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Abstract—This paper investigates the use of Convolutional
Neural Networks for classification of painted symbolic road
markings. Previous work on road marking recognition is mostly
based on either template matching or on classical feature
extraction followed by classifier training which is not always
effective and based on feature engineering. However, with
the rise of deep neural networks and their success in ADAS
systems, it is natural to investigate the suitability of CNN for
road marking recognition. Unlike others, our focus is solely
on road marking recognition and not detection; which has
been extensively explored and conventionally based on MSER
feature extraction of the IPM images. We train five different
CNN architectures with variable number of convolution/max-
pooling and fully connected layers, and different resolution of
road mark patches. We use a publicly available road marking
data set and incorporate data augmentation to enhance the
size of this data set which is required for training deep nets.
The augmented data set is randomly partitioned in 70% and
30% for training and testing. The best CNN network results
in an average recognition rate of 99.05% for 10 classes of road
markings on the test set.

I. INTRODUCTION

Symbolic road markings (SRMs) are the marks/symbols
and numbers/characters painted on the roads for driver assis-
tance and safely maneuvering the vehicles. Conventionally
road markings are painted in bright colors specifically in
white or yellow. These include but not limited to arrow
marks, merge signs, zebra crossings, speed limits, railway,
Ped and Xing signs etc. The detection and recognition of
such road markings could be of essential use for Advanced
Driving Assistant Systems (ADAS) and Autonomous Driv-
ing (AD) and has already been shown to be of importance
for vehicle localization and navigation [33]. Recently sig-
nificant progress has been made towards various aspects of
autonomous driving and vision based detection, segmen-
tation and recognition tasks. With increasing availability
of annotated urban road scene data sets [19], [17], [20]
and emerging deep networks [18], [21], [16], [22], [23];
significant focus has been on the detection and segmen-
tation of majorly occurring classes on urban scenes e.g.
pedestrians[30], roads [26], [27], [28], vehicles/cars, road
signs [29], lanes [32], [31] etc. Considerably less attention
has been on segmentation and recognition of other small
classes such as road markings.

This is due to the fact that most of the data sets do
not provide ground truth annotations for such small classes
e.g. CityScapes [19] is probably one of the best (5000

images with pixel labeling) data sets focused on urban scene-
understanding yet it lacks annotations for road markings and
lanes which are assumed to be part of the road surface.
The unavailability of annotations for such small classes is a
significant hurdle towards their semantic level segmentation
since deep networks or other classical classifier cannot be
trained. Due to ground truth unavailability; often samples
of two different classes are considered instances of a super-
class e.g. SegNet [21] is trained on CamVid data set [17]
where road markings (turn arrows) and lanes are considered
to be members of the same class i.e. paint on road – whereas
if distinguished/segmented correctly they can be used for
different aspects of autonomous driving.

Most of the work on symbolic road marking detection
and recognition follows the well known two steps of ob-
ject recognition pipeline i.e. detection and classification.
First, candidate regions are conventionally generated using
Maximally Stable Extremal Regions [9] of the Inverse
Perspective Mapping (IPM) images or some other region
proposal method. Then, these regions are classified into
different classes of road markings based on the extracted
features. Mostly, HOG is used as the feature choice [1], [5],
[11] and SVM or its variants as the classifier choice [3],
[11]. This paper serves as a step forward towards semantic
segmentation of symbolic road markings which should soon
be possible as ground truth annotations for small road classes
become available.

In this paper we explore the effectiveness of Convolu-
tional Neural Networks (CNNs) for recognition of symbolic
road markings which can be used for vehicle localization
and navigation. We train five different CNN networks which
have different number of convolution, max-pooling and fully
connected layers. The networks are trained and tested on a
publicly available data set of ten frequently occurring SRMs.
We incorporate in-plane rotation as data augmentation tech-
nique and train our networks at three different resolutions
of road mark patches. The results on the augmented test set
demonstrate how CNN can be affective for road marking
recognition and a comparable/better recognition rate can be
achieved than those based on feature engineering and classi-
fier training. We anticipate that the ground truth annotations
of such small classes is just a matter of time as new trends
for generating ground truths [24], [25] are emerging and
becoming a reality.

The rest of the paper is organized as follows: In section
II, we review some of the recent work on road marking



detection and recognition. Section III lists the architectural
details of CNN networks being considered in this paper.
Section IV presents the experimental details and results. The
paper is then concluded in the subsequent section V with
directions to future work.

