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Abstract. Accurate breast cancer diagnosis through mammography has
the potential to save millions of lives around the world. Deep learning
(DL) methods have shown to be very effective for mass detection in
mammograms Additional improvements of current DL models will fur-
ther improve the effectiveness of these methods. A critical issue in this
context is how to pick the right hyperparameters for DL models. In this
paper, we present GA-E2E, a new approach for tuning the hyperpa-
rameters of DL models for breast cancer detection using Genetic Algo-
rithms (GAs). Our findings reveal that differences in parameter values
can considerably alter the area under the curve (AUC), which is used to
determine a classifier’s performance.
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1 Introduction

The fast growth of machine learning, particularly deep learning, continues to
pique the interest of the medical imaging community in using these approaches
to increase cancer screening accuracy. Breast cancer is the second-highest cause
of cancer death in women in the United States [36], and mammography screen-
ing has been shown to lower mortality [25]. Despite its advantages, screening
mammography is linked to a high rate of false positives and false negatives.
In the United States, the average sensitivity of digital screening mammog-
raphy is 86.9%, while the average specificity is 88.9% [22]. Since the 1990s,
computer-assisted detection and diagnosis (CAD) software [11] has been created
to assist radiologists in improving the predicted accuracy of screening mammog-
raphy. Unfortunately, evidence showed that early commercial CAD systems did
not result in significant performance improvements [7,12,23], and that progress
remained stagnant for more than a decade after their introduction. With deep
learning’s remarkable success in visual object recognition and detection, as well
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as many other domains [20], there is a lot of interest in developing deep learn-
ing tools to help radiologists and improve screening mammography accuracy.
According to recent studies [27,28], a deep learning-based CAD system per-
formed as well as radiologists in solo mode, and even increased radiologists’
performance in assist mode.

It has been found that when deep learning is used for detecting breast cancer
on screening mammography, it can improve the accuracy to as high as 96%.
Because detecting subclinical breast cancer on screening mammography is a
difficult image classification task, many studies [2,17,19] have focused on the
classification of annotated lesions. [1] attempted to train neural networks using
whole mammograms without any annotations, but significant lesions were dif-
ficult to find. Pre-training has been a promising method for classifier training.
[15] discovered that pre-training improved both training speed and accuracy of
handwritten digit recognition.

One of the interesting works [34], starts with performing patch classification
on a mammogram to find the region of interest (ROI). This patch classifier
is then converted to a whole image classifier by introducing a combination of
the VGG network [35] and the residual network (Resnet) [14]. [34] uses CBIS-
DDSM [21] dataset to perform various experiments to generate an end-to-end
training process, which we will refer to as E2E. Depending on the combination
of top layers used, the authors have generated various models, which can be
transferred to other datasets with no ROI information. Since the learning is
being transferred, it needs additional tuning of parameters, as mentioned in
[34]. Even though some of the parameters can be tuned manually, it can be a
tedious and inefficient task to train the parameters which have a large number of
possible values. With each of the parameters assuming a large number of possible
values, combinations of these values can grow exponentially. This makes it almost
impossible to find near-optimal values for the parameters.

Even though the performance of the whole image classifier to detect a mass
in a mammogram has been improved, the authors [34] do not justify the use of
many constant parameters used in transferring the learning to a dataset with
minimal/no ROI information. [30,31] have shown that automatic tuning of such
parameters can greatly enhance the performance of the overall system. [30] made
use of GA with Deep Reinforcement Learning (GA-DRL), and [31] used GA
with Lidar-monocular visual odometry (GA-LIMO). Both of these works proved
that when GA is used for parameter tuning, it has the potential of producing
encouraging results. A neural-genetic algorithm for feature selection system was
put up by [39] to categorize microcalcification patterns in digital mammograms.
The outcomes in [39] demonstrated that the proposed algorithm was successful
in locating a suitable feature subset, which also resulted in a high classification
rate. Some other related works utilizing GA include: [18,29,32,33,37].

