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Abstract 

LFAD is a novel locally and feature adaptive diffusion method for denoising an additive 

Gaussian noise in images. The method approaches each image region individually and 

uses different number of diffusion iterations per region for attaining best objective quality 

according to PSNR. Unlike block-transform based methods which perform with a pre-

determined optimum block size and clustering-based denoising methods which use a 

fixed optimum number of classes, our method searches for an optimum patch size 

through iterative diffusion starting with a small patch size and proceeds with aggregating 

patches until a best PSNR is attained. The diffusion model has a substitution of the 

gradient value with the inverse difference moment (IDM) which is a robust feature in 

determining the amount of local intensity variation in the presence of noise.  Experiments 

with benchmark images and various noise levels show that the designed LFAD 

outperforms advanced diffusion based denoising methods, and it is competitive with the 

state-of-the-art block-transformed techniques by yielded PSNR levels, producing 

however lesser visible blocking or ringing artifacts.    
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1. Introduction 

Nonlinear anisotropic diffusion has drawn considerable attention over the past decade and 

has experienced significant developments as it gracefully diffuses the noise in the intra-

regions while inhibiting inter-region smoothing. Introduced first by Perona and Malik (PM 

diffusion) [1] the diffusion process is mathematically described by the following equation: 
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where I(x,y,t) is the image, t is the iteration step and c(x,y,t) is the diffusion function 

monotonically decreasing of the magnitude of the image gradient. Two diffusivity functions 

proposed are: 





















 ∇
−=

2

1

),,(
exp),,(

k
tyxI

tyxc

                (2)

 

and 

22
),,(

1

1),,(








 ∇
+

=

k
tyxI

tyxc

                              (3), 

where k is referred to as a diffusion constant. Depending on the choice of the diffusivity 

function, equation (1) covers a variety of filters. The discrete diffusion structure is translated 

into the following form: 
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(4). 

Subscripts N, S, E and W (North, South, East and West) describe the direction of the local 

gradient, and the local gradient is calculated using nearest-neighbor differences as 



jijijiN III ,,1, −=∇ − ;  jijijiS III ,,1, −=∇ + jijijiE III ,1,, −=∇ + ; jijijiW III ,1,, −=∇ −     (5). 
 
Generally, the effectiveness of the anisotropic diffusion is determined by (a) the efficiency of 

the edge detection operator to distinguish between noise and edges; (b) the accuracy of an 

“edge-stopping” function to promote or inhibit diffusion; and (c) the adaptability of a 

convergence condition to terminate the diffusion process automatically.  The model in [1] has 

several practical and theoretical limits. It needs a reliable estimate of image gradients because 

with the increase of the noise level, the effectiveness of the gradient calculation degrades and 

thus deteriorates the performance of the method. Secondly, the equal number of iterations in 

the diffusion of all the pixels in the image leads to blurring of textures and fine edges while 

the smooth regions benefit.   

Let us apply the PM diffusion to two different image patches; each representing a 

certain structural content, for example, a texture and a smooth region.  Fig.1 indicates 

significant differences in PSNR levels/iterations for provided examples. Two examples in 

Fig.2 show how the image quality varies among two iterations (22 and 30); in the left image 

pixels are corrupted in a smooth region and, in the right image details are severely blurred. 

This happens because diffusion stops when the PSNR which is calculated per entire image 

reaches its maximum. 

Several authors have independently addressed this problem. Catte et al. [2] used a 

smoothed gradient of the image, rather than the true gradient. Let Gσ be a smoothing kernel, 

then 
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The smoothing operator removes some of the noise which might have deceived the original 

PM filter. In this case, the scale parameter σ is fixed. In [3], authors have proposed the 

inhomogeneous anisotropic diffusion which includes a separate mutiscale edge detection. 

 

 
Fig.1.Denoising results for two different structural contents. 

 

 

    
  

Fig.2. First row: PM denoised “Lena” image for two different iterations (left = 22 iterations, PSNR = 29.37 dB; 
right = 30 iterations, PSNR = 28.52 dB) for additive white Gaussian noise level σ =20; 



 

Yu et al. [4] have incorporated the SUSAN edge detector into the model: 
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SUSAN is capable to guide the diffusion process in an effective manner due to the noise 

suppression. Li et al. [5] proposed a context adaptive anisotropic diffusion via weighted 

diffusivity function 
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where the combined term w(x,y,t)c(x,y,t) is referred to as the weighted diffusivity function 

and w(x,y,t) is a pixel-wise feature dependent weight function.  