II. RELATED WORK

Wu and Raganathan [1] presented a template-matching
approach for identifying various classes of road markings.
They used MSERs [9] to generate regions of interest (ROIs)
for a rectified (using inverse perspective mapping (IPM)) test
image. FAST corners [10] are generated within the ROIs
which are then described using HOG features [12] at three
different scales and one orientation. These extracted features
are matched with the already saved templates for each of
the SRM category and this matching is further verified by
structural shape matching. The data set used in this work has
annotation for 1,443 images and road markings belonging
to various categories, and have been made available freely.
Chen et al. [2] proposed a machine learning based road
marking detection and recognition system. They employed
BING feature [4] for objectness estimation of the image
windows i.e. the candidates for potential road markings
which are then classified into 9 classes (+1 negative class)
using PCANet classifier [3]. The PCANet emulates a Convo-
lutional Neural Network where first multiple stages of PCA
are used as a feature extractor and subsequently resultant
histograms/features are used to train a multi-class SVM [6].
The proposed pipeline is evaluated on the images from [1].

Suhr and Jung [5] based their SRM detection and
recognition system on a lane detector which finds the lane
markings using a top-hat filter [7] and RANSAC-based
line estimator. The SRM candidate regions/blobs are then
generated within this reduced search space identified by the
two lane markings using projection histograms of top-hat
filter response. The SRM candidate regions are converted
to fixed size IPM image patches, HOG features [12] are
generated for such patches which are then classified. They
employ a two-stage classification cascade where the first
stage rejects the non-SRM regions and the second classifies
the remaining patches into 9 (+1 negative) classes of SRMs.
They used a total-error based classifier [8] and compared
its performance against SVM. The performance of [5] is
bounded by the accuracy of lane detector. It should be noted
the 9 SRMs classes considered in [2] and [5] although have
some overlap (straight, left, right classes) but are not the
same (35, 40, PED, STOP, RAIL and XING in [2] straight-
left, straight-right, no-straight, no-left, no-right, diamond in
[5]).

Greenhalgh and Mirmehdi [11] also apply MSER on
IPM transformed images and then use HOG features to
discriminate between various classes of SRMs using SVMs
with linear kernels. The linear SVM is chosen as a tradeoff
between good accuracy and real-time processing require-
ment among various classifiers compared (SVM-RBF, SVM-
Linear, MLP and Random Forest). The classifier is trained
on synthetic data and is demonstrated to outperform base
line (template matching) and another earlier approach on
a real data set using F-measure. It should be noted that

they [11] exploit temporal information and also address the
painted text recognition where each character is recognized
instead of recognizing a group of characters as a single SRM.
This paper is focused on SRM recognition and hence that
aspect of their paper [11] is out of scope.

III. NETWORK ARCHITECTURES

Deep learning has been investigated lately for various
applications including but not limited to detection, classifi-
cation, recognition and semantic segmentation etc. With the
ever increasing availability of urban street data and emerging
deep networks, ADAS and autonomous driving systems
are benefitting from these networks. The core of these
networks are the cascades of convolutional layers which
act as feature extractors and replace the conventional hand
engineered feature descriptors e.g. SIFT [14], HOG [12],
LBP [13] etc. In CNN networks, each of the convolutional
layer is followed by a sub-sampling or max-pooling layer
which downsamples the resolution of the input feature maps.
The cascades of convolution-maxpooling (CP) modules are
followed by number of fully connected layers which are in
turn followed by a multi-class classifier or softmax. Back
propagation is typically used to train the network.

The CNN networks explored in this paper are based
and inspired from the popular LeNet [15] which has been
shown to perform extremely well on real world problems
such as digit classification (MNIST) and general object
recognition (CIFAR-10/100). In this work, we have explored
five different variations of this architecture. The network
architectures differ from each other based on the input
patch size and the number of convolution-maxpooling (CP)
modules. Each of the convolution layers is followed by a
max-pooling layer which collectively constitute to one CP
module. The considered networks either contain two or three
of these modules which are then followed by three or four
fully connected layers. Before applying max-pooling, the
output of each of the convolution layer is passed through a
Rectified Linear Unit (ReLU) which works as the required
non-linearity and used for learning complex mappings. The
ReLU has been demonstrated to outperform other activation
functions e.g. tanh [16]. Each neuron’s output in the fully
connected layers is also passed through ReLU. Regardless
of the input size, each of the convolution mask is of size
5×5 while the max-pooling mask of 2×2 with a horizontal
and vertical stride of 2. We include a zero-padding to the
max-pooling if the original input size happens to be an odd
number. Given the input patch size, the output size for the
convolutional and max-pooling layer can be determined by
the following equation:

Or =
(Ir − F + 1 + Px + Py)

S
(1)

where, Or and Ir are the output and input resolutions,
F is the mask/filter size, Px and Py are the amount of zero-
padding in x and y directions and S is the stride.

