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Abstract. Sky segmentation is an important task for many applications related 
to obstacle detection and path planning for autonomous air and ground vehicles. 
In this paper, we present a method for the automated sky segmentation by fus-
ing K-means clustering and Neural Network (NN) classifications. The perfor-
mance of the method has been tested on images taken by two Hazcams  (ie., 
Hazard Avoidance Cameras) on NASA’s Mars rover. Our experimental results 
show high accuracy in determining the sky area. The effect of various parame-
ters is demonstrated using Receiver Operating Characteristic (ROC) curves.  

1   Introduction 

NASA's Mars Exploration Rover mission (MER) and Mars Science Laborato-
ry mission (MSL) are ongoing robotic space missions involving three rovers, explor-
ing Mars. Two of the most important tasks during their missions are route planning, 
and path finding. The first step in route planning and path finding is to determine the 
suitability of the terrain for traversal. This includes extracting appropriate features for 
assessing rover navigation difficulty. To accomplish this task, accurate sky segmenta-
tion is required.  This is not an easy task, however, due to the diversity of skyline 
shapes (boundaries between sky regions and non-sky areas) and clutter like clouds. 

There are two main categories of sky segmentation found in computer vision litera-
ture. In the first category, the problem is addressed as finding a horizon line/sky line 
which mostly depends on edge detection and some post processing on top of detected 
edges. The regions above the horizon line are labeled as sky whereas the regions 
below the horizon are labeled as non-sky. In the second category of sky segmentation, 
the problem is formulated as a pixel wise classification problem so every pixel in the 
given image gets a sky or non-sky label. In [4] Lie et al. have presented an edge based 
horizon line detection method. They formulate the horizon finding problem as a mul-
ti-stage graph problem where a shortest path is found extending from the left most 
column to the right most column. A Sobel/Canny edge detector is applied on the giv-
en gray scale image. The detected edges are used as graph nodes and links with zero 
or higher costs are placed between nodes if they are adjacent or have gaps. The gaps 



between edges (nodes) are filled using interpolation by introducing dummy nodes 
with higher costs. This method is robust in nature but it is time consuming and de-
pends heavily on certain parameters (e.g. tolerance of gap (tog) used for gap filling). 

Kim et al. [5] try to extract the sky line in cluttered and cloudy environments. First, 
they model the clutter and then, using an iterative scheme, they find the sky line using 
multistage edge filtering. Their approach is based on a limited scenario and requires 
modeling the clutter before the extraction of sky line which is not always available. 
Although not directly focused on the problem of sky segmentation, their method of 
ray-based color image segmentation can be easily adapted for sky segmentation. The 
image segmentation process of Xu et al. [6] models the segments as clusters with 
centroids and applies ray shooting from the centroids towards the boundaries. In their 
results of outdoor scenes, a single centroid is mostly found for the sky; hence, it can 
be used to distinguish the sky region from the non-sky regions. Their approach is 
robust as compared to the popular K-means and normalized graph cuts algorithms 
used for image segmentation. 

McGee et al. [1] have presented a sky segmentation technique based on color 
channels. In their approach, they try to find a linear separation (linear line) between 
sky and non-sky regions using Support Vector Machines (SVMs). Their approach is 
motivated by the objective of obstacle detection for small UAVs. The underlying 
assumption of this method is that a linear boundary divides the sky and non-sky re-
gion is not general enough and gets violated very often. The authors of [3] also as-
sume that the horizon line is a line; they find the true horizon line among various 
candidates as the line that best segments the sky and non-sky regions. They have used 
various color and texture features (e.g., mean intensity values of three color channels, 
entropy, smoothness, uniformity and third moment etc.) to train several classifiers. 
Although their approach finds a good horizon line, the underlying assumption of the 
horizon line being linear is again not generally valid. The underlying assumption in 
the approach of Ettinger et al. [7] is also that the horizon line is linear. They model the 
sky and non-sky regions using Gaussian distributions and try to find the optimum 
boundary by dividing these two distributions. 

