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Abstract. In the past decades, many different techniques have been used to improve face recognition
performance. The most common and well-studied ways are to use the whole face image to build a subspace
based on the reduction of dimensionality. Differing from methods above, we consider face recognition as
an image classification problem. The face images of the same person are considered to fall into the same
category. Each category and each face image could be both represented by a simple pyramid histogram.
Spatial dense SIFT features and bag of features method, are used to build categories and face
representations. In an effort to make the method more efficient, a linear SVM solver, Pegasos, is used for
the classification in the kernel space with additive kernels instead of nonlinear SVMs. Our experimental
results demonstrate that the proposed method can achieve very high recognition accuracy on the ORL,
YALE and FERET databases.
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1 Introduction

Face recognition has attracted much attention from the community of pattern
recognition, machine learning, and computer vision due to its extensive potential
applications as well as theoretical challenges. Many different techniques have been
studied to improve face recognition performance over the past few decades. One of the
most successful and well-studied ways are the appearance based face recognition
methods. When using these methods, we usually take the whole face image to build a
subspace based on the reduction of face space dimensionality using different subspace
methods [1], such as PCA, Fisher LDA, ICA and LPP [2-5]. The above methods work in

a linear space. A comparative study of these methods for face recognition could be seen



in [6, 7]. However, the face manifold in subspace need not be linear and many research
efforts have shown that the face images possibly reside on a nonlinear sub-manifold [8-
11]. Since PCA and LDA effectively see only the Euclidean structure, kernel methods
[12-14] and manifold learning methods [5, 8, 9, 15, 16] have been applied to recognize
faces. However, they are computationally expensive and we cannot explicitly point out
the exact structure of the manifold on which the face images possibly reside. And also,
there is a computationally expensive but powerful tool for statistical signal modeling,
called sparse coding, has been successful applied in face recognition systems and gets
some beautiful results [17, 18]. Besides, there is another kind of methods called geometry
feature-based methods [19, 20]. These approaches are less used nowadays.

Since the past couple of years, with the development of computer vision and related
theories, more and more advanced local features have appeared for the purpose of general
object recognition and classification, such as SIFT [21], LBP [22], HOG [23] and so on.
As one of the most widely used local descriptors, SIFT features have been successfully
applied on face recognition problems [24, 25] and it does have some advantages.
However it is still hard to say SIFT features for face recognition outperform other
methods.

As we know, there are two crucial issues involved in developing face recognition
systems, namely, face representation and classifier design [1, 26]. Face representation is
used to derive a set of features from the raw face images which minimizes the intra-class
variations (i.e., within face instances of a same individual) and maximizes the inter-class
variations (i.e., between face images of different individuals), while a successful

classifier with high performance can find a good separation between different classes



even if they share significant similarity with each other. If inadequate face
representations are adopted, even the most sophisticated classifier fails to accomplish the
face recognition task. On the other hand, if good face representations are adopted, but we
do not have a good classifier, we still cannot achieve high recognition performance.

In this work, we consider face recognition as an image classification problem. All the
face images of the same person are considered to fall into the same category. Hence,
when the face images are classified into correct categories, the faces are correctly
recognized. Based on this idea, we propose an improved bag of features representation by
combining the spatial information to obtain a pyramid histogram of visual words for face
representation. For the classification task, since the runtime complexity of a nonlinear
SVM classifier is very high, we use a linear SVM solver, Pegasos [27], with the help of
additive kernels, to get faster training and classification speeds. Our experiments on
benchmark face databases clearly validate the face recognition performance of the
proposed method. Though bag of features, spatial pyramid and Pegasos have been used to
address computer vision problems respectively, in this paper we reuse bag of features as
well as spatial pyramid to design the effective high-dimensional features for face
representation, we also take advantages of additive kernel-based linear SVM to make the
high-dimensional features display promise recognition performance efficiently. That is to
say, we propose an effective and efficient method for face recognition.

The rest of the paper is structured as follows. In Section 2, we describe the face
representation by using bag of features and spatial pyramid method. In Section 3 we
describe the additive kernel based SVM classification. In Section 4 we present our

experimental results. Conclusions are in Section 5.