Next, we list the details of each of the individual net-
works



Fig. 1. Three of the five CNN architectures: (a) LeNet32CP2, (b)
LeNet64CP2 and (c) LeNet64CP3. LeNet96CP2 and LeNet96CP3 follows
from LeNet64CP2 and LeNet64CP3 respectively with the resolution differ-
ences for input and intermediate resultant feature maps.

• LeNet32CP2 – This network is applied on a patch
size of 32× 32 and has two CP modules. The first
CP module contains six convolution filters while the
second one is comprised of sixteen. The second CP
module is followed by three fully connected/hidden
layers which have 120, 84 and 10 neurons respec-
tively. As stated earlier the output of the last fully
connected layer is passed through soft-max which
generates the class label for the input patch.

• LeNet64CP2 – This network follows from
LeNet32CP2, the only difference being the
size of input patch (i.e. 64× 64 instead of 32× 32)
and an additional fully connected layer comprised
of 512 neurons.

• LeNet64CP3 – This network is also based on an
input size of 64 × 64, however unlike the earlier
ones; it is comprised of three CP modules. The
first two CP modules are same as in the previous
two networks, while the third module contains 64
convolution filters. Additionally, the max-pooling
layer in this module enforces a zero-padding of 1

pixel on the input. The number of fully connected
layers and their respective number of neurons are
same as that of LeNet64CP2.

• LeNet96CP2 – This network has same number of
CP modules and fully connected layers as that
of LeNet64CP2, only difference being the input
resolution (96× 96).

• LeNet96CP3 – This network follows from
LeNet64CP3 and differs only due to its input
resolution (96× 96).

Figure 1 shows the visual layout for the first three
networks, highlighting the number of filter banks in each
CP module and the resolution resulting from each of the
convolution and max-pooling layers. The number of neurons
in each of the fully connected layer is also listed, while
ReLU and softmax are not visualized to keep the diagram
less cumbersome. Figure 2 shows the resultant feature maps
for one of the query images for first and second convolution
layers before passing through the ReLU.

Fig. 2. Resultant feature maps for one of the test images when passed
through the convolution masks of first (top) and second (bottom) CP
modules of LeNet64CP2. The feature maps are shown before the application
of subsequent ReLUs.

IV. EXPERIMENTS AND RESULTS

A. Data Set and Augmentation

We evaluate the performance of the CNN networks on
the publicly available road marking data set [1]. The original
data set is comprised of 1,443 images of 800×600 resolution
with ground truth annotations of 27 classes of road markings.
However, we retain the first ten classes of road markings
for our experiments as number of instances for rest of the
classes are fewer than 20 (per each class) in the original data
set and not good enough for training CNNs. We introduce
data augmentation using in-plane rotation of the original
images. Since, the images are captured by a forward facing
camera on a moving vehicle; each of the road mark has
been captured at various scales and hence we choose not
to use extra scaling as an augmentation. The augmentation
results in 20,449 road mark patches which are re-scaled to
fixed sizes of 32 × 32, 64 × 64 and 96 × 96 for training
of respective networks. The resultant data set is re-ordered
randomly and randomly partitioned into 70% (14,479 image
patches) and 30% (6,000 image patches) chunks for training
and testing respectively.

Table I shows the number of examples belonging to
each of the road markings class in the resultant augmented



set while figure 3 shows how the relative frequency of
road markings is maintained across the training and test
sets. Figure 4 shows the examples for each class of the
road markings from the augmented set and demonstrates
the intra-class variations due to scale, orientation, shadows
and road conditions etc. These variations highlight the
underlying challenges of road marking recognition which
make the feature engineered methods less suitable for such
applications. It should be noted that the STOP road markings
contribute towards half of the data set in the original set and
this distribution is maintained in the resulting augmented set.

Fig. 3. Frequency distributions of road markings across test (right) and
training (left) sets.

TABLE I. NUMBER OF INSTANCES FOR EACH CLASS OF ROAD
MARKINGS.