In this work, we propose a novel algorithm (called GA-E2E), which uses a
Genetic Algorithm (GA) on the E2E model to tune the parameters for transfer-
ring the learning to Inbreast database [24]. We are using the pre-trained model
files from E2E. These pre-trained models were generated for whole-mammogram
classification. Each run of a fitness function performs E2E training on the
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Inbreast dataset using the parameter values decided by the GA. The output
of the fitness function is Area Under the Curve (AUC). We are taking a GA
reference from an open-source implementation [4]. Our tests revealed that GA-
E2E is computationally demanding; hence we propose employing a standalone
cluster of two PCs connected by a network switch. We used Spark to create this
configuration. Our findings demonstrate that GA-E2E contributed to a higher
AUC. GA focuses search on the promising portion of the search space, which
saves time, computational power, and manual efforts. Open source code is avail-
able at https://github.com/aralab-unr/GA-mammograms. In the next section,
we will describe some closely related works.

2 Background and Motivation

2.1 End-to-End Pipeline

Fig. 1. E2E pipeline.

Converting a Classifier from Recognizing Patches to Whole Images. A
common technique for classifying or segmenting large complicated images is to
utilize a classifier in sliding window mode to recognize local patches of an image
and provide a grid of probabilistic outputs. This is followed by a process that
summarizes the outputs of the patch classifier to get the final classification or
segmentation result. Using entire slide images of sentinel lymph node biopsies,
such approaches have been utilized to detect metastatic breast cancer [41] and to
segment neuronal membranes in microscopic images [6]. This technique, however,
necessitates two phases, each of which must be tuned separately. Here, training
on entire images is performed by combining the two phases into a single step
(Fig. 1).

The h function takes complete photos as input and outputs labels for the
entire image. As a result, it may be trained from the beginning to the end,
giving it two advantages over the two-step technique. First, the entire network
may be trained simultaneously, eliminating sub-optimal solutions at each stage;
second, the learned network can be transferred to another dataset without rely-
ing on ROI annotations explicitly. Large mammography databases with ROI

https://github.com/aralab-unr/GA-mammograms
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annotations are difficult to come by and very expensive. DDSM, the world’s
largest public library of ROI annotations for digitized film mammography, con-
tains thousands of pictures with pixel-level annotations that can be used to
train a patch classifier. Once the patch classifier has been converted into a whole
image classifier h, it can be fine-tuned using only image-level labels from other
databases. This method significantly reduces the need for ROI annotations, and
it has a wide range of applications in medical imaging, including breast cancer
diagnosis on screening mammograms.

Network Design. The E2E pipeline is depicted in Fig. 1. A separate class of
neural networks is represented in this pipeline by function f . The heatmap [5]
is of size u × v × c. A u × v grid of probabilistic outputs of c classes that were
obtained after modifying the input is referred to as a heatmap. A simple way to
make an entire picture classifier from a patch classifier is to flatten the heat map
and connect it to the image classification output with fully-connected layers.
After the heatmap, a max-pooling layer can be employed to boost the model’s
translational invariance to the patch classifier’s output. It is also possible to
construct a shortcut between the heatmap and the output to make training
simple. The heatmap is produced directly by the patch classifier’s output, which
makes use of the softmax activation:

f(z)j =
ezj

∑c
i=1e

zi

for j = 1, ..., c. (1)

Convolutional layers, which preserve spatial information, are also employed
as top layers. On top of the patch classifier layers, two blocks of convolutional
layers (VGG or Resnet) can be added, followed by a global average pooling
layer, and finally the image’s classification output (Fig. 1). As a result, for full
picture classification, this approach provides an “all convolutional” network. The
heatmap reduces the depth of the feature map between the patch classifier layers
and the top layers, as shown in Fig. 1, potentially causing information loss in
the entire picture classification. As a result, when the heatmap was completely
removed from the overall image classifier, the upper layers were able to fully
utilize the patch classifier’s capabilities.

