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a b s t r a c t 

As a growing number of low-resolution (LR) face images are captured by surveillance cameras, LR face 

recognition has been a hot issue for recent years. Previous efforts on LR face recognition typically assume 

each subject has multiple high-resolution (HR) training samples. However, this assumption may not hold 

in some special cases such as law-enforcement where only a single HR sample per person exists in the 

training set. For LR face recognition in SSPP scenario, it often suffers from overfitting and singular matrix 

problems. In this paper, we are the first to investigate LR face recognition with single sample per per- 

son, and propose a cluster-based regularized simultaneous discriminant analysis (C-RSDA) method based 

on SDA. C-RSDA regularizes the between-class and within-class scatter matrices respectively with inter- 

cluster and intra-cluster scatter matrices, where the cluster-based scatter matrices are computed from 

unsupervised clustering. With the cluster-based scatter matrices, not only the singularity problem is re- 

solved, but overfitting problem is overcomed as more variations are exploited from the limited training 

samples. Thus, the proposed C-RSDA enhances the discriminative power of the feature subspace. We ex- 

tensively evaluate C-RSDA on recognizing LR face images captured in both controlled and uncontrolled 

environments. The encouraging experimental results demonstrate the effectiveness of the proposed ap- 

proach. 

© 2017 Published by Elsevier B.V. 
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1. Introduction 

Face recognition for single sample per person (SSPP), i.e., con-

ducting face recognition when there is only one sample of each

subject in the training set, has been a topical issue for recent years,

because its significant application in law enforcement. Many tech-

niques have been proposed to deal with SSPP face recognition [1–

6] , and all of them so far are designed for high-resolution (HR)

face images. In the last decade, for security and law enforcement

purposes, an ever-increased number of surveillance cameras have

been installed in public area. This proliferation of cameras as well

as the significance for real-world applications raises the new re-

quirement for face recognition algorithms to be competent enough

to well recognize the surveillance camera quality face images. Due

to the large distances between the cameras and the subjects, face

regions in the captured images are usually small, resulting in very

low-resolution (LR) face images. Recognizing such low-resolution

face images is termed as LR face recognition. Compared with high-

resolution face images, as demonstrated in [7] , the LR faces in-

volve more noise and lack effective features, which considerably

degrades the performance of conventional face recognition tech-
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iques developed for HR images. Moreover, HR face images of sub-

ects are usually enrolled in the gallery set, the dimensional mis-

atch between gallery and probe images makes LR face recogni-

ion even more challenging. 

The most straightforward way to address this dimensional mis-

atch is to down-sample the HR gallery images to LR ones, and

hen perform classification on all the LR images. However, this

own-sampling removes some discriminative information embed-

ed in HR gallery images, which results in disappointing recogni-

ion accuracy. To enhance the recognition performance on LR im-

ges, two types of methods have been developed in the literature:

i) super-resolution based techniques and (ii) coupled mappings

ased techniques. 

.1. Super-resolution based techniques 

Super-resolution based techniques rely on super-resolution

ethods to first reconstruct HR probe images from correspond-

ng LR ones, and then perform recognition on the reconstructed

R probe images. As an instrument to enhance the resolution of

mages, super-resolution techniques have been developed steadily.

hese super-resolution techniques typically focus on learning the

elationship between LR and HR image patches. Various learn-

ng algorithms have been employed to learn this LR-HR map-

http://dx.doi.org/10.1016/j.sigpro.2017.05.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
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ing, such as local linear regression [8,9] , sparse representation

10,11] , manifold learning [12] and convolutional networks [13,14] .

hese super-resolution methods are mostly designed to be vision-

riented, which means they are designed to obtain good HR re-

onstructions from LR images, and are not necessarily optimized

or recognition purposes. 

Recently, there have been some effort s towards recognition-

riented super-resolution techniques. The recognition-oriented 

uper-resolution is more suitable for LR face recognition, because it

akes face recognition into consideration when performing super-

esolution. Since the decrease in image resolution results in loss of

igh frequency components, Bilgazyev et al. [15] propose to build

 dictionary of high frequency components in the facial data, and

hen these high frequency components are added to LR face im-

ges to perform super-resolution. Studies on human vision systems

ave shown that the high-frequency information by itself is not

ufficient for recognition of low-quality facial images [16] , hence

uper-resolution in the pixel domain will not help much to im-

rove the recognition performance of LR face images. To overcome

his problem, Huang et al. [17] present a method to perform super-

esolution on coherent feature domain by establishing a nonlin-

ar mapping between HR and LR features. Compared to the pixel

omain super-resolution methods, their approach is computation-

lly efficient and robust. These super-resolution methods are spe-

ially devised for LR face recognition, but they perform HR face

econstruction and recognition sequentially. To address this issue,

ome progress has been made in simultaneous super-resolution

nd recognition, which embeds the super-resolution process into

ace recognition. Instead of performing super-resolution and recog-

ition independently as two separate sequential process, Jia et al.

18] propose to integrate these two processes together by di-

ectly computing a maximum likelihood identity parameter vec-

or in HR tensor space for recognition. Hennings-Yeomans et al.

19] present a discriminative approach that combines recognition

ith HR reconstruction simultaneously by introducing the super-

esolution constraints and feature constraints in a regularization

ramework. Zou et al. [20] develop a relationship-learning based al-

orithm, in which a new data constraint and a discriminative con-

traint are designed for good visual quality image reconstruction

nd discriminative feature extraction, respectively. The recognition-

riented super-resolution methods, especially those performing

uper-resolution and recognition synchronously, improve the per-

ormance of LR face recognition. Unfortunately, the computational

ost to perform super-resolution is high. In addition, when the res-

lution of a probe image is very low, for example, 8 × 8 pixels, the

erformance of these algorithms is depressing, because it is quite

ifficult to recover much meaningful information from such limited

ixels by super-resolution. 

.2. Coupled mappings based techniques 

To avoid super-resolution process, coupled mappings based ap-

roaches are also developed to address LR face recognition prob-

em. These methods are inspired from canonical correlation anal-

sis (CCA) [21] and aim to learn two different mappings: one for

R images and one for LR image. These learned mappings are first

mployed to project images of different resolutions into a uni-

ed subspace, followed by the classification in the resultant sub-

pace. Based on the framework of coupled mappings (CMs), Li

t al. [22] introduce locality preserving objective into the optimiza-

ion of CMs model and propose coupled locality preserving map-

ings (CLPMs). CLMPs learn the two mappings in an unsupervised

anner. To incorporate the label information, some supervised

Ms models are also developed. Siena et al. [23] extend the prin-

iples of marginal fisher analysis and propose coupled marginal

sher analysis (CMFA) by utilizing the local relationship of data.
nspired by maximum margin projection, Zhang et al. [24] propose

arge margin coupled mapping algorithm, by which two projec-

ions are learned to maximize the distance of features with dif-

erent labels and minimize the distance of features with identi-

al label in the common space. Zhou et al. [25] and Zhang et al.