Road Marking Class Number of instances
STOP 674
LEFT 10433

RIGHT 1600
RAIL 1419

35 1793
FORWARD 1118

BIKE 590
40 1067

PED 799
XING 986

Total 20479

B. Experimental Details

We train each of the five networks on the respective train-
ing set using a fixed learning rate of 0.001. The performance
of each network is then evaluated on the respective test set.
To evaluate the performance of each network quantitatively,
we report an average recognition accuracy across the con-
sidered ten classes of road markings (table II). Additionally,
table III shows the confusion matrices computed for each of
the networks. We perform the conventional normalization on
both training and test sets: the mean and standard deviation
for each of the color channels is computed for the training
set. Each of the training images is then subtracted and
divided by the respective mean and standard deviation for
each color channel. The means and standard deviations
computed from training set are used for normalization of
the test set as well.

C. Results & Discussion

As demonstrated by table II, all the considered networks
overall perform really well on the test set (> 98% recog-
nition rate) while LeNet96CP2 has proven to be the best

Fig. 4. Sample patches from augmented data set for each of the road
marking class (stop, left arrow, right arrow, rail, 35, forward arrow, bike,
40, ped and xing) demonstrating intra-class variations due to viewpoint
(scale and orientation), road conditions, and shadows caused by buildings
and trees.

performing configuration. Further details regarding which
road marking has been confused by a specific network as
a particular different road marking can be seen from table
III. In figure 5 we show the examples of instances for
each network which have been most wrongfully classified as
another particular road marking e.g. in case of LeNet32CP2,
PED class has the least recognition rate and has mostly
been confused as STOP road marking. The caption of
figure 5 provides such details for each of the networks and
highlights the class which has the least recognition rate for
that particular network.

A quick look at figure 5 reveals some of the obvious
confusions encountered by the CNN architectures e.g. the
FORWARD arrow mark has been confused as speed limit 40
and vice versa (rows 2 and 3). This can easily be explained
due to the geometric similarity between the arrow of the
FORWARD sign and the triangular part of the digit four in
the speed limit marking. Similarly, the textual road markings
e.g. PED, STOP etc. (rows 1, 4 and 5) have been confused as
instances of another textual class (BIKE, XING). It should
also be noted that several of these instances are essentially
the transformed version of each other (e.g. overexposed
STOP road markings in row 5 of figure 5).

Next, we would like to compare the recognition rate
achieved by CNN networks in this paper against those re-
ported in [2] and [5]. Both of these methods are instances of
classical feature extraction and classifier training framework;
and report an average recognition accuracy of 96.8% [2] and
99.2% [5] respectively. Comparatively, our best performing
network (LeNet96CP2) is able to achieve a recognition
accuracy of 99.05% without extra effort required for feature
extraction and tuning. It should further be noted that the
road markings considered in [5] are all arrow-based which
are comparatively easy to recognize compared to textual road



TABLE II. AVERAGE RECOGNITION RATE FOR EACH OF THE
NETWORKS.

CNN Architecture Average % Recognition on Test Set
LeNet32CP2 98.6500%
LeNet64CP2 98.6500%
LeNet64CP3 98.6833%
LeNet96CP2 99.05%
LeNet96CP3 98.2833%

markings. Hence, our direct comparison is against [2] which
is also based on the same data set [1] and does consider
textual road markings.

Fig. 5. Examples of road markings (row 1 through 5) which have
been wrongly classified by each network. row1: PED road markings
classified as STOP by LeNet32CP2. row2: FORWARD arrow being
classified as 40 speed limit by LeNet64CP2. row3: 40 speed limit classified
as FORWARD arrow mark by LeNet64CP3. row4: PED classified as
XING by LeNet96CP2. row5: STOP classified as BIKE road markings
by LeNet96CP3.

V. CONCLUSIONS

In this paper, we have investigated the use of Convo-
lutional Neural Networks for recognition of painted road
markings. Earlier work for road marking recognition is based
on feature engineering and classifier training, hence involv-
ing extra steps and efforts compared to CNNs. Features
specific to the training data arise naturally as a by-product
of training when the CNN approach is used. We explored
five different networks for this problem which have different
number of convolutional/max-pooling and fully connected
layers and applied at different patch resolutions. Our exper-
imental results on an augmented data set demonstrate the
superiority of CNN for ten classes of road markings over
the previously reported recognition rates based on classical
feature extraction and classifier training. For future, we plan
to investigate semantic segmentation of road markings and
explore the suitability of networks (e.g. FCN [18], SegNet
[21] etc.) for such small road classes which have been
proposed for general semantic segmentation.
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