Developing Patch and Whole Image Classifiers on CBIS-DDSM. The
pixel-level annotations for the ROIs are stored in the CBIS-DDSM database,
along with their pathologically confirmed labels: benign or malignant. Each ROI
is also labeled as a calcification or mass. The majority of mammograms only
had one ROI. All mammograms were converted to PNG format and reduced
using interpolation to 1152× 896, with no picture cropping. The limitation of
GPU memory size prompted the downsizing. By sampling picture patches from
ROIs and background regions, two patch datasets were constructed. The size
of all patches was 224× 224, which was large enough to cover the majority of
the ROIs annotated. The first dataset (S1) was made up of two sets of patches,
one of which was centered on the ROI and the other was a random background
patch from the same image.
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Transfer Learning for Whole Iimage Classification on Inbreast. The
dataset was set up and processed. The Inbreast [24] dataset is a public database
that contains FFDM images that were acquired more recently. These images
exhibit different intensity profiles than digitized film mammograms from the
CBIS-DDSM. As a result, Inbreast is a great way to see if a full picture classifier
can be used across different mammography platforms. There are 115 patients
and 410 mammograms in the Inbreast database, with both CC and MLO views.
Each view is considered a separate image. The radiologists’ BI-RADS [38] assess-
ment categories are defined as follows in the Inbreast database: 0: insufficient
examination; 1: no findings; 2: benign; 3: probably benign; 4: suspicious; 5: highly
indicative of malignancy; 6: known biopsy-proven cancer. [34] provides a plat-
form to perform to transfer the learning to any dataset. In this work, we use [34]
on Inbreast, and show that when the parameters are tuned in an optimal way,
it can greatly improve the AUC.

2.2 Genetic Algorithm

GAs [8,13,16] were developed to investigate poorly-understood areas [9], where
a comprehensive search is impossible and conventional search methods perform
poorly. When GAs are used as function optimizers, their goal is to maximize fit-
ness that is related to the optimization goal. Evolutionary computing approaches
in general, and GAs in particular, have had a lot of empirical success on a variety
of difficult design and optimization problems. They start with a population of
randomly started candidate solutions, which are frequently encoded as a string
(chromosome). A selection operator reduces the search space to the most plau-
sible spots, but crossover and mutation operators generate new possibilities.

2.3 Binary Tournament Selection

A tournament selection (TS) operator is based on a competition among a group
of parents. The fitness of a potential solution is calculated for each parent, and
the parent with the highest fitness is chosen. The term “binary tournament”
refers to a tournament with a field size of two players, which is the most basic
kind of tournament selection [3]. The binary tournament selection (BTS) pro-
cess begins with the selection of two people at random. The fitness levels of
these people are then assessed. The person with the best fitness is then chosen.
The tournament selection has the advantage of being able to handle either min-
imization or maximization problems without requiring any structural changes.
Furthermore, the use of a negative value is unrestricted [40].

2.4 Simulated Binary Crossover (SBX)

The search power of the simulated binary crossover (SBX) [10] is similar to
that of the single-point crossover. The distinction between real-coded GAs with
SBX and binary-coded GAs with single-point crossover implementations is that
the former method eliminates variable coding and creates a child string from a
probability distribution based on the location of the parent strings.
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2.5 Polynomial Mutation

A polynomial mutation operator with a user-defined index parameter (ηm) was
proposed by Deb and Agrawal (1999). They determined from theoretical research
that ηm causes a perturbation of O((b − a)/ηm) in a variable, where a and b are
the variable’s lower and upper bounds. They also discovered that on most of
the issues they tried, a value of ηm ∈ [20, 100] was sufficient. A polynomial
probability distribution is utilized in this operator to perturb a solution in the
neighborhood of a parent. The mutation operator adjusts the probability dis-
tribution to the left and right of a variable value so that no value outside the
specified range [a, b] is formed. The mutated solution p′ for a certain variable is
constructed for a random number u formed within [0, 1] for a specified parent
solution p ∈ [a, b], as follows:

p′ =

{
p + δ̄L(p − x

(L)
i ), for u ≤ 0.5,

p + δ̄R(x(U)
i − p), for u > 0.5.