Chao and Tsai [6] proposed a diffusion model which incorporates both the local 

gradient and the gray-level variance. When the level of noise is high; noisy pixels in the 

image generally involve larger magnitudes of gray level variance and gradients than those of 

actual edges and fine details. Thus, the method is becoming inefficient quite soon.  Wang et 

al. [7] proposed a local variance controlled scheme wherein spatial gradient and contextual 

discontinuity of a pixel are jointly employed to control the evolution. However, a solution to 

estimating the contextual discontinuity leads to an exhaustive search procedure, which causes 

algorithm to be too computationally expensive. Yu and Acton [8] proposed speckle-reducing 

anisotropic diffusion (SRAD), which integrated spatially adaptive filters into the diffusion 

and provided considerable improvement in speckle suppression compared to other 

conventional diffusion methods. Adb-Elmoniem et al. [9] devised a coherence-enhancing 

nonlinear coherent diffusion (CENCD) model for speckle reduction. This method combines 

isotropic diffusion, anisotropic coherent diffusion and mean curvature motion. The pursuit is 



to maximally filter those regions which correspond to fully developed speckle while 

preserving information associated with object structures. Zhang et al. [10] presented a 

Laplacian pyramid-based nonlinear diffusion (LPND) method where Laplacian pyramid was 

utilized as a multiscale analysis tool to decompose an image into subbands, and then 

anisotropic diffusion with different diffusion flux was used to suppress noise in each 

subband. LPND tries to introduce sparsity and multiresolution properties of multiscale 

analysis into anisotropic diffusion. Another approach to context-based diffusion was 

researched in [11].  The multi-scale stationary wavelet analysis of the local neighborhood 

across the scales provides the edge information partially free of noise and thus makes 

possible the tunable diffusion. As a result, and due to the shift invariance property of 

stationary wavelet transform the PSNR has been improved compared to Shih’s diffusion 

[12].  

Generally, the performance of anisotropic diffusion is influenced by a) effectiveness 

of the edge detection operator in the presence of noise; b) accuracy of  the “edge-stopping” 

function to promote or impede diffusion; c) adaptability of the convergence condition to the 

automatic termination of the diffusion process. And the research in this area targets one or 

more from the above factors.  State-of-the art denoising techniques all rely on patches, either 

for dictionary learning [13,14], collaborative denoising of blocks of similar patches [15] or 

for non-local sparse models [16]. Regularization with non-local patch-based weights has 

shown improvements on classical regularization involving only local neighborhoods [17, 18, 

19]. The shape and size of patches should adapt to anisotropic behaviour of natural images 

[20, 21]. In spite of the high performance of the patch-based denoising methods they 

generally produce artifacts even at a comparatively moderate noise levels. Examples of such 

visual artifacts are presented in Fig.3 for two state-of-the-art methods such as KLLD [14] and 



BM3D [15]. The size of the patch has a significant impact on the PSNR even for the similar 

or identical contents. 

       

KLLD [14] result for σ = 25                    BM3D [15] result for σ = 60 

Fig.3. Results of patch based denoising methods. 
 

Fig.4 shows that the equal size regions of the same structural content from different parts of 

the image could be diffused differently.  

Thus, it would be feasible to incorporate adaptation to the image local structure 

within optimally sized patches. Unlike block-transform based methods such as BM3D which 

perform with a pre-determined optimum block size and clustering-based denoising methods 

such as KLLD which uses a predetermined optimum number of classes, our method searches 

for an optimum patch size through iterative diffusion starting with a small patch size, that is a 

large number of patches and proceeds with aggregating patches until a best PSNR is attained. 

To initialize the algorithm we use superpixel segmentation [22]. In our pursuit of determining 

the amount of diffusion we use the inverse difference moment (IDM) feature [28]. We 

demonstrate that the feature is robust in estimating local intensity variation in the presence of 

noise. Overall, the diffusion process converges to PSNR levels comparable to those by the 



state-of-the-art methods with minimum visible blocking/patching artifacts. The method is 

called locally- and feature- adaptive diffusion (LFAD) method.  