26] propose simultaneous discriminant analysis (SDA) and cou-

led marginal discriminant mappings respectively to improve the

lassification discriminability of CMs. Both methods introduce the

ithin-class scatter and between-class scatter into CMs. To further

nhance the recognition performance, the geometry structure in-

ormation of samples are integrated into CMs models [27–29] . Shi

t al. [27] combine local and global geometry structures together

o learn the coupled mappings, while both Jiang et al. [28] and

ing et al. [29] propose to obtain the coupled mappings by dis-

riminant manifold analysis. Lately, Biswas et al. [30,31] improve

he matching performance of the LR face images based on multi-

imensional scaling. The coupled mappings ensure that the dis-

ances between LR and HR images in the latent subspace approx-

mate the distances between two corresponding HR images. Be-

ides, kernel tricks have been introduced into CMs to deal with

R face recognition, so that images can be projected into the uni-

ed subspace by coupled non-linear mappings. Such methods are

oupled kernel embedding [32] , coupled kernel fisher discrimina-

ive analysis [33] , and kernel coupled distance metric learning [34] .

ost recently, domain adaption or transfer learning is also embed-

ed into CMs. These approaches deeply exploit the discriminant

nformation from source domain (HR images) to target domain (LR

mages), and have reported promising results. Two typical methods

sing domain adaption or transfer learning technique are proposed

y Ren et al. [34] and Kan et al. [35] , respectively. 

.3. Motivation 

All of the methods discussed so far are designed based on

he assumption that there are multiple HR images of each sub-

ect in the training/gallery set. This assumption may not always be

rue as single sample per person (SSPP) may occur in some law-

nforcement situations, leading to SSPP face recognition problem.

any effort s [1–4] have been made to address SSPP face recogni-

ion of HR probe images. However, to the best of our knowledge,

here are no attempts to cope with SSPP face recognition of LR

robe images. To fill this gap in face recognition, we work on ad-

ressing this problem in this paper. 

In SSPP situation, it is more difficult to recognize a LR probe

ace. Less training HR samples of subjects in the training set lead

o weak ability to cover sufficient variations, which further induces

verfitting problem. Moreover, when employing Fisher criterion to

o discriminative analysis, the singularity of the within-class scat-

er matrix will be a negative factor. A popular way to deal with sin-

ularity is to regularize the within-class scatter matrix by adding

n identity matrix to it [23,25,26] . However, the introduction of

he identity matrix does not bring in any discriminative informa-

ion for classification, and is unable to solve overfitting. 

As the unsupervised clustering algorithms gather similar sam-

les and separate dissimilar ones, some within-class and between-

lass variations can be exploited from such clusters. Based on SDA,

e propose a cluster-based regularized simultaneous discriminant

nalysis (C-RSDA) method to address LR face recognition when

here is single HR face sample per person in the training set. By

mploying the cluster-based regularization, the singularity prob-

em is solved; meanwhile, as more variations are sought from the

imited training samples, the overfitting problem is also settled, so

hat more discriminative information is introduced into the opti-

ization of the feature subspace. The proposed C-RSDA aims to

earn two mappings that can project the HR face images and LR

ace images into a unified subspace, in which samples from the
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Fig. 1. The pipeline of our proposed C-RSDA. 
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same class gather as close as possible; meanwhile, samples from

different classes disperse as far as possible with a large margin. 

The reminder of this paper is organized as follows. In Section 2 ,

we introduce LR face recognition problem. Section 3 provides the

details of C-RSDA, and analyzes the significance of the proposed

approach; besides, the relationship between the proposed method

and SDA is also presented in this section. Section 4 presents the

results of experimental evaluation on three popular face databases.

We make a brief conclusion in Section 5 . 

2. Problem statement 

In this work, we focus on addressing the low-resolution face

recognition problem in which only one HR face image of each sub-

ject is enrolled in the training set, and the LR face images are to

be recognized. 

Assume we have a gallery set of HR face images H =
[ h 1 , h 2 , · · · , h C ] ∈ R 

M×C , where h i denotes the HR image, M is the

feature dimension, and C is the number of classes, each class has

only one HR image. Given a probe LR face image, l ∈ R 

m , m is the

feature dimension of LR face image and m < < M , it is impossible to

directly compare the similarity between HR samples and the probe

sample since their dimensions are not equal. An alternative way is

to project the HR and LR images into a unified subspace by learn-

ing a couple of mappings: f H : R 

M → R 

d for HR images and f L : R 

m 

→ R 

d for LR images, where R 

d denotes the unified subspace and d

< m . Thus, the similarity among HR gallery projections and probe

LR projection can be calculated in the unified subspace, and recog-

nition can be performed. The probe LR is assigned a class label by

c(l) = j when j = arg max 
j 

s 
(

f H ( h j ) , f L (l) 
)
, (1)

where c ( l ) is the class label of probe LR sample l, s ( ◦, ◦) is the

similarity metric. If we define f H and f L as linear projections, then

f H ( h j ) and f L ( l ) can be respectively formulated as f H ( h j ) = P T 
H 

h j and

f L (l) = P T L l, where P H and P L are M × d and m × d matrices, re-

spectively. 

When learning P H and P L , we expect s ( f H ( h j ), f L ( l )) to be large

if l belongs to the same class as h j , and be small otherwise. It

means that in the unified subspace, the projections of the same

class accumulated and those of different classes decentralized, re-

gardless of their original identity of HR or LR. To achieve this goal,

we compute the between-class and within-class scatter matrices

by considering the class label information in the unified projection

subspace, and propose the following objective function, which is

similar to that of SDA: 

J ( P H , P L ) = max 
J B ( P H , P L ) 

J W 

( P H , P L ) 
, (2)

where J B ( P H , P L ) and J W 

( P H , P L ) are measures of between-class and

within-class scatters in the unified subspace. The above objection

function can be solved by a generalized Eigen decomposition prob-

lem. 
. Proposed C-RSDA 

We assume that the number of LR samples equals the num-

er of HR samples for each subject in the training set. This is rea-

onable because in most cases the training LR samples have to be

cquired by smoothly down sampling the HR ones. Note that if

here is only one HR sample for each subject in the gallery set,

n the unified subspace there will be only two projection samples

or each subject, one is from a HR image and the other is from a

R image. As the number of projections in each class is small, it

s easy to encounter overfitting or small-sample-size problem. To

void this, we attempt to regularize SDA by clustering and propose

-RSDA, which enhances the discriminative power of the unified

ubspace. 

The core thought of the proposed C-RSDA is to employ both

luster-based scatter matrices and class-based scatter matrices to

ore accurately estimate the true scatter matrices with limited

raining samples. We utilize SDA as the basic framework to demon-

trate our idea in this paper, because SDA is easily understood and

omputed. Fig. 1 illustrates the core idea of the proposed C-RSDA.

t is worth pointing out that this idea can be introduced into any

ethods or frameworks using either the between-class scatter ma-

rix or the within-class scatter matrix or both, to better assess the

nter-class or intra-class variations. In order to clearly describe the

roposed C-RSDA, we first introduce Cluster SDA, which is the gen-

ralization of SDA. When each cluster is right a class, Cluster SDA

s the same as SDA. 

.1. Cluster SDA 

Let L = [ l 1 , l 2 , · · · , l C ] ∈ R 

m ×C be the corresponding LR images

f HR samples in the gallery set. With the two linear mappings,

he projections of HR and LR samples in the unified subspace

an be expressed as: ˜ h j = P T 
H 

h j , and 

˜ l j = P T 
L 

l j , where j = 1 , 2 , · · · , C,

˜ 
 j and 

˜ l j are the projections of HR and LR samples, respectively.

o get the mappings of Cluster SDA, we first group the train-

ng data into K non-overlapping clusters. Compared with LR im-

ges, HR images include more discriminative information, hence

e conduct clustering on HR face images, and the clustering re-

ult can be directly used to group LR images. The clustering can be

xpressed as 

 = H 1 ∪ H 2 ∪ , · · · , H K , (3)

 i ∩ H j = ∅ for ∀ i 	 = j, (4)

here H i is the i th cluster. The cluster label of a sample h j is de-

oted by c ( h j ) with c ( h j ) ∈ (1, 2, ���, K ). 