(2)

3 Approach

3.1 Pre-processing Images

Inbreast dataset contains images in DICOM format. The dataset comes with
a mapping document that maps mammogram image file names to other infor-
mation such as patient ID, BI-RADS assessment categories, etc. It also provides
sample MATLAB code to read the images. We used this code along with our code
to split the DICOM images into two classes: positive and negative. We, then,
converted these images to PNG format to be used with the E2E algorithm. Only
a limited number of converted images were used in our experiments. The images
were downsized to 1152 × 896. Training, validation, and test sub-set splits are
described in the following sub-section. Two phases are used in the experiments:
GA training, and testing. GA training uses training images to generate a new
model built by training the last two layers in E2E. The generated model is then
used on validation sub-sets to compute AUC. The output of the fitness function
used for GA is the average of AUCs from all epochs. The testing phase is used to
compare the GA-found parameters with the original values of the parameters.
This phase uses train and validation sub-sets to generate a model, which is then
used with the test sub-set to compute the final AUC.

3.2 Building Spark Cluster

This study uses Spark [42] to run GA in a distributed setup. This is important
because each run of the fitness function is computationally intensive. We used
two computers to build a cluster. Advantages of cluster setup include scalability
and the ability for a program to finish in the real time possible. We will describe
the details of the GA-E2E algorithm in the next sub-section. The word clus-
ter is used to describe the setup of two or more computers running in parallel
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to achieve a common goal. We chose Spark for our work because it provides
easy-to-use configurations, and online resources/documentation. The high-level
architecture of Spark is shown in Fig. 2. A cluster manager connects SparkCon-
text and Worker Nodes. For our work, the cluster was built as shown in Fig. 3.
The computers are connected via a network switch. For our implementation
specifically, we ran one worker on each of the machines.

Fig. 2. Architecture of Spark cluster.

3.3 GA-E2E Algorithm

Now, we set up GA from [4]. As described in the background section, GA uses
BTS, SBX crossover, and polynomial mutation. Since the total training epochs
are set at ten, the approximate time for each fitness function evaluation is about
70 s for each of the workers. Considering this, we have set the population size to
70, to be run for 70 generations. GA was run on the model from [34] using transfer
learning on the Inbreast dataset. For each evaluation of the fitness function, GA
selects values of parameters, uses them to train the network, computes average
validation AUC, and finally uses this trained model on the test sub-set. The
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Fig. 3. Example representation of master and worker setup.

AUC returned from the fitness function is the AUC computed on the test sub-
set. GA training phases use 30 images in the training sub-set, and 12 images
in the validation sub-set. Algorithm 1 describes the high-level overview of the
GA-E2E algorithm.

Algorithm 1. Proposed GA-E2E Algorithm
1: Choose population of n chromosomes
2: Set the values of parameters into the chromosome
3: for all chromosome values do
4: Run the code to fine-tune the existing model using independent dataset

(Inbreast)
5: return AUC
6: end for
7: Perform SBX Crossover
8: Perform Polynomial Mutation
9: Repeat for required number of generations to find optimal solution

3.4 Evaluation

The experiments are broken into two sections, as previously stated: GA training
and testing. In both phases, the training and validation sets are identical. How-
ever, the final AUC is computed using 100 mammogram images in the testing
phase.
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4 Experimental Results

4.1 Experimental Setup

It is important to plan the experiments to be executed to test the algorithm,
some details of which we have described in the previous sections. The overall
algorithm is described in Algorithm 1. The workspace was set up with [34].
This code link provides further links to the pre-trained models on whole image
classification using the CBIS-DDSM dataset.

Spark requires that the master and worker be able to communicate key-
less using SSH. So, we established password-less SSH between our machines.
Both machines can SSH as a user/root into other machines. Both computers
have the same username, folder structure, GA-E2E code, same images used in
train/validation sub-sets, and the .jar files used by Spark. The number of parallel
processes was set to two, one for each worker.

Table 1 shows the parameters we used in the GA-E2E algorithm. Each set
of parameters decided by the GA was used to perform transfer learning on
the Inbreast dataset. The reward for the fitness function is the validation AUC
averaged over epochs.

Table 1. Parameters used in the GA-E2E, along with their description.

