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Abstract We investigate the performance of six different approaches for directional
feature extraction for mass classification problem in digital mammograms. These
techniques use a bank of Gabor filters to extract the directional textural features.
Directional textural features represent structural properties of masses and normal
tissues in mammograms at different orientations and frequencies. Masses and micro-
calcifications are two early signs of breast cancer which is a major leading cause of
death in women. For the detection of masses, segmentation of mammograms results in
regions of interest (ROIs) which not only include masses but suspicious normal
tissues as well (which lead to false positives during the discrimination process). The
problem is to reduce the false positives by classifying ROIs as masses and normal
tissues. In addition, the detected masses are required to be further classified as
malignant and benign. The feature extraction approaches are evaluated over the ROIs
extracted from MIAS database. Successive Enhancement Learning based weighted
Support Vector Machine (SELwSVM) is used to efficiently classify the generated
unbalanced datasets. The average accuracy ranges from 68 to 100 % as obtained by
different methods used in our paper. Comparisons are carried out based on statistical
analysis to make further recommendations.
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1 Introduction

Breast cancer is the second major deadliest cancer that affects women all over the world and
listed at top among major health problems. The statistics provided by National Cancer
Institute, Surveillance, Epidemiology, and End Results (SEER) program, indicate that the
lifetime risk of developing breast cancer among American women is 12.2 % (aka: one in
eight), exceeded only by the lung cancer [2, 45]. In the European Community, breast cancer
represents 19 % of cancer deaths and the 24 % of all cancer cases [14, 24]. 25 % of all breast
cancer deaths occur in women, diagnosed between the age of 40 to 49 years. In the United
States for instance, breast cancer remains the leading cause of death for women in their forties
[24]. The World Health Organization’s International Agency for Research on Cancer (IARC)
has estimated more than one million cases of breast cancer to be faced annually and reported
that more than 400, 000 women die each year from this disease [28]. Cancer can be divided in
different stages 0–4 based on the area it has spread in, using surgical procedures. Lower stage
numbers indicate the early stage of a cancer which can easily be diagnosed. It is therefore
essential to detect the breast cancer at early stage in order to reduce life fatalities [28].
However, detection of breast cancer at its early stages is difficult as it’s usually has no
symptoms at the beginning. The mortality of breast cancer has declined in women of all ages
[28] and this fortunate reduction is considered to be related with the extensive awareness of the
disease, self-screening process, widespread usage of mammographic screening and improve-
ments in the treatment process.

Due to its reliability, mammography (an x-ray image examining method of the breast) is
considered to be a most effective screening method for the detection of breast cancer. The
mammograms are first digitized and then filtered/ analyzed with the help of powerful image
analysis techniques in order to develop computer aided diagnosing (CAD) systems for
effectively assisting the radiologists. A CAD is a set of automatic or semiautomatic tools
developed to assist radiologists in the detection and / or evaluation of mammographic image
[24]. There are three types of breast lesions; mass, calcification and architectural disorder [45].
The target of this research work is to identify an optimized feature extraction strategy to learn
about the structure of each suspicious abnormalities in ROIs and then assigning a malignancy
risk degree using an efficient classification method.

We cannot ignore the importance of biopsy (in the medical terms) in order to detect the
masses, most accurately. It is however an expensive procedure and involves some risks e.g.,
patient discomfort, post biopsy side effects, chances of missing cancerous tissues based on
different biopsy methods and is therefore recommended as an eventual solution for mass
detection purpose. On the other hand, CAD systems are easy to use tools that are inexpensive
and by analyzing the digital mammograms they can effectively assist the radiologists in their
decision making process (as a second expert opinion). The idea of using CAD system for
breast cancer detection is not recent. CAD systems are used earlier for this task and proved to
be useful in the screening process of digital mammograms and in turn detection of early stage
malignancies [24, 28, 45]. However, there exist controversial results and views against the
usage of CAD systems mainly because of their high false positive and false negative rates in
the breast cancer detection, which makes radiologist not really trust them [24]. False negative
results occur when CAD system declares a mammogram to be normal even when breast cancer
is present. The main cause of the false negatives is the density of the breast, as both dense
tissues and tumors are appeared as white regions in the mammogram which makes it difficult
to distinguish between them. As women get older, their breasts become fatty and false
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negatives are less likely to occur. A false positive is a region in the mammogram that is benign
but interpreted as suspicious by the CAD system. High false positive results occur commonly
when analyzing the mammograms of the younger women because of the same reason of dense
breast tissues. In this research work, our motivation is to investigate six different feature
extraction mechanisms to optimize the performance of CAD systems.

For detection of masses in mammograms, we can identify three main stages that constitutes
a CAD system: 1) detection and segmentation of potential abnormal areas, 2) false positive
reduction, and 3) discrimination of benign and malignant masses. The detection and segmen-
tation stage identifies potential mass regions, and detect their precise outlines. The detected
ROIs by this stage include not only masses but suspicious normal tissues as well. The false
positive reduction stage classifies the detected ROIs into mass and normal ROIs. The detected
mass ROIs are further discriminated as benign and malignant in the final stage. Many efforts
have been made so far for false positive reduction and benign-malignant classification but
these are still challenging problems. In this research work, we investigate and compare robust,
optimized and discriminative feature extraction mechanisms for false positive reduction and
benign-malignant classification to effectively address these challenging issues.

The feature extraction technique proposed in [20] is observed to perform well when tested
to identify normal tissues from true malignant masses. This task is however simple as
compared to false positive reduction and benign-malignant classification tasks based on the
fact that the normal tissues can very easily be discriminated from true malignant masses due to
highly dissimilar patterns. In this paper, we are interested in observing the performance of this
feature extraction method and its variations (based on two state of the art feature transforma-
tion strategies), and other Gabor feature extraction techniques exist in the literature, for these
two complex classification problems. The variants of the method in [20] with the collaboration
of feature transformation strategies can further ensure that only the most representative
properties are used (by removing the redundant responses of the bank) for discrimination
between the normal and abnormal tissues. All of these methods analyze the textural properties
of masses using a bank of several Gabor filters (discussed later). The key idea behind the usage
of several Gabor filters is to improve the performance of breast cancer recognition system by
responding strongly to the features that best distinguishes between the normal and abnormal
tissues, from different orientations of filters in different scales. Based on the size of mammo-
gram region, filtered by the bank, extraction of textural patterns can be done either locally
(sub-region of ROI is filtered) or globally (entire ROI is filtered). Both of these local and
global textural descriptors, characterize the micro-patterns (e.g., edges, lines, spots and flat
areas) in digital mammograms that are very helpful for detection of masses [24]. Local textural
descriptors, preserve at the same time the spatial information of masses and other regions in the
digital mammograms and thus become more attractive choice for the same mentioned task.

The filters in the Gabor bank are initialized with different scales and orientations to extract
any possible patterns in the ROIs that might be helpful for discrimination of normal and
abnormal tissues. Although, Gabor filters are used for the breast cancer detection earlier (see
e.g., [20, 45] and references therein), this work propose more variants of the existing feature
extraction strategies [20] which are observed to offer much better performance than their
original form. Feature transformation algorithms (used in this paper) effectively remove the
redundant or irrelevant responses of the Gabor filters and thus are extremely helpful for
improving the performance of a CAD system. Manually extracted normal/ abnormal tissues
are filtered with the Gabor filters to extract directional features which are eventually used for
classification of digital mammograms.