Then we compute the means of samples in each cluster of HR

nd LR images as 



Y. Chu et al. / Signal Processing 141 (2017) 144–157 147 

μ

w  

t

μ

 

t  

a  

f

μ

μ

 

i  

i  

t  

i

J

w  

P  

a  

b

W

w  

a

 

b

J

w  

w

B

 

t  

h  

o[

3

 

b  

t  

b

[
w  

m

 

c  

t  

c  

m  

r  

f  

l  

t  

s  

m  

c  

t

 

m  

c  

d  

T  

i  

i  

c  

e  

W

[
w  

s  

b

S

L i = 

1 

N i 

∑ 

c( l j )= i 
l j , μH i = 

1 

N i 

∑ 

c( h j )= i 
h j , (5) 

here N i is the number of samples in H i , and i = 1 , 2 , · · · , K. The

otal means of LR and HR images are computed by 

L = 

1 

C 

K ∑ 

i =1 

∑ 

c ( l j ) = i 
l j , μH = 

1 

C 

K ∑ 

i =1 

∑ 

c ( h j ) = i 
h j . (6) 

Regardless of the original identity (HR or LR) of projections,

he mean of projection in each cluster, and the total mean of

ll projections in the common subspace, can be calculated as

ollows: 

i = 

1 

2 N i 

( ∑ 

c( h j )= i 

˜ h j + 

∑ 

c( l j )= i 

˜ l j 

) 

= 

1 

2 

(
P T H μH i + P T L μL i 

)
, (7) 

= 

1 

2 C 

( 

K ∑ 

i =1 

∑ 

c( h j )= i 

˜ h j + 

K ∑ 

i =1 

∑ 

c( l j )= i 

˜ l j 

) 

= 

1 

2 

(
P T H μH + P T L μL 

)
. (8) 

After obtaining the projections of samples and mean vectors,

t is trivial to compute the intra-cluster and inter-cluster scatters

n the unified subspace, just by following the way to characterize

he scatter matrices in LDA. In the unified projection subspace, the

ntra-cluster scatter is computed by 

 

(K) 
w 

= 

K ∑ 

i = 1 

( ∑ 

c( h j )= i 

(
˜ h i − μi 

)2 + 

∑ 

c( l j )= i 

(
˜ l i − μi 

)2 

) 

= 

[
P T H P T L 

] K ∑ 

i 

[
W 

i 
HH W 

i 
HL 

W 

i 
LH W 

i 
LL 

][
P H 

P L 

]

= P T S (K) 
w 

P, (9) 

here P = [ P T 
H 

P T 
L 

] T is the concatenation of the mappings P H and

 L , S 
(K) 
w 

is the intra-cluster scatter matrix of the projections of HR

nd LR images when the HR samples are grouped in K clusters. The

locks in S (K) 
w 

are 

 

i 
HH = 

∑ 

c( h j )= i 

(
h j −

1 

2 

μH i 

)(
h j −

1 

2 

μH i 

)T 

+ 

1 

4 

N i μH i μ
T 
H i 

W 

i 
HL = −1 

2 

N i μH i μ
T 
L i 

W 

i 
LH = −1 

2 

N i μL i μ
T 
H i 

W 

i 
LL = 

∑ 

c( l j )= i 

(
l j −

1 

2 

μL i 

)(
l j −

1 

2 

μL i 

)T 

+ 

1 

4 

N i μL i μ
T 
L i 
, (11) 

here N i is the number of samples in the i th cluster of HR images,

nd C = N 1 + N 2 + · · · + N K . 

Similarly, the inter-cluster scatter in the projected subspace can

e computed by 

 

(K) 
b 

= 2 

K ∑ 

i = 1 
N i ( μi − μ) 

2 

= 

[
P T H P T L 

] K ∑ 

i 

[
B HH B HL 

B LH B LL 

][
P H 

P L 

]

= P T S (K) 
b 

P, (12) 

here S (K) 
b 

is the inter-cluster scatter matrix of all the projections

hen HR images are grouped in K clusters. The blocks in S (K) 
b 

are 

 HH = 

1 

2 

K ∑ 

i =1 

N i 

(
μH i − μH 

)(
μH i − μH 

)T 
B HL = 

1 

2 

K ∑ 

i =1 

N i 

(
μH i − μH 

)(
μL i − μL 

)T 

B LH = 

1 

2 

K ∑ 

i =1 

N i 

(
μL i − μL 

)(
μH i − μH 

)T 

B LL = 

1 

2 

K ∑ 

i =1 

N i 

(
μL i − μL 

)(
μL i − μL 

)T 
. (13) 

If we want to find out which cluster a probe LR face belongs

o in the projected subspace, the Fisher discriminant criterion is

elpful to find the couple of mappings. According to Eq. (2) , the

ptimal projections are obtained by 

P H P L 
]

opt 
= arg max J F isher ( P ) 

= arg max 
J (K) 
b 

J (K) 
w 

= arg max 
T r 

(
P T S (K) 

b 
P 
)

T r 
(
P T S (K) 

w 

P 
) . (14) 

.2. Cluster-based regularization 

As our goal is to find out the class to which the probe LR face

elongs, the easiest way is to set K = C in Eq. (14) , which indicates

hat no clustering is conducted. Then the optimal projections can

e acquired by solving the following problem: 

P H P L 
]

opt 
= arg max 

J (C) 
b 

J (C) 
w 

= arg max 
T r 

(
P T S (C) 

b 
P 
)

T r 
(
P T S (C) 

w 

P 
) , (15) 

here S (C) 
w 

and S (C) 
b 

are the within-class and between-class scatter

atrices, respectively. 

Because there is only one HR sample and one LR sample in each

lass, there will be only two projection samples for each subject in

he unified subspace. With the limited number of samples in each

lass, it is difficult to accurately measure the within-class scatter

atrix S (C) 
w 

and the between-class scatter matrix S (C) 
b 

, which gives

ise to overfitting and thus lowers the discriminative power of the

eature subspace. To overcome this problem, we propose to regu-

arize S (C) 
w 

and S (C) 
b 

respectively by using cluster-based scatter ma-

rices S (K) 
w 

and S (K) 
b 

. This is based on the fact that samples in the

ame cluster share more similarities and thus involve some infor-

ation of intra-class variations; meanwhile, samples in different

lusters are quite distinctive and the mean vectors of various clus-

ers include some discriminative information [36] . 

In this work, we employ correlation criterion to quantitatively

easure the similarity between samples, and K-means method to

onduct clustering. As K-means algorithm is sensitive to initial ran-

omly selected cluster centers, we run the clustering algorithm

 times with different initializations and obtain diverse cluster-

ng results. Corresponding to different initializations, there are T

ntra-cluster and inter-cluster scatter matrices. Then the within-

lass and between-class scatter matrices are regularized by the av-

raged intra-cluster and inter-cluster scatter matrices, respectively.

ith the regularization, Eq. (15) can be rewritten as 

P H P L 
]

opt 
= arg max 

J B 
J W 

= arg max 
T r 

(
P T S B P 

)
T r 

(
P T S W 

P 
) , (16) 

here J W 

and J B are the total within-class and between-class

catters, respectively; S W 

and S B are the total within-class and

etween-class scatter matrices, respectively; and 

 W 

= αS (C) 
w 

+ (1 − α) 
1 

T 

T ∑ 

r=1 

S (K) 
wr 

S B = βS (C) 
b 

+ (1 − β) 
1 

T 

T ∑ 

r=1 

S (K) 
br 

. (17) 
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In Eq. (17) , 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 are the regularization pa-

rameters that balance the weight between class-based scatter ma-

trices and cluster-based scatter matrices. The three parameters in-

volved in Eq. (17) , i.e., α, β and K , are usually determined empiri-

cally. Because the optimization problem characterized by Eq. (16) is

similar to that in SDA, meanwhile the cluster-based scatter matri-

ces are used to regularize the class-based scatter matrices, we call

the proposed approach Cluster-based Regularized SDA (C-RSDA for

short). The solution of the optimization problem in (17) can be ob-

tained by conducting the standard Eigen decomposition: 

S −1 
W 

S B = λp, (18)

where λ is the eigenvalue and p is the corresponding eigenvector.