Parameter Description

pos-cls-weight Weight of positive class

neg-cls-weight Weight of negative class

weight-decay Stage 1

weight-decay2 Stage 2

init-learningrate Learning rate for stage 1

all-layer-multiplier Multiplier for stages other than stage 1

Each of the parameters is binary encoded into a single chromosome, an exam-
ple of which is shown in Fig. 4.

Fig. 4. Chromosome representation for the GA.

From the various manual experiments we did, we would like to mention a
few of them. In one such experiment, we used 8 images in a training sub-set,



Deep Learning Hyperparameter Optimization 279

out of which four were negative, and four were positive. By positive we mean
that the mammogram image of the breast is malignant, and by negative we
mean that the mammogram image of the breast is benign. A similar setup was
done for the test sub-set. For the validation sub-set, two images each of the
positive, and negative classes were used. Training epochs were fixed to four,
and the number of cores of the GPU to be used was fixed to six. The sub-sets
chosen had multiple views (CC/MLO) of the same patient. Each epoch took
about 160 s to complete. On using the learned model on a test sub-set, we got
the AUC as 0.5. We experimented with a various number of images in different
sub-sets and found that the program ran for a very long time when more images
were used. Since GA needs to run the training a few hundred times to find the
near-optimal parameter values, for the rest of our implementation, we decided
to use the number of images as in the sub-set division described in this section.
However, to run GA-E2E, we used only CC views from different patients for
training, validation, and testing.

Finally, we used 30 images for training, 12 for validation, and 100 for test
sub-sets. Each GA fitness function was run for ten epochs, while the testing
phase had 100 epochs. The E2E uses an early stopping approach; hence the
training stopped between 30–50 epochs each time the training was run. This was
applicable for both original and GA-found parameters. Our experiment assumes
each view of the mammogram as a separate image.

4.2 Running GA-E2E

The system has now been set up to run the algorithm GA-E2E from 1. Based
on the previously described system setup, the GA completed running in about
two days. We captured the logs of each run of the fitness function and the
corresponding values for each of the parameters. Table 2 shows the comparison
of values of parameters for E2E and GA-E2E. E2E parameters are the ones
originally used in transfer learning with Inbreast in [34]. It can be observed that
changing parameter values has a significant effect on the AUC of the test sub-set.
The increase in AUC is as high as 11% when compared the to the original AUC.

Table 2. E2E vs. GA-E2E values of parameters.

Parameter Range E2E, AUC = 0.51 GA-E2E AUC = 0.57

pos-cls-weight 0–0.999 1.0 0.948

neg-cls-weight 0–0.999 1.0 0.319

weight-decay 0–0.999 0.0001 0.269

weight-decay2 0–0.999 0.0001 0.225

init-learningrate 0–0.999 0.01 0.0008

all-layer-multiplier 0–0.999 0.1 0.475
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4.3 Training Evaluation

It is significantly important to monitor the progress of a GA as it is running
to optimize the performance of the system. From the way GA’s work, some of
the chromosomes will outperform others. Ultimately, the average fitness would
increase towards the maximum fitness value. Figure 5 shows the best and average
fitness value (AUC) over generations.

Fig. 5. Fitness value evaluation over GA generations.

4.4 Analysis

It can be observed that all generations except the first two, saw the best fitness
value of 1.0. However, the average fitness value started at 0.5, and ultimately,
the GA was able to have the entire population at 1.0 AUC. GA took about 18
generations to reach the maximum success rate. Even though the GA reached
its maximum success rate, the system was left to run until completion.

5 Experimental Issues

Configuring the Spark cluster posed major challenges. Each configuration param-
eter needs to be appropriately set for the standalone cluster to work using GPUs.
The GPU makes program execution much faster, and running the program on
a cluster of two computers, cuts the running time to half. Any combination
of incorrectly set-up configuration values can result in an unequal load on the
machines, which can further lead to some machines being under-utilized/over-
utilized.
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6 Conclusion and Future Work

6.1 Conclusion

This study demonstrates that there is no well-defined correlation between param-
eter values and AUC. The AUC may not necessarily rise as the parameter values
rise. As a result, a straightforward hill climber [26] may be useless, and the role of
GA in fine-tuning the parameter values becomes significant. We also show that
GA focuses search in the promising search space. GA started with an AUC close
to zero. As the GA progressed, the AUC got higher and ultimately surpassed
the originally achieved AUC of 0.51. This points to an increase of around 11%
in comparison to the original AUC.

