain-Aided Visual Horizon Based
Attitude Estimation and Localization. Journal of Intelligent and Robotic Systems,
2014.

13. T. Ojala, M. Pietikainen, and T. Maenpaa: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence(TPAMI), 24(7):971 - 987, 2002.

14. D. G. Lowe: Distinctive Image Features from Scale-Invariant Keypoints. International
Journal of Computer Vision(IJCV), 68(2):91 - 110, 2004.

15. Navneet Dalal and Bill Triggs: Histograms of Oriented Gradients for Human Detec-
tion. Proceedings of Computer Vision and Pattern Recognition(CVPR), 2005.

16. http://www.vlfeat.org/index.html
17. Georges Baatz, Olivier Saurer, Kevin Koser, and Marc Pollefeys: Large Scale Visual

Geo-Localization of Images in Mountainous Terrain Proceedings of European Confer-
ence on Computer Vision, 2012.

18. W. Liu and C. Su: Automatic Peak Recognition for Mountain Images Advanced Tech-
nologies, Embedded and Multimedia for Human-centric Computing, 2014.

19. Sergiy Fefilatyev, Volha Smarodzinava, Lawrence O. Hall and Dmitry B. Goldgof:
Horizon Detection Using Machine Learning Techniques. International Conference on
Machine Learning and Applications, 17-21, 2006.

20. E. Gershikov, T. Libe and S. Kosolapov: Horizon Line Detection in Marine Images:
Which Method to Choose? International Journal on Advances in Intelligent Systems,
6(1-2):79 - 88, 2013.

21. Byung-Ju Kim, Jong-Jin Shin, Hwa-Jin Nam and Jin-Soo Kim: Skyline Extraction
using a Multistage Edge Filtering World Academy of Science, Engineering and Tech-

December 24, 2014 11:19 WSPC/INSTRUCTION FILE ws-ijait

20 Ahmad et al.

nology 55, 2011.
22. A. P. Yazdanpanah, E. E. Regentova, A. K. Mandava, T. Ahmad and G. Bebis: Sky

Segmentation by Fusing Clustering with Neural Networks. Proceedings of 9th Inter-
national Symposium on Visual Computing (ISVC). 2013.

23. A. V. Nefian, X. Bouyssounouse, L. Edwards, T. Kim, E. Hand, J. Rhizor, M. Deans,
G. Bebis and T. Fong: Planetary Rover Localization within Orbital Maps. Proceedings
of International Conference on Image Processing(ICIP). 2014.

24. T. Ahmad, G. Bebis, E. Regentova, A. Nefian and T.Fong: An Experimental Evalu-
ation of Different Features and Nodal Costs for Horizon Line Detection, Proceedings
of 10th International Symposium on Visual Computing (ISVC). 2014.

25. J. Matas, O. Chum, M. Urban, and T. Pajdla: Robust Wide Baseline Stereo from Max-
imally Stable Extremal Regions, Proceedings of British Machine Vision Conference,
pages 384-396, 2002.

(1983) 400–433.