The optimal solution of (17) is the eigenvectors associated with the

first d largest eigenvalues. 

Using the cluster-based scatter matrices to regularize the class-

based scatter matrices has two advantages. First, it helps to avoid

the matrix singularity problem of S W 

, so C-RSDA can produce more

stable results. Second, it is good for mining more intra-class and

inter-class variations from limited number of samples, thus the

within-class and between-class scatter matrices can be more accu-

rately estimated, which overcomes overfitting, making the unified

projection subspace more discriminative. 

3.3. Matching 

During matching, the feature vectors of both the LR probe and

HR gallery images are first projected into the unified subspace by

the learned two mappings. If x p and x g respectively denote the fea-

ture vectors corresponding to an LR probe and an HR gallery im-

age, the feature vectors in the common subspace are given by 

˜ x g = P T H x g , ˜ x p = P T L x p . (19)

The similarity between the probe and gallery image is mea-

sured by cosine criterion between their projected features: 

s = 

˜ x g ̃  x T p √ (
˜ x g ̃  x T g 

)(
˜ x p ̃  x T p 

) . (20)

3.4. Relationship with SDA 

When α= 1 and β= 1 , the optimization problem in (16) is iden-

tical to that of SDA, which is formulated by Eq. (15) . Therefore,

SDA can be viewed as a special case of the proposed C-RSDA. SDA

works well when there are multiple training images for each sub-

ject in the HR image set. If there is only one HR training sample

for each subject, the number of projection samples of each class in

the common subspace is small, it is difficult for SDA to truthfully

characterize the within- and between-class scatter matrices. There-

fore, conducting SDA in this situation will be prone to overfitting,

and the within-scatter matrix will be often singular. 

To avoid this problem, SDA was improved by its regularized ver-

sion: [
P H P L 

]
opt 

= arg max 
J (C) 
b 

J (C) 
w 

= arg max 
T r 

(
P T S (C) 

b 
P 
)

T r 
(
P T 

(
S (C) 

w 

+ γ R 

)
P 
) , (21)

in which R is the regularization term and γ is the regularization

coefficient. In [25] , two kinds of regularizations were proposed: R

is an identity matrix or a specially designed matrix by consider-

ing local consistency [37] . On the one hand, when R is an identity

matrix, it is the l 2 − norm regularization, this regularization term

does not include any intra-class information that will be useful for

classification. On the other hand, when R is a specially designed

matrix by considering local consistency, it does incorporate some

local geometry information about the distribution of HR and LR
amples; however, it fails to explore more variations from those

ocal geometries. Besides, compared with the proposed C-RSDA,

q. (21) chooses to regularize only the within-class scatter matrix,

nstead of both scatter matrices. 

.5. Why cluster- based regularization? 

We are not the first to use clustering results of samples to do

egularization. Ahead of us, several works have explored the ad-

antage of cluster-based regularization. Soares et al. [38] introduce

 cluster-based regularization term to boost the semi-supervised

lassifier, Wang et al. [39] apply cluster-based regularization to

earn discriminative dictionary. Both two works aim to make full

se of the cluster structure in designing their loss functions. To ad-

ress SSPP for HR face images, Pang et al. [40] propose to replace

he within-class scatter matrix with the within-cluster scatter ma-

rix, thus LDA can be applied even if there is only one training

ample of each subject. Recently, Pang et al. [36] put forward to

earn regularized LDA by clustering to deal with small sample size

roblem of HR face recognition. These two works intent to exploit

ore variations from limited samples. Inspired by this, we bring

n the cluster-based regularization into coupled mappings frame-

ork to tackle SSPP face recognition for LR face images. Though

he above works have explained from different perspectives why

luster-based regularization is helpful, we next offer our insight

nto this issue. 

.5.1. Exploiting more variations from clusters 

As our method employs cluster-based regularization, we first vi-

ualize some clustering results of images. We run K-means algo-

ithm four times, Fig. 2 illustrates four clustering results in which

ach cluster contains Subject 17. The left subfigure shows the orig-

nal HR gallery images, and the right one displays the correspond-

ng reconstructed face images using PCA eigenvectors. It is difficult

o find similarities in a cluster from Fig. 2 (a), but we can figure out

ome common features in a cluster according to the reconstructed

aces. In Fig. 2 (b), the faces in the first row show similar expression

the corners of the mouth show some similarity); the faces in the

econd row have similar left half face; the faces in the fourth row

eem to have beard, and have similar textures around the eyes.

hough we cannot express what similarity exists among faces in

he third row, we believe they do share some likeness since they

re clustered together. Consequently, many similarity features, i.e.,

ntra-cluster variations are extracted from clusters. 

We can also observe from Fig. 2 that different clustering results

hare some common faces. By run the clustering algorithm more

imes, we find that faces in the same cluster as Subject 17 are

ostly those in Fig. 2 , through various combinations. This implies

hat Fig. 2 includes a group of similar faces. We exhibit four group

f similar faces in Fig. 3 . Note that analogous result as Fig. 2 shows

ill be obtained for each group if we run K-means algorithm sev-

ral times. We can trivially discover the similarity in each group

f reconstructed faces, and different groups present different sim-

larities. Therefore, the inter-cluster variations can be exploited for

ach clustering results. 

Together with LR gallery face images, we can get two parts of

luster-based variations in the common projected subspace, both

f them contribute to enhancing the discriminative ability of the

ubspace. Figs. 6 and 7 illustrate the usefulness of cluster-based

ariations. 

.5.2. Avoiding overfitting and singularity 

We have demonstrated that variations can be explored from

lustering results of face images, now we disclose how the cluster-

ased variations help avoid overfitting and singularity problem. Ac-
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Fig. 2. Four clustering results involving subject 17: (a) the original HR gallery faces, (b) the reconstructed faces. The numbers below the images denote their class labels. 