 

 

Noisy Image, σ = 20 

  

              Inside the square           Diffusion outcome (PSNR = 73.54 dB) 

   

             Outside the square      Diffusion outcome (PSNR = 65.71 dB) 

Fig.4. Diffusion result of structurally identical patches. 
 

The rest of the paper is organized as follows:  Section 2 provides a theoretical background 

and introduces the method and implementation details.  Section 3 presents results of the 

experiment; thereafter we conclude.  



 

2. LFAD- Locally- and Feature- Adaptive Diffusion 

2.1 Superpixel Segmentation 

As it was pointed out earlier in this paper, we need the image to be over-segmented first. For 

this purpose we use superpixel segmentation.  A single parameter of the method is k which is 

a desired number of approximately equally-sized superpixels. The procedure begins with an 

initialization step where k initial cluster centers Ci are sampled on regular grid space S pixels 

apart. To produce roughly equally sized superpixels, the grid interval is k
NS = . The 

centers are moved to seed locations corresponding to the lowest gradient position in a 3x3 

neighborhood, and thus avoid centering a superpixel on an edge. This reduces the chance of 

seeding a superpixel with a noisy pixel. Next, in the assignment step, each pixel i is 

associated with the nearest cluster center whose search region overlaps its location. A 

distance measure D, determines the nearest cluster center for each pixel. Since the expected 

spatial extent of a superpixel is a region of an approximate size SxS, the search for similar 

pixels is carried in a region of size 2Sx2S around the superpixel center. Once each pixel has 

been associated to the nearest cluster center, an update step adjusts the cluster centers to be 

the mean vector of all the pixels belonging to the cluster. The L2 norm is used to compute a 

residual error E between center locations of the new and the previous clusters. The 

assignment and update steps can be repeated iteratively until convergence. Experimentally, 

twenty iterations are sufficient for most images, and therefore throughout the rest of the 

paper we use this value. 

 
2.2. Region Merging 

Partition an image I in to sub-regions R1, R2,…, Rn. The following properties must hold true. 

1. R1∪ R2∪…∪Rn = I 



2. Ri is connected 

3. Ri ∩ Rj is empty. 

Algorithm: 

1. From initial regions in the Image using superpixel segmentation. 

2. For each region do: 

a. Consider its adjacent region and test to see if they are similar. 

b. For regions that are similar merge them i.e. merge Ri and Rj ≤ α*σ2 

3. Repeat step 2 with increasing α until all the regions are merged. 

 

2.3. Modified Diffusion  

The normalized inverse difference moment (IDM) feature captures texture details in both 

coarse and fine structures. IDM will get small contributions from non-homogenous region 

and larger values in homogenous regions. Ranging between 0 and 1; the value being 0 has an 

indication of a pixel being a part of a homogenous neighborhood. The value being 1 indicates 

that the pixel is a part of texture or an object boundary. One example of the visualized IDM 

feature is provided in Fig.5, wherein it is contrasted to the gradient image. Fig. 6 shows the 

line profile plots for both IDM and gradient values for Lena image with additive white 

Gaussian noise level σ =40 across the hat area region. From the results it indicates that IDM is 

more robust indicator compare to the gradient.  

The diffusivity function of Eq.2 is modified to the following: 
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Fig.5 1st column: Gradient image for additive white Gaussian noise level σ =20, 40 for “Lena”; 

2nd column: Inverse difference moment (IDM) image for additive white Gaussian noise level σ=20,40. IDM is 
calculated in 9x9 windows centered at pixel (i,j) 

 
 



 

Fig.6 Left: Lena with additive white Gaussian noise level σ =40; Right: IDM and Gradient values along a line 
(red) segment in “Lena” Image. 

 

2.4 LFAD Algorithm 

The method performs according to the following steps: 

1. Initialize the number of merging steps, k=0. Segment image into m (m≠1) regions 

using superpixel segmentation method. Calculate PSNR of the noisy image,  PSNR1 [PSNRm 

(0)]0 = PSNR1.  

2. Initialize n=0;  

3. Pixels of each region are diffused at an iteration step as 
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4.   Per region: if  [PSNRm 
(n+1)]k > [ PSNRm 

(n)]k, goto  Step 3; elseif 

[PSNRm- 
(0)]k+1  < [PSNRm 

(n+1)]k    goto Step 7  



5. For ∀ pair of adjacent regions Ri and Rj, if variance of Ri ∪ Rj ≤ α*σ2 merge regions 

based on variance of neighbouring regions and threshold α=1.1; k=k+1; Update m. 