Multimed Tools Appl



The remainder of this paper is organized as follows. In the next section, we review the
related research work. In Section 3, we present the methodology with brief discussion on the
feature extraction strategies and classification algorithm. Subsequently, in Section 4, we
present experimental results to show the effectiveness of the feature extraction techniques.
Finally, Section 5 will conclude this work.

2 Related work

Mass detection problem has attracted the attention of many researchers, and many detection
techniques have been proposed [20]. For a detailed review of these methods, an interested
reader is referred to the review papers [10, 13, 31, 38]. In the following paragraphs, we give an
overview of the most related recent mass detection methods.

Most of the existing methods differ in the types of features that have been used for mass
detection and the way these features have been extracted. Different types of features such as
texture, gradient, grey-level, shape [31] features have been employed for mass detection.
Texture is an important characteristic that helps to discriminate and identify the objects. In
addition to other identification/detection tasks, texture descriptors have been used for detecting
normal and lesion regions in mammograms [29, 37, 42]. Wei et al. [43] extracted
multiresolution texture features from wavelet coefficients and used them for the discrimination
of masses from normal breast tissue on mammograms. They used linear discriminant analysis
for classifying the ROIs as mass or non-mass. This method was tested with 168 ROIs
containing biopsy-proven masses and 504 ROIs containing normal parenchyma, and resulted
in Az (percentage area under ROC curve) equal to 0.89 and 0.86 for the training and test groups.

If texture is described accurately, then texture descriptors can perform better than other
descriptors [24]. Lladó et al. [24] used spatially enhanced LBP (Local Binary Pattern) descriptor,
which is basically a texture descriptor, to represent textural properties of masses and to reduce false
positives; this method achieved an overall accuracy ofAz=0.94±0.02 (percentage area under ROC
curve) on 512 ROIs (256 normal and 256 masses) extracted from mammograms from DDSM
database. LBP based method outperforms other CAD methods for mass detection. But LBP
descriptor builds statistics on local micro-patterns (dark/bright spots, edges, and flat areas etc.) and
is not robust against noise. The scheme proposed by Sampaio et al. [36] used geo-statistic functions
for extracting texture features, SVM for classification and obtained the accuracy of Az=0.87.

Gabor wavelets are among different methods which have been used for texture description in
various image processing and analysis approaches [17, 40]. Gabor filters decompose an image
intomultiple scales and orientations andmake the analysis of texture patterns easy.Mammograms
contain a lot of texture, and as such Gabor filters are suitable for texture analysis of mammograms
[3, 35] as well. Different texture description techniques usingGabor wavelets differ in the way the
texture features are extracted. Gabor wavelets have also been used to extract features for mass
detection [23, 45]. Zheng [45] employed Gabor filters to create 20 Gabor images, which were
then used to extract a set of edge histogram descriptors. He used KNN along with fuzzy c-means
clustering as a classifier. The method was evaluated on 431 mammograms (159 normal cases and
272 containing masses) from DDSM database using tenfold cross validation. This method
achieved true positive (TP) rate of 90 % at 1.21 false positive per image. The data set used for
validation is biased toward abnormal cases which will surely favor the mass cases, and it cannot
be regarded as fair evaluation. This method extracts edge histogramswhich are holistic descriptor,
and does not represent the local textures of masses.
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Lahmiri and Boukadoum [23] used Gabor filters along with discrete wavelet transform
(DWT) for mass detection. They applied Gabor filter bank at different frequencies and spatial
orientations on HH high frequency sub-band image obtained using DWT, and extracted
statistical features (mean and standard deviation) from the Gabor images. For classification,
they used SVM with polynomial kernel. The method was tested on 100 mammograms from
DDSM database using tenfold cross validation. This method achieved an accuracy of 98 %.
Costa et al. [7] explored the use of Gabor wavelets along with principal component analysis
(PCA) for feature extraction, independent component analysis (ICA) for efficient encoding,
and linear discriminant analysis (LDA) for classification. The success rate of this method with
feature extraction using Gabor wavelets was 85.05 % on 5090 ROIs extracted from mammo-
grams in DDSM database.

Geralodo et al. [22] have used Moran’s index and Geary’s coefficients as input features for
SVM classifier and tested their approach over two cases i.e., normal vs. abnormal and benign vs.
malignant regions classification. They obtained accuracy of 96.04 % and Az ROC of 0.946 with
Geary’s coefficient and an accuracy of 99.39 % and Az ROC of 1 with Moran’s index for the
classification of normal or abnormal cases. For the second case (benign vs. malignant), an
accuracy of 88.31 % and Az ROC of 0.804 with Geary’s coefficient and accuracy of 87.80 %
and Az ROC of 0.89 withMoran’s index is reported. The method is tested over 1394 ROI images
collected fromDDSMdatabase using tenfold cross validation. In the research work of Ioan Buciu
et al. [21], raw magnitude responses of 2D Gabor wavelets are investigated as features for
proximal SVM. A total of 322 mammogram images from Mammographic Image Analysis
Society (MIAS) database are used for three experimental cases i.e., discrimination between the
three classes: normal, benign and malign (using one against all SVM classification), normal vs.
tumor (benign and malign) and benign vs. malign using 80 % data features for training and 20 %
as testing sets. The features dimension in this case is equal to the number of pixels present in the
downsampled mammogram images (for a single Gabor filter), later PCA is used for dimensional
reduction. The best results (in terms of accuracy) for the three experimental cases are: 75, 84.37
and 78.26 %, respectively. In order to observe the robustness of the method, ROI images
corruptedwith quantum noise are used for feature extraction and themethod achieves comparable
results (lesser decrease in recognition rate) with those of noise-free ROI images.

The aforementioned research works related to 2D Gabor wavelets are mostly concerned
with using a generic (non-optimized) setting of filters present in the bank [1, 4, 21, 33, 45].
Following the same trend, we identified some main contributions of this paper as follows:

& Comparison of feature extraction methods for false positive reduction and benign-
malignant classification.

& A new Gabor feature extraction method named Statistical Magnitude Gabor Response
(SMGR) is proposed which significantly reduces the feature size for classification.

& The variants of windows based SMGR method (proposed in our earlier work [20]) are
supported with two state of the art feature reduction algorithms based on which they have
reduced the erroneous predictions up to a significant level and thus are very attractive for
the radiologists.

& With tenfold cross validation experiments, methods are confirmed to perform robustly or
weakly when trained with different ratios of normal and abnormal ROIs.

& Detailed experiments using common machine learning evaluation methodologies and
measures e.g., area under the ROC value, sensitivity, specificity, accuracy, are provided
for a more general performance comparisons.
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3 Methods

In this section, we discuss the feature extraction strategies one by one, for mass classification
in digital mammograms. We review commonly used feature reduction techniques (in
Section 3.2 and 3.3), which we are going to employ for extracting different types of Gabor
features. We have observed (in our experiments) that different methods have quite a different
impact on the recognition rate. Some methods give poor performance and the others are
extremely accurate. This section is further divided in the following subsections. First, a brief
overview of the Gabor filter bank is provided. Afterwards, feature transformation algorithms
are discussed that are helpful for achieving better performance results followed by feature
extraction methods. In the final subsection, we reviewed the SEL based weighted support
vector machine that is used for classification purpose.