In [2], Croon et al. have addressed this issue using shallow decision trees (J48 Im-
plementation of C4.5 algorithm) based on color and texture features. The choice of 
decision trees is motivated by the computational efficiency achieved at  run time since 
their goal is to use sky segmentation for static obstacle avoidance by Micro Air Vehi-
cles (MAVs). They have extended the features used in [3] and introduced new fea-
tures such as cornerness, grayness feature and Fisher discriminant features etc. In 
contrast to [3], they have used an extended database to train their classifier and a large 
number of features; hence their approach is more robust and capable of finding non-
linear sky boundaries. 

Todorovic et al. [8] have tried to circumvent the earlier assumptions [7] of the 
horizon line being linear and modeling the sky/non-sky regions using Gaussian distri-
butions. In [8], they built prior statistical models for sky and non-sky regions based on 
color and texture features. They argue the importance of both color (Hue and Intensi-
ty) and texture features (Complex Wavelet Transform) due to enormous variations in 
sky and ground appearances. A Hidden Markov Tree model was trained based on 
these features, yielding a robust horizon detection algorithm, capable of detecting 
non-linear horizons as well.  



Although color could provide significant information to a detector/classifier, the 
use of grayscale images is advantageous because of faster processing time. The pro-
posed method employs grayscale image characteristics. Our goal is to obtain a precise 
skyline; thus the assumption of the horizon line being linear as in [1], [3], and [7] is 
not valid. Most of the methods discussed above have been evaluated using a limited 
dataset. The method in [3] was tested on two sets of 10 images yielding an accuracy 
in the range of 90-99%. In [4], experiments were conducted using 25 grayscale imag-
es. The method in [5] was tested using 38 images, yielding 84.2% accuracy.  Croon et 
al. [2] addressed non-linear sky boundaries. The performance of their method depends 
on the proportion of the sky area in the test images. Precision over 90% has been 
attained on images which contain more than 25% of sky.  

The goal of our research is to develop a high performance method and evaluate it 
on a sufficiently large data set. The objective is to increase the True Positive rate 
while reducing False Positives. As machine learning techniques have shown good 
potential, our method uses a Neural Network (NN) classifier for pixel classification 
with successive refinements. A total of 16 features were used including raw intensity 
values and texture features. In a post-processing step, the output of the NN classifier 
is refined using geometric properties and some heuristics. The output of post-
processing is further refined by fusing it with clustering result obtained using K-
means. The results of fusion are further post-processed. We discuss the effect of vari-
ous parameters of the method and provide Receiver Operating Characteristic (ROC) 
curves using a large number of test images.  

The paper is organized as follows. Section 2 describes the proposed method for sky 
segmentation. Section 3 presents our experimental results. Conclusions and the future 
work are presented in Section 4. 

2   Proposed Algorithm for Sky Segmentation 

In our method, the classification of the image into sky and non-sky regions is per-
formed by fusing the results of K-means clustering with those obtained using a NN 
classifier. Fig. 1 shows the block diagram of the proposed sky segmentation algo-
rithm. First, we classify the input image into sky and non-sky regions using the NN 
classifier. The input to the NN classifier include pixel values and texture features 
extracted from 9 x 9 non-overlapping image blocks. The output is ‘1’ (for sky) or ‘0’ 
(for non-sky). The results of the NN classifier are post-processed and fused with the 
clustering results obtained using K-means clustering [9]. Finally, a second post-
processing stage produces a valid mask wherein ‘1’ marks the sky region and the rest 
is marked as “0”. 



 
Fig. 1. Block diagram of our proposed sky segmentation method 

2.1   Neural network  

Neural networks have been successfully applied to a variety of real world classifica-
tion tasks in industry, business and science [10]. The NN used here is two-layer feed-
forward back-propagation network with 16 inputs, 20 nodes in the hidden layer and 
one output node indicating  “1” for the sky; “0” for non-sky region (Fig. 2).  