2 Face representation via bag of features

The method of bag of features [28-30], which is also called bag of visual words, is
inspired from natural language processing applications, where each text document is
represented by a histogram of word occurrences in the document. To make the jump from
words to “visual” words, local features are extracted from a set of training images, and
then they are vector quantized using k-means clustering. The cluster centers obtained are
referred as “visual words”, and the combination of the visual words founded forms a
vocabulary. Compared with textual document based categorization, there is no available
vocabulary for image based object categorization, so the vocabulary has to be learned
from a training image set. Then the features are mapped to one or more visual words in
the vocabulary and each category is represented by a visual word. The general steps for
vocabulary generation are illustrated in Fig.1. Finally, each image is represented by a
histogram representing the frequency of visual words in the image. We refer to the
histogram as the bag of features representation of the image. This bag of features
representation can be used to compute similarity between images or give a query to
retrieve the most similar images in a database. Moreover, object classes (e.g., faces, cars)
can be modeled by training a classifier using bag of features representation to learn the
separating boundaries between object categories. Despite its simplicity and low
computational complexity, bag of features has been surprisingly successful in various
applications including object or scene detection [28, 31], classification [24], and retrieval

[29].
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Fig. 1 General steps for vocabulary generation.

However, bag of features method eliminates all of the spatial information
accompanying the features. Spatial pyramid histogram matching that restores some
spatial information is introduced to solve such problems by Lazebnik et al. [31]. When a
spatial pyramid is used in combination with a bag of features approach, there are several
vectors constructed instead of one. Each vector is a bag of features for one region of the
image. Once all vectors are computed, they are concatenated into one larger vector
(histogram), which implicitly contains coarse spatial information. Then, each face image
is represented by this histogram of visual words presented in the image.

We follow the approach of Bosch et al. [32] to build the spatial pyramid histogram to
improve our bag of features face representation, that is, building spatially enhanced
histograms at various resolutions and concatenating the results. More precisely, we first
compute SIFT features densely at points on a regular grid with spacing M(e.g.,2,4)
pixels, shown in Fig.2 (the 2" row). To allow for scale variation between images,
multiple descriptors are computed for each grid point. In detail, at each grid point the
descriptors are computed over four circular support patches with different radii
R(e.g.,4,8,12,16) , consequently each point is represented by four SIFT descriptors.

These dense features are vector quantized into K visual words using k-means clustering.



Then to build a spatial histogram with L levels, we first create the level 0 histograms (K
dimensional vectors) with dense SIFT features over the entire image. Next, the image is
divided into four regions equally and a level 1 histogram (4K dimensional vector) is
computed over each region. If we want to build a level | histogram, we can repeat this
process by sub-dividing each region recursively, which is shown in Fig.2 (top row and

the 3 row). At last, we concatenate all the histograms together into a larger vector with

L
the dimension of Z4'K. This vector is just the histogram for our face representation,
1=0

which is illustrated in Fig. 2 (bottom row).

Fig. 2 Face representation via spatial pyramid based bag of features.

3 SVM classification with additive kernels

As a fundamental problem in pattern analysis, classification is very important for
recognition tasks. A series of functions should be learned to separate data points from

different classes. The SVM classifier, which aims at recovering a maximal margin



separating hyper plane in the feature space, is a very popular and powerful tool for
classification and has demonstrated state-of-the-art performance in many computer vision
problems. SVMs can either operate explicitly in the input space leading to the linear
SVM or implicitly in the feature face via the kernel mapping giving rise to the kernel
SVM [33, 34]. Linear SVM is simple to train and easy to use as it only involves inner
product with the input data. However, it cannot be applied to nonlinear, which leads to its
limited applications to the real world problems where in most cases the data are
inherently nonlinear. On the other hand, the nonlinear SVM can handle linearly
inseparable data, but its complexity is multiplied with the number of support vectors,
which is highly inefficient and leads to high computation costs. This is not favorable for
prediction tasks on large scale data sets. Hence, it is highly desirable to have a classifier
model with both the efficiency of linear SVM and the power of nonlinear SVM. One way
to solve such problems is that, performing the linear classification in the embedding
space, instead of nonlinear classification in the original space. Here we introduce the
SVM solver, Pegasos [27], and additive kernels [35, 36] for the classification tasks of
face representation histograms. Hereinto, additive kernels help us to perform an explicit
(approximate) embedding of the data, while Pegasos is used for learning in the new
embedding space.