3.1 Gabor filter

Texture is an important part of the visual world of animals and humans and they can
successfully detect, discriminate, and segment texture using their visual systems [32]. Textural
properties in an image can be used to collect different information’s e.g., micro-patterns like
edges, lines, spots & flat areas. Masses in an ROI do contain strong edges and local spatial
patterns at different frequencies and orientations. These micro-patterns are helpful in recogni-
tion of cancerous regions in a CAD system. Gabor filters can effectively be used to detect these
micro-patterns & this research work aims to validate this statement. A brief overview of the
Gabor filters is given in the next paragraph.

Gabor filters are biologically motivated convolution kernels [8] that have enjoyed widely
usage in a myriad of applications in the field of computer vision & image processing e.g., face
recognition [44], facial expression recognition, iris recognition, optical character recognition,
vehicle detection [46] etc. In order to extract local/ global spatial textural micro-pa tterns in
ROIs, Gabor filters can be tune with different orientations and scales thus provide powerful
statistics which could be very useful for breast cancer detection. The general function g(x,y) of
2D (for image) Gabor filter family can be represented as a Gaussian kernel modulated by an
oriented complex sinusoidal wave can be described [46]:

g x; yð Þ ¼ 1

2πσxσy
:e

−1
2

~x
2

σ2x
þ~y

2

σ2y
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:e

2π jW~x

� �
: ð1Þ

~x ¼ x:cosθþ y:sinθ and ~y ¼ −x:sinθþ y:cosθ: ð2Þ
Where σx and σy are the scaling parameters of the filter and describe the neighborhood of a

pixel where weighted summation takes place. W is the central frequency of the complex
sinusoidal and θ∈[0,π) is the orientation of the normal to the parallel stripes of the Gabor
function.

A generic strategy for constructing the Gabor filter bank is adopted from [26]. A particular
bank of Gabor filters contain multiple individual Gabor filters adjusted with different param-
eters (scaling, orientation and central frequency). In this paper, different combination of Gabor
filter bank e.g., a Gabor filter bank containing 6 filters (2 scales{S}×3 orientations{O})
referred to as GS2O3, 15 filters i.e., GS3O5, 24 filters i.e., GS4O6 and 40 filters i.e.,

Multimed Tools Appl



GS5O8 are used with initial max frequency equal to 0.2 and initial orientation set to 0. The
orientations and frequency for a bank are calculated using following equations [46]:

orientation ið Þ ¼ i−1ð Þ*π
O

where i ¼ 1; 2;……;O total orientationsð Þf g ð3Þ

frequency ið Þ ¼ f max¼0:2ffiffiffi
2

p	 
i−1 where i ¼ 1; 2;……; S total scalesð Þf g : ð4Þ

3.2 Principal component analysis

Principal component analysis (PCA also known as Karhunen Loève transform) [11, 39] is a
popular feature reduction technique that linearly projects a high-dimensional feature vector
(e.g., Gabor feature vector without class label, Eq. 13) to a low-dimensional space whose
components are uncorrelated. The low-dimensional space (eigenspace) is spanned by the
principal components which are the linear combinations of the original space. Given an
unlabeled Gabor feature vector (Γi∈ℝJ) representing the ith ROI, first, an average Gabor
feature vector ψ is computed for a total of N ROIs in the training data.

ψ ¼ 1

N

XN
i¼1

Γ i: ð5Þ

In order to ensure that the data samples have zero mean, the difference (Φi=Γi−ψ) of each
Gabor feature vector from the average Gabor feature vector is calculated and the covariance
matrix C is estimated as follows:

C≈
1

N

XN
i¼1

ΦiΦi
T ¼ AAT : ð6Þ

Here, A=[Φ1Φ2....ΦN]. Since, it is computationally intractable to find a number of J
eigenvectors ui and eigenvalues for this high dimensional correlation matrix C∈ℝJ×J of a
typical ROI image size, the eigenvectors vi for the matrix ATA∈ℝN×N are calculated first, where
J≫N. The eigenvectors ui corresponding to the correlation matrix can then be calculated as
follows [39]:

ui ¼
XN
j¼1

vi jΦ j ð7Þ

Given a high dimensional input Gabor feature vector (Γ∈ℝJ), the subtraction from mean is
done (Φ=Γ−ψ) and projection to low dimensional space is performed as follows:

Φ
∼
¼

X
i¼1

Rk

wiui; where wi ¼ ui
TΓ : ð8Þ

Here, wi are the coefficients of projection matrix and Rk are the first few k-ranked
eigenvectors that correspond to the k largest eigenvalues. In our experiments, we have used
k=[5,10,15,.....All] where ‘All’ corresponds to all the eigenvectors.

Multimed Tools Appl



3.3 Linear discriminant analysis

Linear discriminant Analysis (LDA) [11, 15] is a supervised linear transformation based
feature reduction strategy. It projects a high-dimensional feature vector (e.g., Gabor feature
vector with class label, Eq. 13) to a low-dimensional space such that the ratio between intra
class scatter (within class) SW and the inter class (between class) scatter SB is maximized.
Considering the same definition of the symbols as given in Section 3.2 for PCA, these scatters
can be defined as follows for the multiclass classification problem containing C class labels:

SB ¼
XC
i¼1

Ni Ψ i−Ψð Þ Ψ i−Ψð ÞT : ð9Þ

SW ¼
XC
i¼1

X
xk∈yi

xk−Ψ ið Þ xk−Ψ ið ÞT : ð10Þ

Here, ψi corresponds to the average Gabor feature vector for class i, Ni is the number of
training samples that belong to class i and xk is the kth instance in class i. So, we try to find out
the optimal projectionWoptimal such that the ratio between intra class scatter matrix of projected
samples and the inter class scatter matrix of projected samples is maximized, given as follows:

Woptimal ¼ argmax Wð Þ WTSBW
�� ��
WTSWW
�� �� : ð11Þ

For the selection of most representative features in the projected space, the setting of k=[5,
10,15,.....All] is used, where k represents the number of projected features used for classifica-
tion purpose. In our case, the number of training samples are much lesser than the number of
features and therefore the intra class scatter matrix would tend to be a singular matrix and the
LDA computational will be so demanding. In order to cater this issue, PCA is used as a pre-
processing step to project the original training data into low-dimensional space and then LDA
projection is performed.

3.4 Feature extraction strategies

A detail description of six different feature extraction methods is given in follows.

Magnitude gabor responses transformed with PCA and LDA The feature extraction
method presented in [21] produces Magnitude Gabor Responses (MGR) by applying Gabor
filters to the entire ROI image and use magnitude values of the filtered pixels, directly as feature
values without any further post processing. The dimension of features in this case is equal to the
number of pixels in ROIs, multiplied with the number of Gabor filters, present in the bank. For
example, using MGR [21], the dimension of features is about 40960 for an ROI resolution of
32×32 pixels with a bank containing 40 Gabor filters. Clearly, such a huge dimension makes
the classification task challenging due to the presence of several irrelevant and redundant Gabor
responses. In order to handle this shortfall of MGR, PCA has been used [21]. In addition to
PCA, LDA can also be used to overcome the same problem. In this way, two feature extraction
methods are formed; first, PCA_MGR that uses PCA, and second, LDA_MGR that uses LDA,
to transform the features, generated byMGR, into low dimension space.
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First order statistics of magnitude gabor responses The third feature extraction strategy
(proposed in this paper) is based on the further processing of MGR features such that when a
Gabor filter is applied to an ROI, the resultant magnitude Gabor responses are represented with
only three statistical values (mean, standard deviation and skewness), thus called Statistical
Magnitude Gabor Response (SMGR) based feature extraction strategy. SMGR reduces the
dimension of extracted features, significantly, as compared to MGR and WSMGR (discussed
below), and offers comparable recognition rate to that of the MGR. The dimension of features
produced with SMGR is already low and therefore doesn’t require any further reduction.