 

 
 

Fig. 2. Architecture of the Neural Network  
 

The NN was trained using the gradient descent method. The features used were ex-
tracted from 9 x 9 non-overlapping blocks from 236 images selected randomly from 
our dataset. The NN was trained using pixel intensities and 15 texture features ex-
tracted from the patches (includes GLCM Features such as Dissimilarity, Energy, 
Entropy, Maximum probability, Sum entropy, Difference variance, Difference entro-
py, Inverse difference normalized, Inverse difference moment normalized, Homoge-



neity, Cluster Prominence, Information measure of correlation1, Information measure 
of correlation2, Cluster Shade) [11],[12],[13].The total number of training blocks for 
the sky region is 127679 and the total number of training blocks for the non-sky re-
gion is 408749. The result of the NN is a binary map of sky/non-sky region. Fig. 3 
shows the NN output for a sample image. 

 
 

  
Fig. 3. Left: input image;  Right: NN output  

2.2.   Post-processing 

In the first post-processing stage, we remove “non-sky” patches classified as “sky” 
and “sky” patches classified as “non-sky”. To be considered as part of the sky, a re-
gion should satisfy the following assumptions: 
 

1- The size of the connected region in the sky part of the image should be larger 
than a certain threshold; the default value is 450 pixels for our dataset. 

2- The connected region of the sky should be adjacent to the upper edge of the 
image, or should be connected to the upper n pixels of the image (default value 
of n is 10 pixels).  

3- If the sky region is adjacent to either the left, right or bottom boundaries, then 
sky segmentation has failed. 

4- If the region of sky appears in an internal portion of the image, the segmenta-
tion is considered false and that region is removed. 

2.3   K-means clustering 

K-means clustering is a method of cluster analysis which aims to partition  n observa-
tions into k clusters where each observation belongs to the cluster with the near-
est mean [9]. The method is applied to partition the image into k clusters; it outputs a 
label matrix, where each pixel is assigned a label of the cluster it belongs to. The 
default value for the number of means is 10. This value was obtained experimentally 
as shown in Section 3. A number of disjoint clusters can be assigned the same label 𝒊 
(𝒊 = 𝟏…𝑵𝒖𝒎, where Num is a number of clusters ), so generally there could be 𝑺 re-
gions with the label 𝒊, that is, the output of clustering is 𝑹𝒋 = �𝑹𝟏,𝑹𝟐, … ,𝑹𝒔𝒊� - disjoint 
clusters sharing label 𝒊 (Fig.4). 

 



    
Fig. 4. Left: input image, middle: k-means result (k=10), Right: 106 disjoint clusters with 

label 𝑖 = 8 shown from input image (left). (𝑅𝑗 = {𝑅1,𝑅2, … ,𝑅106}) 

2.4   Fusion algorithm 

At the fusion step, the algorithm checks if the size of the intersection between each 
region obtained using K-means and the corresponding region determined as sky in the 
post-processed NN results constitutes a certain part of the K-means clustered region. 
If this condition holds, the algorithm marks the whole region as sky. The algorithm 
uses a threshold to evaluate the relative size of the intersection. The default value is 
𝑇ℎ = 0.5.  In Section 3, we will show how the performance of the method is affected 
by the choice of the threshold. Next, all sky regions are merged together to produce 
the final binary map - 𝐹 matrix. Fig. 5 shows the pseudo-code for the fusion method-
ology, where 

𝑁𝑢𝑚- number of clusters.  
𝐹 - final segmentation matrix (initially, zero matrix). 
𝑇ℎ  - tunable threshold (between 0 and 1.   
𝑁 – output matrix for post-processed neural network stage. 
𝑁𝑗 = �𝑁1,𝑁2, … ,𝑁𝑠𝑖� - clusters in matrix 𝑁 paired with/one to one relationship 

with �𝑅1,𝑅2, … ,𝑅𝑠𝑖� clusters. 
𝐹𝑗 = �𝐹1,𝐹2, … ,𝐹𝑠𝑖� -clusters in matrix 𝐹 paired with/one to one relationship 

with�𝑅1,𝑅2, … ,𝑅𝑠𝑖� clusters. 
𝐸𝑗  – number of pixels in 𝑅𝑗. 