Fig. 3. Four group similar faces (for each group, images in the top row are the original HR gallery faces and those in the bottom row are the reconstructed faces). 

c  

c

ording to Eqs. (9 ), (16) and (17) , we reformulate the total within-

lass scatter as follows: 

J W 

= P T 

( 

αS (C) 
w 

+ (1 − α) 
1 

T 

T ∑ 

r=1 

S (K) 
wr 

) 

P 

= α

( 

P T S (C) 
w 

P + 

1 − α

αT 

T ∑ 

r=1 

P T S (K) 
wr P 

) 

= α

( 

C ∑ 

i = 1 

( ∑ 

c( h j )= i 

(
˜ h i − μi 

)2 + 

∑ 

c( l j )= i 

(
˜ l i − μi 

)2 

) 

+ 

1 − α

αT 

T ∑ 

r=1 

K ∑ 

ii = 1 

( ∑ 

c( h j )= ii 

(
˜ h ii − μii 

)2 + 

∑ 

c( l j )= ii 

(
˜ l ii − μii 

)2 

) ) 
= α

( 

C ∑ 

i = 1 

∑ 

c( h j )= i 

(
˜ h i − μi 

)2 + 

C ∑ 

i = 1 

∑ 

c( l j )= i 

(
˜ l i − μi 

)2 

+ 

1 − α

αT 

T ∑ 

r=1 

K ∑ 

ii = 1 

∑ 

c( h j )= ii 

(
˜ h ii − μii 

)2 

+ 

1 − α

αT 

T ∑ 

r=1 

K ∑ 

ii = 1 

∑ 

c( l j )= ii 

(
˜ l ii − μii 

)2 

) 

= α

( 

C ∑ 

i = 1 

( ∑ 

c( h j )= i 

(
˜ h i − μi 

)2 + 

1 − α

αT C 
J cluster 
w −H 

) 

+ 

C ∑ 

i = 1 

( ∑ 

c( l j )= i 

(
˜ l i − μi 

)2 + 

1 − α

αT C 
J cluster 
w −L 

) ) 

, (22) 
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Fig. 4. The illustration of HR and LR images. 
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where J cluster 
w −H 

= 

T ∑ 

r=1 

K ∑ 

ii = 1 

∑ 

c( h j )= ii 
( ̃ h ii − μii ) 

2 
, J cluster 

w −L 
= 

T ∑ 

r=1 

K ∑ 

ii = 1 

∑ 

c( l j )= ii 
( ̃ l ii −

μii ) 
2 denote the within-cluster scatter in the common subspace

computed by HR images and LR images, respectively. According

to Eqs. (12 ), (16) and (17) , we reformulate the total between-class

scatter as follows: 

J B = P T 

( 

βS (C) 
b 

+ (1 − β) 
1 

T 

T ∑ 

r=1 

S (K) 
br 

) 

P 

= β

( 

P T S (C) 
b 

P + 

1 − β

βT 

T ∑ 

r=1 

P T S (K) 
br 

P 

) 

= 2 β

( 

C ∑ 

i = 1 
N i ( μi − μ) 

2 + 

1 − β

βT 

T ∑ 

r=1 

K ∑ 

ii = 1 
N ii ( μii − μ) 

2 

) 

= 2 β

( 

C ∑ 

i = 1 

(
N i ( μi − μ) 

2 + 

1 − β

βT C 
J cluster 
b 

)) 

, (23)

where J cluster 
b 

= 

T ∑ 

r=1 

K ∑ 

ii = 1 
N ii ( μii − μ) 2 denotes the between-cluster

scatter in the common subspace computed by all samples. 

Because there is only one HR gallery image and only one LR

gallery image for each class, we can seek few class-based variations

from them, which leads to overfitting for classification. However,

we observe from Eq. (22) that a proportion of the total within-

scatter is added to each class, which means that intra-cluster vari-

ations exploited from clustering results are used to enrich the

intra-class variations for each class; similarly, we observe from

Eq. (23) that a proportion of the total between-scatter is summed

to each class, that is to say, inter-cluster variations exploited from

clustering results are used to enrich the inter-class variations.

Therefore, more variations (include class-based and cluster-based

variations) are embedded into the common subspace and overfit-

ting is solved. 

Note that S W 

= αS (C) 
w 

+ (1 − α) 1 T 

T ∑ 

r=1 

S (K) 
wr . For every clustering

result, there are multiple samples in most of clusters, hence the

intra-cluster scatter matrix is always non-singular. As a result, the

total within-class scatter matrix S W 

will be non-singular, and sta-

ble results can be obtained. 
. Experimental evaluation 

In this section, we describe the details of extensive experi-

ents, which are performed to evaluate the effectiveness of the

roposed approach to match LR probe images with HR gallery face

mages. 

.1. Data description 

Most experiments described in this paper are performed on

ERET face data set [41] . As the grayscale FERET database is not

vailable to be downloaded any more, all grayscale images used in

ur experiments are obtained from the color FERET database cur-

ently distributed in the official website. The FERET database con-

ists of 13,539 facial images corresponding to 1565 subjects, who

re diverse across ethnicity, gender, and age. In our experiments,

 subset from FERET database is chosen to compare our approach

ith the state-of-the-art methods that can address low-resolution

ace recognition problem. There are four groups (Fa, Fb, Dup1, and

up2) in the selected subset. Fa containing 994 frontal images of

94 subjects, is used as Gallery, while Fb (992 images of expres-

ion variations), Dup1 (736 images), and Dup2 (228 images) are

he Probe sets. It is worth mentioning that we are the first to eval-

ate the LR face recognition performance on Dup1 and Dup2 probe

ets of FERET database. 

We also perform matching experiments on two more challeng-

ng databases, i.e., labeled faces in the wild (LFW) [42] and Surveil-

ance Cameras Face (SCface) database [43] . The two databases in-

lude face images captured in the uncontrolled environment. Brief

escription of the datasets is provided along with the details of the

xperiments. 

.2. Experimental settings 

All face images are aligned and cropped using the location of

heir eyes. The HR images are resized to 64 × 64 pixels, and the

R images are down-sampled from the HR ones using a standard

ilinear interpolation technique. In our work, we test LR face im-

ges of 5 different resolutions, i.e., 8 × 8, 10 × 10, 12 × 12, 14 ×
4 and 16 × 16 pixels. Fig. 4 shows three HR face images and their

orresponding LR samples in FERET subset. For training, the pro-

osed algorithm needs both HR and LR images of the same subject

o learn the coupled mappings. Note that there are only one HR

ample and one LR sample for each subject in the training set. 
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Fig. 5. Comparison of HR images created by different super-resolution algorithms. The 1st column is the original HR faces, and the input LR faces for super-resolution 

algorithms are 8 × 8 pixels (the 1st row) and 16 × 16 pixels (the 2nd row). 

Table 1 

The baseline recognition results (%) on FERET dataset. 

L-L H-H 

8 × 8 10 × 10 12 × 12 14 × 14 16 × 16 PCA LBP 

Fb 69 .46 71 .07 71 .47 71 .77 72 .08 74 .37 93 .00 

Dup1 29 .76 32 .47 35 .46 36 .55 37 .50 42 .70 61 .00 

Dup2 13 .60 17 .11 20 .18 20 .61 21 .05 30 .46 50 .00 

Notes : ‘L-L’ means LR images are used in both training and testing process, ‘H-H’ 

means HR images are used in both training and testing process. 
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Table 2 

Recognition performance (%) comparison of super-resolution techniques. 

SR1 SR2 SR3 C-RSDA L-L H-H 

8 × 8 Fb 37 .30 21 .17 27 .72 82 .36 69 .46 74 .37 

Dup1 5 .71 6 .39 8 .56 41 .85 29 .76 42 .70 

Dup2 0 .88 2 .63 6 .14 34 .65 13 .60 30 .46 

16 × 16 Fb 70 .26 73 .29 74 .29 86 .29 72 .08 74 .37 

Dup1 31 .93 38 .41 41 .58 59 .24 37 .50 42 .70 

Dup2 21 .93 28 .07 33 .77 51 .75 21 .05 30 .46 
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In all experiments, the standard Principal Component Analysis

PCA) [44] is firstly used to eliminate the useless information in

he original HR and LR images, which induces the improvement

f recognition accuracy. The number of PCA coefficients used to

epresent the face images is determined based on the number of

igenvalues preserving 99.99% of the total energy. The parameters

n the proposed algorithm, i.e., K, T, α and β are empirically set

o 20, 80, 0.6 and 0.3 respectively when conducting experiments

n FERET database. The choices of various parameter values are

iscussed in latter subsection. Unless otherwise stated, all experi-

ents report accuracy in terms of rank-1 recognition performance.