When a Gabor filter is applied to a pixel value, it generates a complex number having real
and imaginary parts. The magnitude/ absolute value of the complex number (a + bi) is
calculated as follows:

aþ bij j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
: ð12Þ

For SMGR, a single Gabor filter is applied to all the pixels of ROI and magnitude values
are calculated. Later, three statistical values (mean, standard deviation and skewness) of the
magnitude values are used as features for that particular Gabor filter. The method is repeated
for all the Gabor filters in the bank to generate the feature vector for the given ROI.

The methods discussed so far are global feature extraction techniques; in the following we
discuss some local feature extraction techniques:

Windows based first order statistics of magnitude Gabor responses In [20], moments
based magnitude values for a group of pixels in the overlapping windows are used to construct
a feature vector. Instead of applying a Gabor bank on the entire ROI image, an ROI is first
segmented/ partitioned into overlapping windows. In particular, each hypothesized ROI image
is first divided into equal sizes of square patches/ blocks and then later by combining these
patches several overlapping windows are formed (for more detail [20]). In this way, by
increasing/ decreasing the size of a patch, ROI image can be partitioned in different sizes &
numbers of windows. Feature extraction (for WSMGR) is performed by convolving ROI
windows with a Gabor filter bank. So, WSMGR method actually generates Windows based
Statistical Magnitude Gabor Responses (WSMGR) for the textural patterns present in the ROIs.
Gabor filters are applied to the overlapping windows of ROIs and statistical representative
values for the filtered pixels in these windows are used as feature values. A slight modified
design strategy (for feature extraction) is already used for texture base features extraction [26,
46]. Bhangaleet. al. [4] applies Gabor filter on an entire ROI and divide the filtered ROI into
non-overlapping blocks and later, for a block, mean and standard deviation of the pixels
intensities (in the block) are used as feature values. For WSMGR, an ROI is first partition into
overlapping windows (i.e., small regions as shown in Fig. 1) and a single Gabor filter is
applied to all the pixels of the window and magnitude values are calculated. Later, three
statistical values (mean, standard deviation and skewness) of the magnitude values are used as
features for that particular Gabor filter. The method is repeated for all the Gabor filters in the

Fig. 1 Segmentation of ROI in
blocks and overlapping sub-
windows (left to right)
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bank on all the windows of ROI to generate the feature vector for the given ROI. Partitioning
the ROI, prior to filtering, makes the filtering process highly parallelizable e.g., in the presence
of multi-core CPUs and GPUs, multiple windows can be filtered, in parallel [20].

The raw responses of Gabor filters bank (in the form of complex values) can also be used as
features for classification (as was the case for MGR) but usually some post processing is
performed to acquire most representative features e.g., (Gabor energy features, threshold
Gabor features and moments based Gabor features) [17, 46]. For WSMGR, magnitude
responses of each Gabor filter in the bank are collected from all windows and represented
by three moments: the mean μi,j, the standard deviation σi,j and the skewness ki,j (where i
corresponds to the ith filter in the bank and j to the jth window) [20].

The moments correspond to the statistical properties of a group of pixels in a window and
positioning of pixels is essentially discarded which compensates for any errors that might
occur during extraction/ segmentation of ROIs into overlapping windows. Suppose, we are
using a Gabor bank of 40 filters (i.e., GS5O8); applying this filter on nine windows [20] of a
single ROI, yields a feature vector of size 1080 + (1) class. A row feature vector in this form is
shown below:

μ1;1;σ1;1; k1;1;μ2;1; σ2;1; k2;1;…;μ40;1;σ40;1; k40;1;μ1;2;σ1;2; k1;2; :…;μ40;9;σ40;9; k40;9; class
� 

: ð13Þ
WSMGR significantly reduces the dimension of extracted features (without feature reduc-

tion strategy) as compared to MGR, as shown in Table 1. The dimension of features using
SMGR is lower than WSMGR, however, the recognition performance of WSMGR is better
than SMGR as discussed in Section 4. We further collaborate the WSMGR with two feature
transformation strategies (PCA and LDA) in order to observe any performance gain. In this
way, two more feature extraction methods are formed; first, PCA_WSMGR that uses PCA,
and second, LDA_WSMGR that uses LDA, to transform the features, generated by WSMGR,
into low dimension space.

Table 1 Feature dimension for MGR, SMGR and WSMGR for different experimental configurations, without
applying feature transformation strategies

Res. Block WSMGR Gabor bank Dataset No. of features

MGR WSMGR SMGR

32 8 GS2O3 D1 6144 162 18

GS3O5 D2 15360 405 45

GS4O6 D3 24576 648 72

GS5O8 D4 40960 1080 120

64 16 GS2O3 D5 24576 162 18

GS3O5 D6 61440 405 45

GS4O6 D7 98304 648 72

GS5O8 D8 163840 1080 120

128 32 GS2O3 D9 98304 162 18

GS3O5 D10 245760 405 45

GS4O6 D11 393216 648 72

GS5O8 D12 655360 1080 120

Average: 152320 573.75 63.75
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3.5 Classification

In this paper, we have investigated Successive Enchantment Learning based weighted
Support Vector Machine (SELwSVM) for the classification of tumors, present in the
ROIs. In our case, we are dealing with a binary classification problem where the
target is to build a classification model that can accurately label the unseen data to
either belong to the ‘mass present’ or ‘mass absent’ classes. SVM classifiers [41] are
the most advanced ones, generally, designed to solve binary classification problems;
thus perfectly suite our requirements. The only difference between SELwSVM [12,
27] and normal SVM lies in the selection of training samples to be use during the
training phase based on a weighting scheme assign to the class labels. SELwSVM
makes use of a subset of entire training data to build the classifier and assign unequal
weights to the class labels (e.g., based on their frequencies). Whereas on the other
hand, normal SVM exploits complete training data to learn the classification model
with equal weights assigned to each class label. Keeping in view this difference, we
first discuss the weighting scheme (for the class labels) use in our work along with
the successive enhancement learning strategy followed by a brief review of SVM
classifier.

SELwSVM [12, 27] is recommended to be use when dealing with highly skewed
datasets for the classification purpose. In general, when extracting ROIs from different
locations of mammograms, most of these ROIs are labeled as Bmass absent^ and only a
few of these belong to the Bmass present^ class; thus results in a highly unbalanced
dataset. This property of mass classification dataset makes SELwSVM an ideal approach
to be investigated for the classification purpose. Moreover, misclassification of Bmass
present^ cases is more dangerous and has severe effects towards the causalities. Hence,
accuracy of Bmass present^ class is more important and misclassification of this class
should be given high penalty as compared to the Bmass absent^ class. It can be achieved
by assigning higher weights to the Bmass present^ class and in turns assigning higher
penalty for the misclassification of samples belonging to the same class. We adopt
weighting scheme as used in [27] that assign the ratio of penalties for different classes
to the inverse ratio of the training class sizes and same weights for the samples belonging
to same class. The weight of each class is given as:

W 1

L2

�
¼ W2

L1
;W 1 þW 2 ¼ 1: ð14Þ

Here, W1,W2 and L1,L2 denotes the weight and instance numbers in majority and
minority classes, respectively. A potential concern when dealing with highly skewed
dataset is whether the randomly selected training samples are well representative of
the majority class [12]. To address this issue, we use successive enchantment learning
strategy where the basic idea is to select iteratively the most representative BMC
absent^ examples from all the available training images while keeping the total
number of training examples small [12]. This method of learning resembles the
bootstrap technique [27] and shown to improve the generalization performance of
SVM [12, 27]. The pseudo code of SEL is given as follows; for more understanding,
readers are kindly referred to [12] where it is discussed, how choosing Bdifficult
training samples^ from the majority class actually improves the recognition rate?
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Input: Training data (Gabor textural features for the ROIs with the labels)
Output: Classification model
Select randomly an initial set of training examples ‘Z ’ from the
available training data
Classification model = Train the SVM classifier with ‘Z ’
REPEAT

Apply the Classification model to all the mammogram regions
(except those already present in ‘Z ’)
Record the Bmass absent^ locations that have been misclassified
as Bmass present^
Collect ‘N ’ new input examples (randomly) from the
misclassified Bmass absent^ locations
Update the set ‘Z ’ by replacing ‘N ’ Bmass absent^ examples that
have been classified correctly by
weighted SVM with the newly collected Bmass absent^ examples
Classification model = Re-train the weighted SVM classifier
with the updated set ‘Z ’

UNTIL (convergence is not achieved i.e., accuracy doesn’t improve
in three consecutive iterations)
Algorithm 1. Successive enhancement learning algorithm
Considering the learning scheme of SVM, the aim is to find an optimal hyper-plane that can

separate the data belonging to different classes with large margins in high dimensional space
[5]. The margin is defined as the sum of distances to the decision boundary (hyper-plane) from
the nearest points (support vectors) of the two classes. SVM formulation is based on statistical
learning theory and has attractive generalization capabilities in linear as well as non-linear
decision problems [6, 41]. SVM uses structural risk minimization as opposed to empirical risk
minimization [41] by reducing the probability of misclassifying an unseen pattern drawn
randomly from a fixed but unknown distribution.

Let D={(xi,yi)}i=1
N ⊂ℝJ×{+1,−1} be a training set where xi is the ith training instance

containing J features, yi is the class label of xi having two values {+1 or −1}. Finding an
optimal hyper-plane based on large margin framework implies solving a constrained optimi-
zation problem using quadratic programming and can be stated as:

f xð Þ ¼
XN
i¼1

αiyik xi; xð Þ þ b ð15Þ

Where αi>0 are the Langrange multipliers, k(xi,x) is the kernel function and sign of f(x)
gives the membership class of x. For linearly separable problems or linear SVM, kernel
function is simply the dot product of the two given points in the input space. However, for
non-linear SVMs, the original input space is mapped to the higher dimensional space through a
non-linear mapping function (possibly making the data linearly separable), using different
suitable kernels (for computational efficiency) defined as a dot product in the new space and
satisfies the Mercer’s condition [41]. In this new formulation, the misclassification penalty or
error is controlled with a user defined parameter C (regularization parameter, controlling
tradeoff between error of SVM and margin maximization), and is tied with the kernel. There
are several kernels available to be used e.g., linear, polynomial, sigmoid, radial basis function
(RBF) etc. In our experiments, RBF kernel is used as given by:
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k xi; xð Þ ¼ exp −γ xi−xk k2
� �

; γ > 0: ð16Þ

The γ is the width of the kernel function. There are two parameters now tied with the RBF
kernel, γ and C. Tuning these parameters in an attempt to find a better hypothesis is called
model selection procedure. For model selection, we have first performed a loose grid search
(coarse search for computational efficiency) to find the better region in the parameter space.
Later, the finer grid search is conducted in the region found by loose grid search. This model
selection procedure is recommended in the work of Chih-Wei Hsu et al. [18]. The selected
parameters are feed into the kernel and SVM is finally applied to our data sets. Detailed
discussion on the statistical formulation and computational aspects of SVM can be found in the
work of Vapnik [41].

4 Results & discussion

In this section, the experimental results for all the feature extraction strategies (discussed in
Section 3) are presented and discussed in a fair amount of detail. We conducted the experi-
ments for two problems: false positive reduction i.e., to classify ROIs into normal and mass
(benign + malign) and, the classification of mass ROIs into benign and malignant. First,
overview of the database used for the validation of the methods is given. Then, a fair amount
of discussion is carried out for the empirical evaluation of the methods for the two diagnosis
problems. The extracted ROIs are in different sizes, for processing them with Gabor filter
bank, it is necessary to resize them into the same resolution; we tested three different
resolutions: 128×128, 64×64 and 32×32. For extracting features (based on WSMGR), each
ROI can be partitioned into blocks of different sizes for defining overlapping windows. We
tested three block sizes: 32×32, 16×16 and 8×8. Afterwards, we perform statistical compar-
ison of the methods (in terms of recognition rate and area under the ROC value) using a non-
parametric Friedman test with Holm post-hoc test [9, 16] in order to see whether or not the
differences in performance of different methods are actually statistically significant.

4.1 Database & evaluation methodology

The mammogram images used in our experiments are taken from Mammographic Image
Analysis Society (MIAS) [25] database; this database consist of more than 2000 cases and is
commonly used as a benchmark for testing new proposals dealing with processing and
analysis of mammograms for breast cancer detection. Each case in this database is annotated
by expert radiologists; the complete information is provided as an overlay file. The locations of
masses in mammograms specified by experts are encoded as code-chains. We randomly
selected 109 cases from the database. Using code chains, we extracted 20 ROIs which contain
true masses; the sizes of these ROIs vary depending on the sizes of the mass regions. In
addition, we extracted 54 ROIs containing normal but suspicious tissues and 35 benign ROIs.
Some sample ROIs are shown in Fig. 2.

The evaluation of the methods is performed using tenfold cross validation and area under
the ROC curve (Az value) analysis. In particular, a data set is randomly partitioned into ten
non-overlapping and mutually exclusive subsets. For the experiment of fold i, subset i is
selected as testing set and the remaining nine subsets are used to train the classifier. Using
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tenfold cross validation experiments, the performance of methods can be confirmed against
any kind of selection biased of the samples for training and testing phases. It also helps in
determining the robustness of the methods when tested over different ratios of normal and
abnormal ROIs used as training and testing sets (due to random selection, ratios will be
different). The SVM classifier gives a membership value of each class when an unknown
pattern is presented to it. The ROC (receiver operator characteristics) curve can be obtained by
varying the threshold on this membership value. The area under ROC curve (Az) is used as a
performance measure. The other commonly used evaluation measures are accuracy or recog-
nition rate (RR) = (TP+TN)/(TP+FP+TN+FN), sensitivity (Sn) = TP/(TP+FN), specificity
(Sp) = TN/(TN+FP), where TNis the number of true negatives, TP is that of true positives, FP
is that of false positives and FN denotes the number of false negatives.