In the second post-processing stage, we use the same rules as in the first post-
processing stage, except Rule #1. 

 

 



Fig. 5. Fusion algorithm. 
 

3   Experimental Results 

3.1   Database 

The database used in this work consists of 1482 (1038x1388) grayscale images 
taken by two Hazcams (hazard avoidance cameras) cameras on NASA’s Mars rovers. 
Hazcams are photographic cameras sensitive to the visible light. They have a 
wide field of view (approximately 120° both horizontally and vertically) to allow a 
large amount of terrain to be visible. They are mounted on the front and rear of 
NASA's Mars rovers. These images are used by the rover to autonomously navigate 
around hazards.  

 

3.2   Evaluation  

We have manually labeled the boundary between the sky and the ground, creating an 
accurate ground truth in the form of binary maps. For evaluation, we calculate the true 
positive (TP), false negative (FN), false positive (FP), and true negative (TN) rates. 
The total value of 𝑇𝑃𝑅 and 𝐹𝑃𝑅 rates for 𝑀 images in the database is calculated as 
follows, 
 
𝑇𝑃𝑡𝑜𝑡𝑎𝑙 = ∑ (𝑇𝑃)𝑘𝑀

𝑘=1   
𝐹𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ (𝐹𝑁)𝑘𝑀

𝑘=1           𝑇𝑃𝑅 = 𝑇𝑃𝑡𝑜𝑡𝑎𝑙
𝑇𝑃𝑡𝑜𝑡𝑎𝑙+𝐹𝑁𝑡𝑜𝑡𝑎𝑙

    𝐹𝑃𝑅 = 𝐹𝑃𝑡𝑜𝑡𝑎𝑙
𝐹𝑃𝑡𝑜𝑡𝑎𝑙+𝑇𝑁𝑡𝑜𝑡𝑎𝑙

 

𝐹𝑃𝑡𝑜𝑡𝑎𝑙 = ∑ (𝐹𝑃)𝑘𝑀
𝑘=1                                                   

𝑇𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ (𝑇𝑁)𝑘𝑀
𝑘=1   

 
The ROC curves for the NN classifier and the proposed fusion method are shown in 
Fig. 6. As it can be observed, the approach based on fusion shows better performance 
than the NN method. Also, the effect of different number of clusters (K) can be seen 
in Fig. 7. In this figure, five sets of ROC curves are presented for five different values 
of K. We observe that for k ≥ 10 the performance does not change significantly but as 
the value of K gets larger, the implementation is more computationally expensive. 
Therefore, the value of K was set to 10. TPR= 0.9886 and FPR= 4.0461 × 10−4 are 
obtained for K=10. Fig. 8 shows segmentation results for some test images in our 
dataset. 



 
Fig. 6. ROC curves (top: NN only, bottom: proposed fusion method) 
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Fig. 7. ROC for different number of clusters in K-means clustering. 

4   Conclusions and Future Work 

The main contribution of this paper is the development of a highly accurate method 
for sky segmentation. This is an important task for NASA’s rover tasks such as route 
planning, and path finding as well as for path planning and control of air- and ground 
unmanned vehicles. Due to the diversity of skylines and clouds, sky segmentation is a 
challenging task. We have proposed an automated framework for segmenting images 
into sky and non-sky regions by fusing K-means clustering with NN classifications. 
The method involves two post-processing steps which depend on certain parameters. 
We have analyzed the performance of the method with regards to these parameters. 
For future work, we plan to optimize the feature set and implement the method in 
hardware.  This will make the algorithm well-suited for the real-time applications. 
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Fig. 8. Experimental results for six test images. From left to right: input images, ground truth 

maps, NN results, and results by the proposed method. 
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