Pegasos introduces a blocked gradient optimization approach for SVMs with linear

kernels, which solves the linear SVM problem:

min 2w+ 3 (i, ) @



where x, are data vectors in R" , y e{-1+1} are binary labels, 1>0 is the
regularization parameter and /(w;(x;,Y;)) =max{0,1-y, <w, xi>} is the hinge loss. The
result of the optimization is a model weR" that yields the decision function
F(x)=sign(w,x) . In this method, every gradient descent step is accompanied with a
projection step. Instead of computing the costly operation of the exact gradient, a random
data point is selected, and an approximated gradient is computed, based solely on this
data point. It is demonstrated that, for linear kernels, Pegasos can achieve state-of-the-art

results as well as fast rate of convergence. From a theoretical convergence analysis, it is

shown that this algorithm converges in O(d / (1¢)) where d is a bound on non-zero

features in an example, A is the regularization parameter, and ¢ is the error bound on
estimation. That is why this algorithm is suitable for learning from large scale data sets,
since the runtime does not depend directly on the size of the training set. Pegasos can also

be adapted to employ non-linear kernels. Let k(x,y) be a positive definite kernel. A

feature mapping is a function W(x), which maps the data x to a Hilbert space H , such
that k(x, y) =(¥(x),¥(y)) . Using this representation the nonlinear SVM learning

objective function can be rewritten as:
. A 13
min Z "+ — 37 ewi (¥ (%), %)) 2

Thus the only difference with the linear case is that the feature mapping W(x) is used
instead of the data x. So how to find or construct a feature mapping ¥(x) for SVM

classification is what we are going to discuss next.



Since constructing features and feature space are based on those histograms computed
from our bag of features representation model, the computation of histogram dissimilarity
or distances should be discussed first, that is also related to the feature mapping ¥ . When
computing the dissimilarity of two representation histograms, the most frequently used
distance metric is the Euclidean distance. However, despite its mathematical simplicity
and efficacy in many other applications, it is found that the Euclidean distance is not the
most suitable similarity measure [37]. In particular, it is considered that the histogram
intersection kernel and the Chi square measure can give significantly improved results.
One of the common characteristics of histogram intersection and Chi square is that they

are instances in a family of kernels called the additive kernels, which are defined as:
d
K(x, y)zzk(xi'yi) ; 3)
i=1

where d is the dimension of the input histograms x,y, i is the component (bin) index,
and k(x,y) is an homogeneous positive definite kernel on the non-negative reals R, .
We call the kernel k a homogeneous kernel if k(cx,cy) =ck(x,y) for any c>0. If we
set k(x,y)=min(x,y) , the histogram intersection kernel is obtained. When setting
k(x,y)=2xy/(x+y), it yields the Chi square kernel [36]. These two kernels are

illustrated in Fig. 3. Kernels of histogram intersection, Chi square, Jensen-Shannon, and
Hellinger’s are some common examples of additive kernels [36]. In fact, these additive
kernels are becoming very popular in computer vision and machine learning applications
nowadays. Recent advances have shown that additive kernels and explicit embeddings

are the best performers in most visual classification tasks [36-38].
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Fig. 3 Visualization of kernels for 1D features: (a) the Chi square kernel, (b) Histogram intersection kernel.

In our work, we use Chi square kernel as a measure of similarity between histograms,
which is proved to be excellent for bag of features models. We can also see from Fig. 3
that, the Chi square kernel is much smoother than histogram intersection kernel. Since
Chi square kernel is positive definite, it can be used as a kernel discriminative
classification using SVMs. And also, it is an additive kernel, so the comparison between
histograms could be a linear combination of functions of each coordinate of the
histogram. However, using a kernel derived from chi square distance to train a SVM
classifier is computationally very expensive as the test time scales linearly with the
number of support vectors, which limited its application in practice. Fortunately, this
limitation was removed for the SVM classifiers by recent research works [35-39]. In
other words, it is possible to speed up classification for additive kernel based SVMs,
which is firstly presented by Maji et al. [38]. We follow the work of Vedaldi and

Zisserman [36], to make a closed-form approximated finite dimensional feature mapping
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W(x) for our Chi square kernel that enables us to use this additive kernel as if it was

linear. The idea is to approximate the function k(x, y) as the product of two small vectors