4.2 False positive reduction

In this section, the classification of diagnosis case (suspicious normal vs. masses) is
investigated based on the proposed method. Mass ROIs contain two types of ROIs: 1)
benign, and 2) malignant. It becomes difficult to discriminate between the normal and
mass ROIs mainly because of the reason that the benign ROIs are structurally closer to
both the normal and mass ROIs. One major point in favor of WSMGR is its low-
dimensional feature space as compared to the huge dimensional space generated under
the feature extraction strategy of MGR [21]. SMGR on the other hand results in the
smallest feature size, see e.g., Table 1. It may please be noted that the block size is only
relevant to WSMGR strategy as given in Table 1. In Tables 2 and 3, experimental results
are given for the diagnosis case (normal vs. masses) for all the feature extraction
strategies (discussed in Section 3) based on performance measures: accuracy and Az,
respectively. It can easily be observed that the dimension of average number of features
generated using WSMGR is substantially smaller than the dimension of features pro-
duced with MGR as given in Table 1. This reduction in feature space not only makes the
WSMGR method computationally less demanding but it also improves the recognition

Fig. 2 (top row) Normal but suspicious ROIs (middle row) Benign mass ROIs (bottom row) Malignant mass
ROIs
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rate of the SELwSVM, as discussed in follows. For convenience and ease of reference,
dataset names are assigned to different experimental configurations e.g., D1 to D12.

The performance of LDA_WSMGR, in terms of all the reported average performance
measures, is better than all of the other feature extraction strategies, as can be observed from
Figs. 3 and 4, and Tables 2 and 3. In fact, WSMGR (without using any feature transformation

Table 2 Performance of feature extraction strategies over different resolutions of ROIs using tenfold cross
validation based on accuracy (normal vs. masses)

Dataset Accuracy

SMGR WSMGR PCA_MGR PCA_WSMGR LDA_MGR LDA_WSMGR

D1 67.22±09.31 74.31±9.38 69.58±15.60 77.78±09.82 70.56±12.09 96.25±11.86

D2 67.08±05.71 77.08±16.63 80.42±06.46 80.69±14.78 72.08±17.14 98.75±3.95

D3 68.33±08.38 79.58±11.88 79.58±12.18 84.44±14.40 68.33±10.24 97.50±7.91

D4 69.72±09.39 80.42±14.68 82.78±10.70 82.92±10.44 74.31±14.82 98.75±3.95

D5 70.42±13.78 87.64±10.22 71.94±16.61 86.53±12.48 70.56±10.89 98.75±3.95

D6 70.83±10.02 81.53±9.07 76.94±22.92 82.92±11.98 71.53±10.78 97.50±7.91

D7 68.33±05.96 85.28±9.58 74.58±11.69 85.42±09.63 72.36±15.01 100.00±0.00

D8 67.08±05.71 80.69±19.28 76.94±08.59 84.17±15.54 72.08±14.98 97.50±7.91

D9 68.47±11.13 79.03±8.77 74.58±11.69 83.89±14.54 81.67±14.70 95.00±15.81

D10 65.83±05.12 77.08±11.17 76.81±10.94 84.03±11.66 79.17±10.35 98.75±3.95

D11 65.83±05.12 81.81±16.74 75.56±11.53 86.81±11.61 77.78±22.65 98.75±3.95

D12 67.08±05.71 81.67±12.10 75.56±09.91 81.81±15.66 74.17±15.16 98.75±3.95

Average: 68.02±1.65 80.51±3.60 76.27±3.59 83.45±2.52 73.72±3.94 98.02±1.35

Table 3 Performance of feature extraction strategies over different resolutions of ROIs using tenfold cross
validation based on Az. (normal vs. masses)

Dataset Az.

SMGR WSMGR PCA_MGR PCA_WSMGR LDA_MGR LDA_WSMGR

D1 0.083±0.180 0.350±0.201 0.260±0.336 0.439±0.259 0.237±0.349 0.927±0.232

D2 0.033±0.105 0.420±0.388 0.489±0.292 0.499±0.384 0.473±0.236 0.980±0.063

D3 0.083±0.180 0.538±0.247 0.562±0.257 0.679±0.298 0.140±0.252 0.933±0.211

D4 0.280±0.124 0.577±0.280 0.663±0.214 0.633±0.249 0.439±0.333 0.980±0.063

D5 0.270±0.271 0.708±0.242 0.403±0.297 0.710±0.251 0.220±0.253 0.967±0.105

D6 0.264±0.277 0.582±0.203 0.563±0.353 0.624±0.255 0.377±0.269 0.953±0.148

D7 0.067±0.141 0.687±0.199 0.394±0.303 0.704±0.204 0.477±0.313 1.000±0.000

D8 0.033±0.105 0.527±0.454 0.476±0.179 0.587±0.378 0.388±0.314 0.953±0.148

D9 0.170±0.228 0.573±0.197 0.338±0.279 0.655±0.295 0.602±0.328 0.927±0.232

D10 0.000±0.000 0.598±0.196 0.459±0.230 0.652±0.247 0.563±0.177 0.980±0.063

D11 0.000±0.000 0.641±0.334 0.464±0.286 0.729±0.251 0.635±0.348 0.967±0.105

D12 0.033±0.105 0.532±0.276 0.413±0.198 0.539±0.349 0.370±0.356 0.967±0.105

Average: 0.11±0.11 0.56±0.10 0.46±0.11 0.62±0.09 0.41±0.15 0.96±0.02
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strategy) is better than PCA_MGR and LDA_MGR, keeping in view the average accuracy and
average Az. values across all the datasets. SMGR perform very poorly with (11.80±12.01)
average sensitivity and (0.11±0.11) average Az. value and therefore cannot be considered as a
robust and reliable method for false positive reduction problem. The best case results are
highlighted for each algorithm in Tables 2 and 3. We can see that LDA_WSMGR obtained
accuracy of (100 %) with (Az.=1) for D7 which corresponds to the experimental configuration
of 64×64 ROI resolution, 16×16 WSMGR block size and the bank with 24 filters denoted as
GS4O6. This shows the importance of considering the distinguishing power of features based
on the statistics of available class labels associated with the data samples (as used for LDA).
The average performance of LDA is observed to be consistent (based on all performance
measures) and always give best results.

4.3 Discrimination of benign and malignant

This section summarizes the results for another difficult classification problem i.e., the
discrimination between benign and malignant masses. The discrimination task is relatively
hard in this case due to highly identical patterns and similar structures of the two classes
(benign and malignant) present in the selected digital mammograms. Figures 5 and 6 shows
the comparison of the methods based on sensitivity and specificity. For the experimental case
(benign vs. malignant), best average percentage accuracy of (100.00±0.00) and best average
Az. value of (1.000±0.000) corresponds to a number of different configurations of input
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Fig. 3 Performance of feature extraction strategies over all the datasets (D1-D12) using tenfold cross validation
based on sensitivity (normal vs. masses)
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Fig. 4 Performance of feature extraction strategies over all the datasets (D1-D12) using tenfold cross validation
based on specificity (normal vs. masses)
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resolution size, block size and Gabor bank as shown in Tables 4 and 5 for LDA_WSMGR.
LDA_WSMGR is again observed to be more accurate (in terms of all performance measures)
and consistent as compared to its five competitors and thus recommended to be use for mass
classification problem. All the algorithms (except LDA_WSMGR) have resulted in almost the
same performance with slight differences based on average accuracy and Az. values, observed

Table 4 Performance of feature extraction strategies over different resolutions of ROIs using tenfold cross
validation based on accuracy (benign vs. malign)