Goto Step 2 else Goto Step 6 

6. α = α+0.1, Goto Step2 

7. Stop 

 

3. Experimental Results 

In order to verify the performance of LFAD we have tested it on a number of benchmark 

images degraded by the additive white Gaussian noise of zero mean μ=0 and σ = 10, 20, 30, 

50 and 100. The comparison is made to other diffusion models such as PM [1], Catte [2], Li 

[5], LVCFAB [7], GSZFAB [26], RAAD [27]and the state of art method BM3D[15]. The 

evaluation is performed first based on PSNR calculated as below: 

MSE
I

PSNR
2
maxlog10= , 

 
where MSE is a mean square error. 

Additionally we evaluate the method using the universal image quality index (UIQI) given 

by 
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where yx, are the means and σx , σy are the standard deviations and σxy represents the 

covariance. As it mentioned in [26], the average quality index UIQI coincides with the mean 

subjective ranks of observers. 

        Initial number of superpixel segments is set to ‘k’ = MxN/patch size; where MxN is the 

size of the image and the patch size is usually set globally (between 5x5 and 19x19). Levin 

and Nadler [23] derive bounds on how well any denoising algorithm can perform. The 



bounds are dependent on the patch size, where larger patches lead to better results. For large 

patches and low noise, tight bounds cannot be estimated. However, Levin et al. [24] suggest 

that patch-based denoising can be improved mostly in smooth areas and less in textures. 

Chatterjee [25] studied that a smaller patch size can lead to the performance degradation 

from the lack of information captured by each patch, and a large patch size might capture 

regions of widely varying information in a single patch and also result in a fewer similar 

patches being present in the image. It was shown also that clusters with more patches are 

denoised better than clusters with fewer patches and the bound on the predicted MSE 

increases at different rates as the patch size grows from 5 x5 to 19 x 19 for the images, so it 

was concluded that a patch size of 11x11 can capture the underlying patch geometry while 

offering sufficient robustness in the search for similar patches. BM3D [15] uses a patch size 

of 8x8 for low noise levels i.e. σ≤40 and 11x11 for Wiener filtering and 12x12 for hard 

thresholding for high noise levels, i.e. σ>40. In our work, we calculate the bounds with the 

patch/area size of 64 pixels for low noise levels i.e. σ≤40 and a larger patch/area size of 128 

pixels for high noise levels i.e. σ>40. To select the patch size among two above 

automatically, one can use one of available methods for estimation of the noise standard 

deviation. For example, one can suppress the image structure using the Laplacian mask such 

that the remaining part of the image is noise [29].  

The diffusion equation needs the value of the diffusion constant, λ.   Fig.7 displays PSNR of 

the outcomes of IDM based diffusion for a fixed noise level (σ=50) with different values of 

λ= 5, 10, 15, 25 and 50 for 1000 iterations for “Lena” image. The plot provides the indication 

that λ=10 is a best choice.  

The above parameters were used to obtain Table I which shows PSNR values by the LFAD 

for benchmark images. Next, in Table II, the LFAD is compared to six diffusion based 



methods which are considered the state-of- the-art techniques in diffusion based denoising. 

They are FAB, GSZ FAB [26], LVCFAB [7], and RAAD [27]. The improvement by LFAD 

for the given noise levels is ranging from 1.3 dB for low noise to 1.59dB for noise level with 

σ=100.  It is interesting to note that the use of IDM feature helped with improving PSNR 

compared to the reference PM method by 0.86dB on average, from 0.65db for low noise to 

1.03 dB for high noise.  The proposed method outperforms all other diffusion models. The 

comparison to BM3D shows that the performance of LFAD is 0.35 dB lower compared to 

that of the BM3D for noise level σ=10 and 0.39 dB lower for noise level σ=100. Results for 

BM3D are publicly available at http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_results and 

therefore are not reproduced here. Table III provides UIQI values by the LFAD and BM3D 

and Table IV provides UIQI values by the proposed method and other diffusion models for 

same benchmark images. Fig.8 shows that lesser or no blocking/ringing artifacts are 

introduced by LFAD compared to those in BM3D denoised images. The denoising 

performance of the LFAD is further illustrated in Fig. 9 and Fig. 10, where we show 

fragments of a few noisy (σ=10, 20, 30 and 50) test images and fragments of the 

corresponding denoised ones. The denoised images show high visual quality in the areas of 

smooth intensity transition and lesser or no ringing around contours of extended objects.  