Y(x) and ¥(y) . For the Chi square kernel:

2Xy

k(Xx, y)szy

~ <‘P(x), ‘P(y)> , 4)

in order to find a good approximation of ¥, the exact embedding function should be
found first. Based on the work of Hein and Bousquet [40], for any homogenous kernels

there exists a symmetric non-negative measure x(A)dA such that:

K(X,y) =+/xy jf:e-”'w‘y’%(/m)dz . (5)
This can be rewritten as:

k() = [0, 00* ¥, (A2 =(P(x), ¥(y)), (6)
with ¥, (x) = e [xi(1) . Here W(x) is just the exact feature mapping of the datax,
and this feature cannot be used directly for computations as it is a continuous function, so
approximations are needed. A finite approximated feature mapping ¥ (x) can be

obtained by sampling from W(x). Due to the symmetries of the feature mapping Y (x),

Y(x) can be reduced to a real vector with the dimension of 2n+1. For instance, by

taking 2n+1 times sampling, a simple 3x approximation of Chi square kernel is given by:

0.8
¥(x) = /x| 0.6c0s(0.6log(x)) |. ©)
0.6sin(0.61og(x))
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The error is independent of the data dimension and decays exponentially fast with the
approximation order for the Chi square kernel. An example of the error of this finite

representation for one-dimensional histograms can be seen in Fig. 4.
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Fig. 4 The exact Chi square features (red line) vs. approximate features (blue line)

4 Experiments and results

The proposed approach is extensively tested for face recognition on the following
widely used benchmark data sets such as the ORL face database [41], the YALE face
database [3] and the FERET face database [42]. The ORL database is used to evaluate the
performance of the proposed method under conditions where the poses varied. The Yale
database is used to examine the performance when both facial expressions and
illuminations are varied. The FERET database is employed to test the recognition
performance with a large number of classes in a dataset.

In the experiments, we set the parameters in our method as follows. The number of

histograms is set to be 3, namely three-level histograms are built. The value of C in

12



SVM is set to be a fixed value from the set {0.001, 0.01, 0.1, 1, 10}, and finally fixed to
be 10 in our experiments, which is obtained by cross-validation, and it is found that
various values of C make little difference on the final performance of our method.
Another important parameter in our proposed approach is the vocabulary size K .
Larger K will be helpful for the proposed method to display better recognition
performance, meanwhile a larger K will be much more time-consuming but produces
little improvement in performance. Therefore, the selected value of K is a tradeoff
between effectiveness and efficiency. From our knowledge, K could be set to 3000 or
5000, which is quite reasonable. Additionally, according to different image sizes,
sampling strategy can be used to get a fixed number of features in a block so as to
decrease time complexity for large size images. In our experiments, we set the largest

value of K to be 3000, 3000 and 8000 for 3 different face databases, respectively.

4.1 Experiments on the ORL database

The ORL dataset contains 400 face images of 40 persons, with 10 per person, which
were taken at different time, under different lighting conditions, and with different facial
expressions and details. Moreover, all the images were taken against a dark homogenous
background with the subjects in an upright, frontal position, with tolerance for some
tilting and rotation of up to about 20 degrees. These images are gray scale with a
resolution of 92x112. The original images with no scaling or cropping are used in our
experiments. Fig. 5 shows some face examples from the database.

For each experiment, we randomly select 5 images per person for training and the rest
for testing (200 images for training and 200 for testing). Recognition is performed using
the SVM classifier mentioned above in the approximated additive kernel space. In order

13



to assess recognition performance, we repeat each of the experiments for 5 times, and the
reported results refer to the average performance in such 5 runs. The experimental results
with different vocabulary sizes and different numbers of training samples are listed in
Table 1 and Table 2. It can be seen from Fig. 6(a) that, the proposed method has very
good recognition performance with nearly perfect recognition accuracies of 99%, and
even 100% while the vocabulary size was set properly. And it should be also pointed out
that, the recognition performance of the proposed method is extremely stable on this
dataset since the standard deviations always keep under 0.4%. We have compared our
results to the other reported results from several state-of-the-art methods under the same
conditions. The best average recognition rates of different methods are reported in Table
3. Some results are directly taken from published papers indicated by citations. It is worth
mentioning two points here about the comparisons in this work. First, we also conduct
some experiments about FLDA with additive kernel and LBP with additive kernel, but
we do not report these results to be compared since the performances are uncompetitive.
Second, since we choose the best average recognition rates as our final results, it may
include some bias, but other results still have big gap in performance with our proposed
methods. Moreover, we have investigated the effect of the number of training samples on
the recognition performance. Fig. 6(b) shows the recognition performance of the
proposed method, corresponding to different numbers of training samples while the
vocabulary size is set to be 1500. As we can see, there is a significant performance
improvement (around 8%) by using two face samples instead of one. The good results