Dataset Accuracy

SMGR WSMGR PCA_MGR PCA_WSMGR LDA_MGR LDA_WSMGR

D1 72.67±12.35 69.00±21.03 77.33±24.33 74.33±15.72 79.67±14.18 98.00±6.32

D2 70.67±16.61 69.67±19.47 77.00±17.32 76.67±14.14 78.00±17.44 96.00±12.65

D3 74.33±19.94 74.33±15.72 74.67±11.67 77.67±24.40 74.33±18.33 98.00±6.32

D4 72.33±19.63 74.00±16.39 75.00±14.25 78.00±12.39 82.00±18.41 100.00±0.00

D5 72.33±24.60 78.00±11.24 76.00±17.55 87.67±16.11 74.00±14.38 94.00±18.97

D6 73.00±18.56 73.33±22.28 79.33±20.42 80.67±21.13 75.00±14.25 96.00±12.65

D7 78.67±17.79 72.67±12.35 81.67±14.68 80.33±16.51 83.67±15.75 96.00±12.65

D8 71.00±21.03 71.67±22.18 80.00±10.66 84.33±16.71 71.67±18.48 100.00±0.00

D9 75.00±14.25 72.00±15.96 77.67±18.13 74.33±24.29 71.33±14.50 98.00±6.32

D10 70.67±9.91 71.67±16.94 76.67±15.07 72.67±13.41 69.00±25.05 100.00±0.00

D11 77.00±10.71 72.00±13.90 76.67±17.98 74.00±18.91 69.67±12.91 96.00±12.65

D12 77.00±15.43 73.67±18.75 75.00±16.27 81.00±15.56 72.00±13.90 96.00±12.65

Average: 73.72±2.69 72.67±2.33 77.25±2.15 78.47±4.53 75.03±4.81 97.33±1.97

Table 5 Performance of feature extraction strategies over different resolutions of ROIs using tenfold cross
validation based on Az. (benign vs. malign)

Dataset Az.

SMGR WSMGR PCA_MGR PCA_WSMGR LDA_MGR LDA_WSMGR

D1 0.442±0.261 0.446±0.355 0.538±0.373 0.371±0.391 0.546±0.305 0.967±0.105

D2 0.333±0.333 0.471±0.328 0.500±0.312 0.463±0.250 0.488±0.336 0.933±0.211

D3 0.450±0.352 0.533±0.319 0.413±0.167 0.538±0.373 0.425±0.369 0.950±0.158

D4 0.471±0.357 0.425±0.284 0.408±0.339 0.471±0.244 0.688±0.306 1.000±0.000

D5 0.467±0.341 0.567±0.206 0.492±0.310 0.758±0.325 0.388±0.208 0.900±0.316

D6 0.350±0.412 0.533±0.401 0.571±0.376 0.658±0.330 0.350±0.337 0.933±0.211

D7 0.588±0.353 0.375±0.281 0.538±0.373 0.571±0.376 0.688±0.283 0.933±0.211

D8 0.479±0.369 0.350±0.412 0.579±0.197 0.721±0.326 0.338±0.408 1.000±0.000

D9 0.404±0.325 0.300±0.350 0.533±0.373 0.508±0.348 0.250±0.354 0.967±0.105

D10 0.308±0.283 0.463±0.221 0.383±0.393 0.379±0.367 0.538±0.355 1.000±0.000

D11 0.517±0.194 0.354±0.309 0.483±0.337 0.513±0.355 0.250±0.264 0.933±0.211

D12 0.517±0.311 0.442±0.351 0.496±0.303 0.588±0.332 0.275±0.381 0.900±0.316

Average: 0.44±0.08 0.44±0.08 0.49±0.06 0.54±0.12 0.44±0.16 0.95±0.04
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across all the datasets. It may please also be noted that the experimental configurations are
playing an important role in achieving results with varying performance levels, e.g., the Az.
value of PCA_WSMGR is 0.371±0.391 for D2 (32×32 ROI resolution, 8×8 WSMGR block
size and the bank denoted as GS3O5) which get improves up to 0.758±0.325 using the same
feature extraction strategy in case of D5 (64×64 ROI resolution, 16×16 WSMGR block size
and the bank denoted as GS2O3).

We empirically described that the WSMGR method is better than MGR in terms of
feature complexity and discrimination power for both the diagnosis cases (false positive
reduction and discrimination of benign and malignant). Moreover, when WSMGR is
compared with SMGR, both gives same performance for (benign vs. malign) case.
However, the performance of SMGR is poor for (normal vs. masses) case and therefore
this feature extraction strategy cannot be considered as robust method for mass classifi-
cation problem (in general). WSMGR is a robust method for feature extraction and gives
better results; it can be observed however that the performance of this method is still
turned to be poor in terms of average sensitivity and Az. and therefore need further
refinement. As a refinement of WSMGR, its variant LDA_WSMGR (that uses LDA
transformation strategy) has significantly improved the results and achieved 100 %
accurate recognition rate for both the diagnosis cases. In the next subsection, we
elaborate about the statistical differences between the performance of feature extraction
methods based on average accuracy and Az. values.
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Fig. 5 Performance of feature extraction strategies over all the datasets (D1-D12) using tenfold cross validation
based on sensitivity (benign vs. malign)
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Fig. 6 Performance of feature extraction strategies over all the datasets (D1-D12) using tenfold cross validation
based on specificity (benign vs. malign)
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4.4 Discussion based on statistical comparison

In this study, to test whether the LDA_WSMGR based feature extraction method performs
significantly better than those of the other five competitors, a non-parametric statistical test
(Friedman) is conducted. The Friedman test is chosen because it does not make any assump-
tions about the normal distribution of the underlying data (a requirement for equivalent
parametric tests) and it is a recommended and suitable test to compare a set of classification
strategies over multiple performance output values, according to the guidelines presented in [9,
16]. Table 6 presents the summary of the comparisons of the LDA_WSMGR feature extraction
algorithm (the algorithm with the best average rank, considered as control algorithm) with the
remaining algorithms used in our experiments according to the non-parametric Friedman test
with the Holm’s post-hoc test [9, 16] in terms of percentage accuracy and Az. values for all the
datasets as given in Tables 2, 3, 4 and 5 for the two diagnosis cases.

For each algorithm, the average rank (the lower the average rank the better the algorithm’s
performance), the p-value (when the average rank is compared to the average rank of the
algorithm with the best rank i.e., control algorithm, in our case, it is LDA_WSMGR) andHolm

Table 6 Summary of the comparisons of the LDA_WSMGR feature extraction algorithm with the remaining
algorithms according to the non-parametric Friedman test with the Holm’s post-hoc test in terms of (i) Az. value
and (ii) percentage accuracy

Comparison on the basis Experimental case Algorithm Avg. rank p Holm

Accuracy Normal vs. Masses LDA_WSMGR (control) 1.0000 – –

PCA_WSMGR 2.0833 0.1560 0.05

WSMGR 3.2916 0.0026 0.025

PCA_MGR 4.1250 4.2843E-5 0.0166

LDA_MGR 4.5416 3.5327E-6 0.0125

SMGR 5.9583 8.4714E-11 0.01

Benign vs. Malignant LDA_WSMGR (control) 1.0000 – –

PCA_WSMGR 3.0000 0.0088 0.05

PCA_MGR 3.0833 0.0063 0.025

LDA_MGR 4.2083 2.6609E-5 0.0166

SMGR 4.7500 9.1121E-7 0.0125

WSMGR 4.9583 2.1872E-7 0.01

Az. Normal vs. Masses LDA_WSMGR (control) 1.0000 – –

PCA_WSMGR 2.0833 0.1560 0.05

WSMGR 3.4166 0.0015 0.025

PCA_MGR 3.9999 8.5682E-5 0.0166

LDA_MGR 4.5833 2.7096E-6 0.0125

SMGR 5.9166 1.2151E-10 0.01

Benign vs. Malignant LDA_WSMGR (control) 1.0000 – –

PCA_WSMGR 3.2916 0.0026 0.05

PCA_MGR 3.8333 2.0750E-4 0.025

SMGR 4.2500 2.0881E-5 0.0166

LDA_MGR 4.2916 1.6339E-5 0.0125

WSMGR 4.3333 1.2749E-5 0.01
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critical value obtained by Holm’s post-hoc test are reported. Based on the fact that the p-value
is lower than the critical value (at 5 % significance level), entries in a row are shown in bold
when there is a significant difference between the average ranks of an algorithm and the
control algorithm (LDA_WSMGR). The rows containing bold entries indicate that the control
algorithm has significantly outperformed the corresponding algorithms present in these rows.