.3. Experimental results 

.3.1. Baseline results 

To show clearly how effective the proposed approach is in rec-

gnizing LR faces, we first obtain some baseline recognition re-

ults to be compared with. One part of baseline results is obtained

y matching LR probe images with down-sampled gallery images,

hich is denoted by L-L in the reported results. The other part of

esults are gained by directly matching high-resolution version of

robe LR images against HR gallery images, which is denoted by

-H. For experiments in this subsection, we employ PCA technique

o extract features and the nearest neighbor classifier to make clas-

ification. We also use LBP feature to get better recognition perfor-

ance in H-H setting. Table 1 displays these baseline recognition

esults on FERET database. It is obvious that the performance in

-L setting is typically much worse than that in H-H setting, and

he recognition accuracy is from bad to worse with the decrease of

esolution in L-L setting. 

.3.2. Performance comparison with super-resolution techniques 

For matching an LR probe with an HR gallery image, one of

he most commonly used approaches is to obtain an HR recon-

truction of the LR probe image firstly using a super-resolution

echnique, and then the reconstructed HR probe images is used

or matching with the HR gallery sample. For comparison, we fol-

ow the work of [30] and apply three different super-resolution
echniques to obtain HR images from LR probe images. The three

echniques are Bicubic Interpolation (SR1), Sparse Regression-based

uper-resolution (SR2) [10] and Sparse Representation-based super-

esolution (SR3) [11] . For Bicubic Interpolation, a standard MATLAB

nterpolation function is utilized; while for the other two methods,

e have used the code available from the authors’ websites. In this

ubsection, we choose the probe images of two different resolu-

ions, namely, 8 × 8 and 16 × 16 to evaluate various approaches.

ig. 5 shows examples of HR images created by the three super-

esolution techniques described above. 

As the proposed C-RSDA is based on discriminant analysis, to

rovide fair comparisons, we get the recognition rates of super-

esolutions based methods by using LDA technique. Specifically, (i)

he HR counterparts of gallery LR images are firstly obtained by

uper-resolution techniques, these virtual HR images together with

he original gallery HR images constitute the training set; (ii) each

lass has two samples in the training set, PCA + LDA technique

s employed to get the discriminative subspace and then to ex-

ract training features from only the original HR images; (iii) the

R counterparts of the LR probe images are obtained by super-

esolution techniques and then projected into the discriminative

ubspace to extract testing features; (iv) matching testing features

gainst training features by nearest neighbor classifier with cosine

etric. Table 2 presents the rank-1 recognition performance of the

roposed approach along with those of the three different super-

esolution approaches on FERET data subset. 

As can be seen, when the resolution of probe LR faces is quite

ow, namely 8 × 8 pixels, every super-resolution method per-

orms badly, even much worse than the standard LR matching

L-L), which implies that it is quite difficult to recover meaning-

ul information from images of such a low resolution. When the

esolution of probe LR images increases to 16 × 16 pixels, the

uper-resolution methods perform much better, however, the per-

ormance of SR1 is still inferior to that of L-L matching, while the

erformance of the two elaborated super-resolution techniques is

etter than L-L matching but still worse than H 

–H baseline perfor-

ance. This may be partly attributed to the fact that these super-
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Fig. 6. Recognition accuracy versus various values of α and β for different low resolutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Recognition performance (%) comparison with couple mapping techniques. 

8 × 8 10 × 10 12 × 12 14 × 14 16 × 16 Ave. 

Fb CLPM 79 .94 82 .56 82 .46 84 .07 84 .48 82 .70 

CMFA 72 .08 75 .40 75 .40 74 .60 75 .60 74 .62 

SDA 68 .75 72 .08 71 .77 71 .88 72 .08 71 .31 

C-RSDA 82 .36 85 .48 86 .29 86 .39 86 .29 85 .36 

HH(PCA) 74 .37 74 .37 74 .37 74 .37 74 .37 74 .37 

HH(LBP) 93 .00 93 .00 93 .00 93 .00 93 .00 93 .00 

Dup1 CLPM 39 .54 44 .16 50 .95 56 .52 59 .24 50 .08 

CMFA 24 .86 28 .26 32 .88 35 .33 36 .14 31 .49 

SDA 27 .45 31 .66 33 .97 37 .50 37 .77 33 .67 

C-RSDA 42 .85 46 .60 52 .85 56 .66 59 .24 51 .64 

HH(PCA) 42 .70 42 .70 42 .70 42 .70 42 .70 42 .70 

HH(LBP) 61 .00 61 .00 61 .00 61 .00 61 .00 61 .00 

Dup2 CLPM 31 .14 35 .96 42 .11 47 .81 52 .19 41 .84 

CMFA 13 .60 20 .61 23 .25 22 .81 24 .12 20 .88 

SDA 14 .04 18 .42 18 .86 20 .61 20 .18 18 .42 

C-RSDA 34 .65 37 .72 43 .86 47 .37 51 .75 43 .07 

HH(PCA) 30 .46 30 .46 30 .46 30 .46 30 .46 30 .46 

HH(LBP) 50 .00 50 .00 50 .00 50 .00 50 .00 50 .00 
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resolution techniques are not customized for a face matching ap-

plication. Not surprisingly, the proposed approach performs signifi-

cantly better than all the super-resolution techniques in every sce-

nario, and its performance is much better than the HR versus HR

setting in most cases, even though the resolution of probe LR faces

is quite low. 

4.3.3. Performance comparison with coupled mappings approaches 

Since C-RSDA learns two mappings, we then compare our pro-

posed method with three different coupled mappings approaches,

namely, CLPM [22] , CMFA [23] and SDA [25] . To make fair com-

parisons, we finely tune the parameters for each compared tech-

nique. For CLPM, the scale parameter α and the number of nearest

neighbors of an HR image N ( i ) are set to be 11 and 1, respectively;

for CMFA, the regularization constant α, the number of the nearest

intra-class neighbors k 1 and the number of the nearest inter-class

neighbors k 2 are set to be 10 −5 , 1 and 20, respectively; for SDA, we

employ l 2 − norm to regularize the within-class scatter matrix, as

the authors did in their work, and tune two regularization coeffi-

cients to be γ = η= 10 −6 . All the approaches are evaluated on the LR

probe images of 5 different resolution, and for each experiment the

nearest neighbor classifier with cosine metric is used to make clas-

sification. The recognition performance of the compared methods,

together with the baseline performance, is tabulated in Table 3 . 

The effectiveness of the our proposed C-RSDA can be demon-

strated by the following three facts: (i) among the four coupled

mapping methods, the C-RSDA achieves the best performance for

each experiment on Fb and Dup1 probe sets, and performs best

or nearly best on Dup2 probe set; (ii) according to the average

performance over various resolutions, C-RSDA reaches the high-

est recognition rates of 85.36% for Fb probe set, 51.44% for Dup1

and 43.07% for Dup2; (iii) compared with the baseline performance

of HH(PCA), C-RSDA attains either better or much better perfor-

mance in all experiments; (iv) compared with the baseline results

of HH(LBP), the overall performance of C-RSDA is lower by a mar-

gin within only 10%. 

In addition, it can be observed from Table 3 that C-RSDA

largely surpasses SDA in each experiment, which indicates that the

cluster-based regularization employed in the proposed method is
ery efficient in LR face recognition when there is single HR image

or each subject in the training set. 