6.2 Future Work

We believe that GA may be able to reach the AUC of 1.0 much earlier if GA
operators are designed specifically for E2E. Also, different convolution layers can
be tested with E2E for better adaptability of the learned model with an inde-
pendent dataset. Adding more computers to the cluster may reduce execution
time further. Modified GA-E2E could be run on a supercomputer, which would
enable the ability to perform various experiments using a variety of datasets.
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3. Bäck, T., Fogel, D.B., Michalewicz, Z.: Evolutionary Computation 1: Basic Algo-
rithms and Operators. CRC Press, Boca Raton (2018)

4. Benitez-Hidalgo, A., Nebro, A.J., Garcia-Nieto, J., Oregi, I., Del Ser, J.: jmetalpy:
a python framework for multi-objective optimization with metaheuristics. Swarm
Evol. Comput. 51, 100598 (2019)

5. Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D& 3D face align-
ment problem?(and a dataset of 230,000 3D facial landmarks). In: Proceedings of
the IEEE International Conference on Computer Vision, pp. 1021–1030 (2017)

6. Ciresan, D., Giusti, A., Gambardella, L., Schmidhuber, J.: Deep neural networks
segment neuronal membranes in electron microscopy images. In: 25th Proceedings
of the Conference on Advances in Neural Information Processing Systems (2012)

7. Cole, E.B., Zhang, Z., Marques, H.S., Hendrick, R.E., Yaffe, M.J., Pisano, E.D.:
Impact of computer-aided detection systems on radiologist accuracy with digital
mammography. AJR Am. J. Roentgenol. 203(4), 909 (2014)

8. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, Washington,
DC (1991)



282 A. Sehgal et al.

9. De Jong, K.: Learning with genetic algorithms: an overview. Mach. Learn. 3(2–3),
121–138 (1988)

10. Deb, K., Agrawal, R.B., et al.: Simulated binary crossover for continuous search
space. Complex Syst. 9(2), 115–148 (1995)

11. Elter, M., Horsch, A.: Cadx of mammographic masses and clustered microcalcifi-
cations: a review. Med. Phy. 36(6Part1), 2052–2068 (2009)

12. Fenton, J.J., et al.: Influence of computer-aided detection on performance of screen-
ing mammography. N. Engl. J. Med. 356(14), 1399–1409 (2007)

13. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach.
Learn. 3(2), 95–99 (1988)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

15. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)

16. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
17. Jamieson, A.R., Drukker, K., Giger, M.L.: Breast image feature learning with

adaptive deconvolutional networks. In: Medical Imaging 2012: Computer-Aided
Diagnosis, vol. 8315, pp. 64–76. SPIE (2012)

18. Jiang, J., Yao, B., Wason, A.: A genetic algorithm design for microcalcifica-
tion detection and classification in digital mammograms. Comput. Med. Imaging
Graph. 31(1), 49–61 (2007)

19. Kooi, T., et al.: Large scale deep learning for computer aided detection of mam-
mographic lesions. Med. Image Anal. 35, 303–312 (2017)

20. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

21. Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L.: A
curated mammography data set for use in computer-aided detection and diagnosis
research. Sci. Data 4(1), 1–9 (2017)

22. Lehman, C.D., et al.: National performance benchmarks for modern screening dig-
ital mammography: update from the breast cancer surveillance consortium. Radi-
ology 283(1), 49–58 (2017)

23. Lehman, C.D., et al.: Diagnostic accuracy of digital screening mammography
with and without computer-aided detection. JAMA Int. Med. 175(11), 1828–1837
(2015)

24. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso,
J.S.: Inbreast: toward a full-field digital mammographic database. Acad. Radiol.
19(2), 236–248 (2012)

25. Oeffinger, K.C., et al.: Breast cancer screening for women at average risk: 2015
guideline update from the American cancer society. J. Am. Med. Assoc. 314(15),
1599–1614 (2015)
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