indicate that our approach is very effective and robust with respect to alignment.
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Fig. 5 Eight face samples randomly selected from the ORL database.
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Fig. 6 Recognition rates vs. vocabulary size (a) and number of training samples (b) on the ORL dataset.

Table 1 Results on the ORL dataset with different sizes of vocabulary.

Vocabulary

Size K 300 | 500 | 800 | 1000 | 1200 | 1500 | 1800 | 2100 | 2500 | 3000
Recognition
Accuracy % 99 | 99.6 | 99.6 | 99.8 | 99.8 | 995 | 99.7 | 100 | 100 | 100
Stgnqlard 035022 | 022|027 | 027 | 0.35 | 0.27 | 0.00 | 0.00 | 0.00
Deviation %
Table 2 Results on the ORL dataset with different numbers of training samples.
No. of Training Samples 1 2 3 4 5 6 7
Recognition Accuracy % | 87.6 95.2 96.6 99.2 99.5 100 100
Standard Deviation % 1.29 0.28 0.20 0.29 0.35 0.00 0.00
Table 3 Comparison of the propose method with other methods on the ORL database.
FLDA | 2DPCA | LBP | HOG | SIFT | PDSIFT | S2FF Proposed
[25] [43] [44] | [45] | [25] [25] [45] P
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Rates % 92.5 96.0" 98.0 | 955 | 90.0 95.5 96.2 100

Note that, the result indicated by the asterisk was obtained when they used the first five images of each
person for training.

4.2 Experiments on the YALE database

The Yale face database contains 165 images with 11 different images for each of the
15 distinct subjects. The 11 images per subject are taken under different facial
expressions, lighting conditions or configurations: center-light, with glasses, happy, left-
light, without glasses, normal, right-light, sad, sleepy, surprised, and wink, as illustrated
in Fig. 7. The image size is 243x320 pixels. In our experiments, the original gray scale
images are used without any normalization, cropping or scaling. We randomly select 6
images from each subject for training and the rest for testing (90 images for training and
75 for testing). Similarly, we repeat each of the experiments for 5 times and take the
average performance. The recognition rates with different sizes of vocabulary are
reported in Table 4 and illustrated in Fig. 8(a). These results indicate that, we can get the
best average recognition rate of 99.7% with the standard deviation under 0.6% when the
vocabulary size is 1500. And also, if the vocabulary size is set to be 300, the average
accuracy of 97.3% with the standard deviation of zero can be obtained, which means that
the recognition performance is highly stable and only 2 images are placed in the wrong
category. We have also compared our results to the other reported results from several
state-of-the-art methods, which are reported in Table 6. Results are directly taken from
published papers indicated by citations. Clearly, our face recognition framework achieves
the best face classification performances, which are almost perfect. In addition, we have
explored the relationships between the recognition performance and the number of

training samples, which is shown in Fig. 8(b). It is revealed from Table 5 that, there is
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also a significant performance improvement (24%) by using two face samples instead of
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Fig. 7 Face samples of the first two subjects selected from the YALE database.
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Fig. 8 Recognition rates vs. vocabulary size (a) and number of training samples (b) on the YALE dataset.

Table 4 Results on the YALE dataset with different sizes of vocabulary.

Vosciazgul'é”y 300 | 500 | 800 | 1000 | 1200 | 1500 | 1800 | 2100 | 2500 | 3000
Recognition | o, 5 | 979 | 992 | 99.2 | 99.5 | 99.7 | 98.1 | 99.2 | 98.1 | 97.6
Accuracy %
Standard 0.00 | 1.19 | 0.73 | 0.73 | 0.73 | 059 | 0.73 | 0.73 | 0.73 | 0.60
Deviation %

Table 5 Results on the YALE dataset with different numbers of training samples.