.4. Parameter analysis 

We now evaluate the robustness of the proposed C-RSDA al-

orithm with different parametric choices. The proposed method

nvolves four parameters, namely, regularization parameter α and

, the cluster number K and the clustering times T . In the follow-

ng analysis, we conduct experiments using HR gallery images of

esolution 64 × 64 pixels, LR probe images of 8 × 8 and 12 × 12

ixels. 

.4.1. The effect of regularization parameter α and β
The parameter α and β are used to regularize the within-class

nd between-class scatter matrices, they play a crucial role in the

roposed algorithm. Two sets of experiments are conducted by fix-

ng K = 20 and T = 80 , varying both α and β from 0 to 1 by an

ncrement of 0.1. The first set of experiments are used to examine
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Fig. 7. Recognition accuracy versus various values of α and β on different probe sets. 
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Table 4 

The recognition accuracy (%) and standard deviation with respect 

to various cluster times T . 

T 20 40 60 80 100 

Ave. 82 .31 82 .49 82 .51 82 .61 82 .58 

Std. 0 .0045 0 .0032 0 .0030 0 .0022 0 .0016 
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t  
he effect of parameters when C-RSDA is employed to recognize

R images of different resolutions. Fig. 6 shows the plots of rank-

 recognition rates on Fb probe subset versus various values of α
nd β , the results in left and right subfigures are obtained when

robe LR images in Fb subset are 8 × 8 pixels and 12 × 12 pixels,

espectively. The second set of experiments are used to examine

he effect of parameters when C-RSDA is employed to recognize

R images in different probe sets. Fig. 7 shows the plots of rank-1

ecognition rates on Dup1 and Dup2 probe subsets versus various

alues of α and β , the results in left and right subfigure are ac-

uired when Dup1 and Dup2 are used as probe sets, respectively;

R images in both probe sets in this experiment are 8 × 8 pixels. 

As can be seen, figures in both Figs. 6 and 7 have similar 3D

hapes, we describe it in detail in the following. When α = β = 0 ,

he recognition rate is lowest, it is as expected since the two total

catter matrices are replaced by the cluster-based scatter matrices.

hen α = β = 1 , which means that no cluster-based regulariza-

ion is imposed on the scatter matrices, the corresponding recog-

ition accuracy is significantly better than that when α = β = 0 ,

ut much lower than the highest point. When α = β = 0 , though

he recognition performance is quite low, it is higher than zero

nd occupies more than one quarter of the recognition rates when

= β = 1 . This reveals that the cluster-based scatter matrices are

eneficial for classification. The highest recognition rate is achieved

hen 0 < α < 1 and 0 < β < 1 in all subfigures. When 0 < α < 1

nd 0 < β < 1, the recognition accuracy in each subfigure slightly

uctuates around its highest value. It suggests that the proposed C-

SDA algorithm can perform well with very flexible choices of pa-

ameter values. Specially, when β = 0 , the recognition rate ascends

ith the increase of the value of α, but it drops before reaches the

eak point; when α = 0 , the recognition rate does not show appar-

nt trend with the changes of β . This implies that the intra-cluster

catter matrix plays a more influential role in boosting the perfor-

ance than the inter-cluster scatter matrix. 

.4.2. The effect of the number of clusters K 

We utilize the cluster-based scatter matrices to do regulariza-

ion in our proposed method, so the number of clusters is an-
ther vital parameter in our algorithm. In this subsection, we in-

estigate the effect of cluster number K on the recognition perfor-

ance. Two sets of experiments are conducted by fixing α= 0 . 6 ,

= 0 . 3 and T = 80 , varying K from 5 to 40 by an increment of 5.

ig. 8 illustrates the recognition rates versus various values of K .

he left subfigure shows the results on Fb probe set while the left

ne shows the results on Dup1 and Dup2 probe sets. 

As it is shown, when the LR probe sets are fb_12 × 12,

up1_8 × 8 and dup1_12 × 12, the corresponding recognition rate

rstly rises and then drops with the increase of K , and reaches

heir peak value at K = 20 ; when fb_12 × 12 is the probe set, the

ecognition rate shows an ascending trend with the increase of K ,

ut it goes up slightly when K is more than 20. Therefore, neither

oo small nor too large values of K are beneficial, and a moderate

alue of K can ensure the proposed C-RSDA to achieve satisfying

esults. 

.4.3. The effect of clustering times T 

To eliminate the influence caused by the instability of K-means

lgorithm, we run the clustering algorithm for T times to calculate

he cluster-based scatter matrices. The effect of T is tested in this

art. We use Fb, which contains LR image of 8 × 8 pixels, as probe

et, set α= 0 . 6 , β= 0 . 3 and K = 20 , and vary the value of T to con-

uct experiments. For each value of T , we run C-RSDA algorithm

0 times and get the average recognition rates. Table 4 displays

he recognition accuracy (%) and standard deviation with respect

o various clustering times T . From Table 4 , we find that the value

f T has slight effect on the recognition performance when T > 20.

urthermore, the recognition rate is quite stable by run the clus-

ering algorithm for over 20 times since all of the standard devia-
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Fig. 8. The recognition rate versus different values of K . 

Table 5 

The recognition results (%) on LFW dataset. 

8 × 8 12 × 12 16 × 16 Ave. 

CLPM 4 .10 6 .58 7 .47 6 .05 

CMFA 9 .49 10 .38 10 .89 10 .25 

SDA 4 .94 6 .96 7 .85 6 .58 

C-RSDA 12 .28 14 .43 15 .06 13 .92 

H 

–H(PCA) 3 .92 3 .92 3 .92 3 .92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Sample images in LFW subset (Images in the 1st column are gallery images, 

and the rest images are probe ones). 
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tions are less than 0.005, though it is more stable when the value

of T is larger. Considering the efficiency and stability, selecting the

value of T between 40 to 80 is a favorable choice for the proposed

method. 

4.5. Evaluation on unconstrained face images 

To show the recognition performance of our C-RSDA algo-

rithm on face images captured in unconstrained circumstances, we

conduct two series of experiments on LFW database and SCface

database. 

4.5.1. Evaluation on LFW database 

The LFW contains images of 5749 individuals taken under an

unconstrained setting. The complex surroundings of image captur-

ing and inaccurate alignment of faces make the LFW data quite

challenging for LR face recognition in the SSPP setting. LFW-a is

a subset of the LFW dataset, and the images in LFW-a have been

aligned with a commercial software tool. In this subsection, we

gather the subjects containing no less than ten samples and then

get a dataset with 158 subjects from LFW-a database, and further

choose one most frontal face image for each subject to construct

the HR gallery set, then select the first 5 face images from the re-

maining ones for every person to construct HR probe set. All HR

images are resized to 6 4 × 6 4 pixels, the LR gallery images and

LR probe images are obtained by downsampling corresponding HR

ones via bilinear interpolation. Our task on this database is to rec-

ognize LR face images of three resolutions,8 × 8, 12 × 12, 16 ×
16 pixels. Fig. 9 displays the sample images of one subject in LFW

subset. 