4. Conclusion 
 
 
We have proposed a new diffusion-based method of image denoising. The high performance 

of the method is attained due to the following properties:  a) patch-based optimization of 

PSNR through iterative diffusion; b) agglomeration of patches and repetitive iteration of the 

process; c) modification of the diffusion function with IDM feature. The method has attained 

a highest performance in the class of advanced diffusion based methods. Being slightly 

inferior to the state-of-the-art BM3D method by yielded PSNR levels it however outperforms 

http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_results


the counterpart by reducing visible blocking and ringing artifacts generally inherent to block-

and transform-based methods.  
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Fig.7. PSNR obtained using IDM with λ = 5, 10, 15, 25 and 50 with a noise level σ=50 for Lena  image  

 

Table I. PSNR  of the proposed method 

Image/Noise, σ LFAD 

10 20 30 50 100 

Lena 35.56 32.61 30.85 28.59 25.56 

House 35.94 32.93 31.11 28.68 25.12 

Peppers 34.48 31.05 29.03 26.56 23.18 

Cameraman 33.99 30.18 28.24 25.89 23.08 
 

 



 

 

Table II. PSNR comparison of different anisotropic diffusion methods for Lena 

Method/ σ 10 15 20 

Noisy 28.15 24.62 22.14 

PM [1] 32.70 30.71 29.37 

Catte [2] 33.27 31.39 30.09 

Li [5] 34.28 32.41 31.15 

GSZ FAB [26] 32.49 29.86 28.29 

LVCFAB [7] 31.90 28.21 26.67 

RAAD [27] 34.33 32.53 31.24 

LFAD 35.56 33.86 32.61 

 

 

 

 

Table III. UIQI comparison of BM3D and LAFD methods. 

 
10 20 30 50 100 

 BM3D LFAD BM3D LFAD BM3D LFAD BM3D LFAD BM3D LFAD 

Lena 0.6976 0.6903 0.6107 0.5991 0.5489 0.5391 0.4661 0.4566 0.3440 0.3427 

House 0.5894 0.5640 0.4505 0.4296 0.4001 0.3810 0.3443 0.3224 0.2691 0.2411 

Peppers 0.8182 0.8148 0.7443 0.7361 0.6863 0.6777 0.6016 0.5931 0.4664 0.4682 

Cameraman 0.5975 0.5908 0.4914 0.4908 0.4319 0.4275 0.3567 0.3496 0.2600 0.2383 
 

 



Table IV. UIQI comparison of different anisotropic diffusion methods  

Scheme Image         10       15      20 

GSZ FAB 

Lena 0.6294 0.5391 0.4833 

Peppers 0.592 0.5237 0.4682 

Cameraman 0.539 0.4333 0.3789 

LVCFAB 

Lena 0.6309 0.4955 0.4337 

Peppers 0.5883 0.4819 0.4236 

Cameraman 0.5441 0.3967 0.3413 

RAAD 

Lena 0.6819 0.6232 0.5749 

Peppers 0.6325 0.5764 0.5395 

Cameraman 0.5994 0.5199 0.4622 

LFAD 

Lena 0.6903 0.6396 0.5991 

Peppers 0.8148 0.7708 0.7361 

Cameraman 0.5908 0.5314 0.4908 

 

 
 
 
 
 
 
 



 
 

 
 
 

Fig.8.First row: “Lena” image and that with additive white Gaussian noise level σ =100;  

Second row: results by BM3D and LFAD. Arrows show areas where LFAD performs comparatively 
better than BM3D  

 

 
 

 



 

 

 

 
 

Fig.9.First Column: “Lena” image with additive white Gaussian noise level σ =10, 20, 30 and 50;  

Second Column: corresponding  results by LFAD. 
 



 

 

 

 
 

Fig.10.First Column: “Peppers” image with additive white Gaussian noise level σ =10, 20, 30 and 50;  

Second Column: corresponding  results by LFAD 
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