According to the statistics of Table 6, LDA_WSMGR performs statistically significantly
better than all of its competitors in terms of both percentage average accuracy and Az. values
in all of the experiments presented in Tables 4 and 5 for benign vs. malignant classification
problem. Almost, same is the situation when considering normal vs. masses case, that
LDA_WSMGR is better than all of its competitors (except PCA_WSMGR) based on percent-
age average accuracy as well Az. values. When observed for normal vs. masses classification
problem, PCA_WSMGR seem to perform comparatively equivalent to LDA_WSMGR based
on a large p-value for both the performance measures. Interestingly, based on average ranking
for both the performance measures, WSMGR is placed at 3rd position for normal vs. masses
case but for benign vs. malignant case, WSMGR performs the worst and thus placed at the last
position. The difference between the performance of LDA_WSMGR as compared to SMGR is
very significant based on smallest p-values for normal vs. masses case. With these statistics,
LDA_WSMGR can be considered as attractive choice for the problems being targeted.
LDA_WSMGR improve the performance of the proposed system to extreme level and also
reduces the feature dimension, significantly (as compared to MGR), which is very helpful to
cope with the problem known as curse of dimensionality and offer better generalization ability
for a classification scheme; such as SELwSVM.

4.5 Comparison with other methods

It is rather difficult to meaningfully compare the proposed method with other methods in the
literature due to many factors. For example, which mammogram database was used for

Table 7 Comparison with state-of-the-art methods based on average Acc. and Az values

Problem Research work Database No. of ROIs Avg. Acc. (%) Avg. Az.

Normal vs. Masses Geraldo B. J et al. [22] (2009) DDSM 584 99.39(max) 1.00(max)

X. Liado et al. [24] (2009) DDSM 512 – 0.94±0.02

Fatemeh et al. [27] (2010) MIAS 90 85.9±0.03 –

Daniel et al. [7] (2011) DDSM 5090 90.07 –

Ioan B. et al. [21] (2011) MIAS 322 84.37 0.79

Reyad et al. [34] (2014) DDSM 512 98.63(max) –

Oliveira et al. [30] (2015) DDSM 3404 98.88(max) –

Our Method MIAS 109 100±0.00 1.00±0.00

Benign vs. Malignant Geraldo B. J et al. [22] (2009) DDSM 584 88.31 0.89

Fatemeh et al. [27] (2010) MIAS 90 87.00±0.008 –

Daniel et al. [7] (2011) DDSM 3240 84.22 –

Ioan B. et al. [21] (2011) MIAS 114 78.26 0.78

Hussain [19] (2014) DDSM 512 85.53±5.43 0.87±0.05

Our Method MIAS 109 100±0.00 1.00±0.00
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evaluation? Given that the same database was employed, were the same sample of mammo-
grams selected for evaluation? How many samples were used? Which evaluation approach
(validation methodology, training and testing set formation with different percentages of ROIs)
was used? Were the ratios of ROIs for different classes (e.g., normal, malignant and benign)
the same? Even if other methods are implemented and evaluated on the same dataset, it might
still not be a fair comparison because the tuning of parameters involved in different methods
are not necessarily the same.

In any case, to give a general trend of the performance of our method (LDA_WSMGR) and
compare it with state-of-the-art methods in terms of accuracy and Az., we have compiled
information from various studies as shown in Table 7. The quantities that are not reported in
the literature are indicated with a dash symbol. For some methods, standard deviation values
are not available. For the two problems (i.e., normal vs. masses and benign vs. malignant),
only the best case mean and standard deviation results are reported for all the methods being
compared. For the first problem (normal vs. masses), the proposed method performs better
than all the other methods. It may please be noted that some entries in the Table 7 represent the
maximum (max) accuracy and Az. values as reported in their paper; the mean and standard
deviation of each measure are not given.

For the second problem (benign vs. malignant), the proposed method also outperforms all
reported methods. In general, the proposed method performs better than state-of-the-art
techniques for the two classification problems. Note that Ioan et al. [21], Daniel et al. [7]
and Hussain [45] also used Gabor filter banks for the description of masses but their
descriptors are different; in the first two methods, the descriptors are global while in the third
method, the descriptor is local.

5 Conclusions

In this research article, we have discussed and compared six different directional feature
extraction methods for mass classification problem. These methods use a bank of Gabor filters
to extract the features from textural micro-patterns (present in the ROIs) at different scales and
orientations. The features extracted based on LDA_WSMGR feature extraction strategy are
shown to best discriminates between the three tissue types (normal, benign and malign masses)
used in the experiments and in general, improves the recognition rate of a breast cancer
detection system, up to a significant level.

The comparison based on Friedman statistical test reveals that the LDA_WSMGR method
is actually statistically significantly better than its competitors on 5 % significance level. All of
the feature extraction methods are evaluated over ROI images extracted from MIAS database,
using an application oriented fitness function based on successive enhancement learning based
weighted Support Vector Machine (SELwSVM) to cater with the skewed/ unbalanced dataset
problem. Two state of the art feature transformation algorithms have reduced the dimension of
feature space, remarkably. With compact data space, recognition rate of cancerous tissues in
the digital mammograms has improved. Model compactness indirectly implies that the feature
space will be low dimensional and thus better computational efficiency and better generaliza-
tion of the classification model is expected and observed.

The methods are empirically analyzed over two diagnosis cases i.e., discrimination be-
tween: (i) normal but suspicious and masses (malignant and benign) and (ii) benign and
malignant masses. For the two diagnosis cases, we achieved encouraging results, reported as
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(percentage mean accuracy, mean area under the ROC value over tenfold cross validation): i.e.,
(100 %, 1.00 for normal vs. masses) and (100 %, 1.00 for benign vs. malignant) based on
LDA_WSMGR. It can be observed that LDA_WSMGR has the potential to be further
explored in more complex recognition tasks related to breast cancer detection problem.
LDA_WSMGR is shown to outperform other state-of-the-art methods available in the litera-
ture and thus offer promising capabilities.

There are several future avenues in order to extend the LDA_WSMGR technique. It will be
interesting to investigate the performance of LDA_WSMGRmethod in more complex problem
scenarios e.g., recognition and identification of more breast abnormalities like micro-calcifica-
tion, breast structural disorder etc. The preprocessing of mammogram images for enhancing
their quality is also an area that is required to be further investigated. LDA_WSMGRmethod is
required to be tested over noisy mammogram images in order to investigate its robustness
power. Other optimization strategies e.g., Genetic Algorithm, Cuckoo optimization are worth
enough to be investigated for Gabor filter parameter optimization in the targeted area.
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