No. of Training Samples 1 2 3 4 5 6 7 8
Recognition Accuracy % | 735 | 97.5 | 985 | 96.8 | 98.6 | 99.7 | 100 100
Standard Deviation % 331|084 | 038 | 085 | 0.61 | 0.59 | 0.00 | 0.00
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Table 6 Comparison of the propose method with other methods on the ORL database.

PCA | 2DPCA | 2DLDA | Fuzzy FLDA | S-LDA [ HKLBP [,
[46] | [46] [46] [47] [48] [49] P
Rates % | 94.0 | 945 95.8 94.8 81.7" | 875 99.7

Note that, the result indicated by the asterisk was obtained when they used the images with a small size
around 32x32 for training and testing.

4.3 Experiments on the FERET database

The FERET database is a standard dataset for face recognition technologies, which
contains a large number of images acquired during different photo session and has a good
variety of gender, ethnicity and age groups. For our evaluation set, we randomly choose
400 images of 200 persons from subjects 450~700. Each person has two images with
different race, age, expression, illumination, occlusion, etc. One of them (Fa) is used for
training, while the other one (Fb) is used for testing. So there is only a single image from
each person used for training. All faces are normalized and masked to include the face
region yielding an image size of 48x60 pixels. Some representative examples are shown
in Fig. 9. We have investigated the effect of vocabulary sizes on recognition performance,
which is shown in Fig. 10. As mentioned before, the vocabulary size will definitely
influence the performance of the proposed algorithm. When the vocabulary size is small,
the performance is not so good. However, increasing vocabulary size increases
computation requirements. In our experiments, when the size is set to be 7000, our
algorithms get the best average recognition rate of 98.6%, which is also nearly perfect.
All the results with different vocabulary sizes are listed in Table 7. The cumulative match
curves (CMC) are also demonstrated on the selected FERET database in Fig. 11. It is

shown that, the proposed algorithm can achieve 100% accuracy in Rank-3 while the
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vocabulary size is set properly. These results demonstrate that the proposed method is
highly robust to the extrinsic imaging conditions, and also effective for the face
recognition problems with single-image-training and large number of classes. To further
validate the effectiveness of our method, we have compared its Rank-1 recognition
performance with other known results. Table 8 displays the comparisons between our
method and these state-of-the-art methods indicated by citations on the FERET database.

From the table, we can see that the result of our method is impressively better.

Fig. 9 Eight face samples randomly selected from the FERET database.
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Fig. 10 Recognition rates vs. vocabulary size on the FERET dataset.

Table 7 Results on the FERET dataset with different sizes of vocabulary.

Vogii%”:fry 800 | 1200 | 1500 | 1800 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000

Recognition | 93.7 | 94.6 | 956 | 957 | 96.3 | 96.7 | 98.2 | 98 | 98.6 | 97.9
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Fig. 11 Cumulative match curves on the FERET database when the vocabulary size is 1500 and 5000.

Table 8 Comparison of the propose method with other methods on the FERET database.

HOG-EBGM | LBP | S2FF | LGT | LGBPHS | HGPP | LLGP Pronosed
[50] [44] | [45] | [51] [52] [53] [54] P
Rates % 95.5 97.0" | 915 | 97.0 98.0 97.6 | 98.07 98.6

Note that, the result indicated by the asterisk was obtained when they used a weighting strategy for

different facial parts as well as different patterns.

5 Conclusions

In this paper, the face representation via spatial pyramid based bag of features for face

recognition has been proposed, then approximated additive kernel based linear SVM has

been introduced for efficient classification, i.e., we propose an new method for face

recognition problem. Extensive experiments demonstrate that the proposed method can

achieve very good performance and outperforms most of state-of-the-art methods. It is

also shown that, the proposed method can well handle different sizes of images as well as
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large number of categories, and make full use of a single image per subject for training.
Moreover, it is very robust to the variations of expressions, illuminations and poses etc.
Although high performance is achieved by the proposed method, we should also point out
a drawback of our method. That is, the good results sometimes lie in a large number of
local descriptors and the high-dimensional histogram features. In the future, we will
improve this problem and evaluate our algorithms on some “real-world” face recognition

tasks.
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