We use the same experimental setting as before to run the

proposed algorithm on LFW subset. Table 5 displays the recogni-
ion results of various methods on this data set. It clearly shows

hat the recognition accuracy is quite low (less than 17%) for each

ethod in every case. The reason is that face images in LFW

ace database are captured under unconstrained circumstances and

uch more complicated than images in FERET dataset, these face

mages are hardly frontal and each probe face involves at least

ne variation of expression, pose, illumination and occlusion. On

his challenging dataset, the proposed C-RSDA performs best, it

chieves the accuracy larger than 12% for each low resolution and

he averaged accuracy is 13.92%; the following is CMFA, whose av-

raged recognition rate is 10.25%, 2.67% lower than C-RSDA; CLPM

nd SDA are competitive, both accuracies are much less than 10%.

e also observe that each CMs based method performs better than

he baseline method PCA, which indicates that the unsupervised

CA technique is inferior to deal with such complicated face im-

ges. According to Table 5 , we see the advantage of C-RSDA on

ecognizing LR faces captured in complicated environment. 

.5.2. Evaluation on SCface database 

The SCface database contains images of 130 subjects taken

n uncontrolled indoor environment using five video surveillance
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Fig. 10. Sample images in SCface database. 

Fig. 11. The cropped grey-scaled images of samples in SCface database. 
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Table 6 

The recognition results (%) on SCface dataset when virtual LR images are 

used for training. 

Cam1 Cam2 Cam3 Cam4 Ave. 

Dis1 (4.2 m) CLPM 1 .54 2 .31 2 .31 2 .31 2 .12 

CMFA 3 .85 3 .85 3 .08 3 .08 3 .46 

SDA 1 .54 2 .31 0 .77 3 .08 1 .92 

C-RSDA 6 .92 4 .62 5 .38 3 .85 5 .19 

Dis2 (2.6 m) CLPM 1 .54 3 .85 1 .54 2 .31 2 .31 

CMFA 3 .08 3 .08 4 .62 4 .62 3 .85 

SDA 1 .54 1 .54 2 .31 5 .38 2 .69 

C-RSDA 7 .69 6 .92 3 .85 5 .38 5 .96 

Dis3 (1 m) CLPM 3 .08 3 .08 1 .54 2 .31 2 .50 

CMFA 4 .62 6 .15 3 .08 3 .08 4 .23 

SDA 4 .62 3 .08 3 .85 3 .85 3 .85 

C-RSDA 6 .15 7 .69 4 .62 6 .15 6 .15 
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ameras at three different distances (4.20, 2.60 and 1.00 m). As

n typical commercial surveillance systems, the database was col-

ected with the camera placed slightly above the subject’s head

nd also the individuals were not required to look at a fixed point

uring the recordings, which is most like the real-world circum-

tance, thus making the dataset much more challenging. In our ex-

eriment, a subset containing five sections of images is selected:

he first section includes images captured by a high-quality photo

amera, images in this section are HR faces; the other four sections

nclude images captured by camera 1–4 at 3 different distances,

mages in these sections are LR faces. Fig. 10 illustrates some sam-

le images of two subjects in SCface dataset. For HR faces, we align

nd crop them into 64 × 64 pixels; for all of the LR faces, we align

nd crop them into 16 × 16 pixels. Fig. 11 shows the cropped im-

ges of samples in Fig. 10 . 

We conduct two sets of experiments on SCface database to

valuate the LR face recognition algorithms. In the first set of ex-

eriments, 130 subjects’ HR face images and their virtual LR im-

ges, which are obtained by downsampling the corresponding HR

nes, are used for training purpose. The LR images captured by

 cameras at 3 distances are considered as probe samples, thus

here are 12 probe sets. It worth noting that the training LR im-

ges and probe LR ones are not captured in the same condition,

hich makes the recognition task more difficult. We set K = 8

nd use the same values of other parameters as before to run

he proposed algorithm. Table 6 displays the recognition results

f various methods in this strict scenario. We only compare the

roposed algorithm to the coupled mapping based methods, be-

ause these methods have shown better performance than super-

esolution based methods in the previous experiments. As can be
een from Table 6 , all coupled mapping based approaches show

xtremely low recognition rates, which are less than 8%. This at-

ributes to the fact that the gallery LR images are virtually gener-

ted, which is not helpful for extracting discriminative features to

ecognize those real LR images captured by cameras. Though the

xperimental setting is quite rigorous, the proposed C-RSDA ex-

ibits better performance than other compared methods. 

In the second set of experiments, we choose the HR images

f the first 65 subjects to be the HR gallery images, and real LR

mages (which were captured by cameras) of the first 65 sub-

ects to be the LR gallery images. The real LR images of remain-

ng 65 subjects are elected to be the LR probe images, hence the

allery LR images and probe LR ones are acquired in the same

ondition, but there is no overlapping subjects in the gallery and

robe sets. We set K = 2 and use the same values of other param-

ters as before. Table 7 displays the recognition results of com-

ared methods on SCface database when the real LR face images

re used in the training process. It can be seen from Table 7 ,

he recognition performance of all the methods is far from satis-

ying. However, compared with other methods, the proposed C-

SDA achieves the highest recognition rates on this real-world

ace dataset, which again demonstrate its effectiveness on LR face

ecognition. As shown in Table 7 , the recognition rates in this ex-

eriment of all methods are higher than those in the former ex-

eriment. One intuitive reason is that there are 65 subjects in the

robe sets, which is the half of that in the previous experiment.

ut the primary cause leading to the improvement of recognition
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Table 7 

The recognition results (%) on SCface dataset when real LR images are used 

for training. 

Cam1 Cam2 Cam3 Cam4 Ave. 

Dis1 (4.2 m) CLPM 3 .08 4 .62 3 .08 3 .08 3 .46 

CMFA 4 .62 4 .62 4 .62 3 .08 4 .23 

SDA 12 .31 12 .31 18 .46 12 .31 13 .85 

C-RSDA 13 .85 13 .85 20 .00 15 .38 15 .77 

Dis2 (2.6 m) CLPM 3 .08 6 .15 4 .62 3 .08 4 .23 

CMFA 5 .38 5 .38 7 .69 5 .38 5 .96 

SDA 15 .38 18 .64 10 .77 23 .08 16 .97 

C-RSDA 16 .92 20 .00 10 .77 24 .62 18 .08 

Dis3 (1 m) CLPM 6 .15 1 .54 1 .54 3 .08 3 .08 

CMFA 10 .00 4 .62 7 .69 8 .46 7 .69 

SDA 16 .92 12 .31 20 .00 16 .92 16 .54 

C-RSDA 20 .00 10 .77 23 .08 20 .00 18 .46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

performance is that the real LR face images are used to extract fea-

tures. By comparing Table 6 and Table 7 , we can observe that SDA

and C-RSDA significantly promote the recognition rates after using

real LR training images, whereas CLPM and CMFA get slight im-

provement. The proposed approach again presents the best perfor-

mance over most probe sets, and achieves the best average recog-

nition rates of 15.77%, 18.08% and 18.46% respectively when the

distance between subjects and cameras are 4.2 m, 2.6 m and 1 m. 

5. Conclusion 

In this paper, we propose a novel coupled mappings based

method, named cluster-based regularized SDA, to cope with low-

resolution face recognition problem where there is only one HR

training sample in each class. The main idea is to employ cluster-

based scatter matrices to regularize the class-based scatter matri-

ces and then to learn coupled mappings simultaneously to project

HR and LR images into a discriminative feature subspace. With lim-

ited training samples, we introduce more discriminative informa-

tion into the feature subspace by exploiting variations from clus-

tering results. We conduct extensive experiments on FERET dataset,

and the impressive results demonstrate that our approach out-

performs some of the state-of-the-art super-resolution techniques

as well as coupled mappings based methods. We then test the

proposed approach on two more complicated databases, i.e., la-

beled faces in the wild (LFW database) and a real surveillance

face database (SCface database), the experimental results on the

two challenging datasets further show its effectiveness on low-

resolution face recognition. 
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