
1 23

Machine Vision and Applications
 
ISSN 0932-8092
Volume 25
Number 2
 
Machine Vision and Applications (2014)
25:451-475
DOI 10.1007/s00138-013-0522-0

Accurate and robust localization of
duplicated region in copy–move image
forgery

Maryam Jaberi, George Bebis,
Muhammad Hussain & Ghulam
Muhammad



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Machine Vision and Applications (2014) 25:451–475
DOI 10.1007/s00138-013-0522-0

FULL LENGTH PAPER

Accurate and robust localization of duplicated region
in copy–move image forgery

Maryam Jaberi · George Bebis ·
Muhammad Hussain · Ghulam Muhammad

Received: 22 October 2012 / Revised: 1 March 2013 / Accepted: 15 May 2013 / Published online: 4 June 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Copy–move image forgery detection has recently
become a very active research topic in blind image forensics.
In copy–move image forgery, a region from some image
location is copied and pasted to a different location of the
same image. Typically, post-processing is applied to better
hide the forgery. Using keypoint-based features, such as SIFT
features, for detecting copy–move image forgeries has pro-
duced promising results. The main idea is detecting dupli-
cated regions in an image by exploiting the similarity between
keypoint-based features in these regions. In this paper, we
have adopted keypoint-based features for copy–move image
forgery detection; however, our emphasis is on accurate and
robust localization of duplicated regions. In this context, we
are interested in estimating the transformation (e.g., affine)
between the copied and pasted regions more accurately as
well as extracting these regions as robustly by reducing the
number of false positives and negatives. To address these
issues, we propose using a more powerful set of keypoint-
based features, called MIFT, which shares the properties
of SIFT features but also are invariant to mirror reflection
transformations. Moreover, we propose refining the affine
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transformation using an iterative scheme which improves the
estimation of the affine transformation parameters by incre-
mentally finding additional keypoint matches. To reduce false
positives and negatives when extracting the copied and pasted
regions, we propose using “dense” MIFT features, instead of
standard pixel correlation, along with hysteresis thresholding
and morphological operations. The proposed approach has
been evaluated and compared with competitive approaches
through a comprehensive set of experiments using a large
dataset of real images (i.e., CASIA v2.0). Our results indicate
that our method can detect duplicated regions in copy–move
image forgery with higher accuracy, especially when the size
of the duplicated region is small.

Keywords Blind image forensics, Copy–move image
forgery, SIFT, MIFT, Matching

1 Introduction

Recent advances in imaging technologies, both in hardware
(e.g., digital cameras) and software (e.g., image editing appli-
cations), have enabled manipulating digital image contents
easily in order to hide or create misleading images with no
observable trace [1]. Establishing the authenticity of images,
however, is of essence in many applications such as crimi-
nal investigation, medical imaging, journalism, intelligence
services, and surveillance systems [7,24]. Recently, the field
of digital forgery detection has been introduced to address
this issue and has become a very important field in image
processing. Digital altering has already appeared in many
disturbing forms [1] and there have been several research
studies on improving image forgery techniques [25]. These
techniques usually include deleting or hiding a region in the
image, adding a new object to the image or representing the
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452 M. Jaberi et al.

image information in an incorrect way. Based on the oper-
ation used to create a tampered image, techniques can be
categorized into three main groups: image retouching, copy–
paste (i.e., splicing), and copy–move (i.e., cloning) [2].

Image retouching manipulates an image by enhancing or
reducing certain features of the image without making sig-
nificant changes on image content [30]. Image splicing on
the other hand utilizes two or more images to create a tam-
pered one. This technique adds a part of an image into another
image in order to hide or change the content of the second
image [2]. Finally, image cloning creates a forged image by
copying a certain portion of an image and moving it to another
location of the same image in order to conceal or duplicate
some part of the image [4]. The key characteristic of image
cloning is that, since the duplicated region is picked from the
image itself, the noise components, texture and color pat-
terns are compatible with the rest of the image. Thus, it is
not easy to detect the forgery parts. Moreover, there might be
post-processing operations that can even make the exposing
procedure harder [3]. Figure 1 shows an example of copy–
move forgery.

Developing reliable methods for image forgery detection
has become an active research topic [7]. Approaches in the
literatures can be divided into two main categories: active and
passive [2,6]. Active approaches, like watermarking, try to
expose digital tampering by adding prior information to the
images (e.g., a signature) [2]. Passive or blind approaches, on
the other hand, attempt to detect forgeries in images without
assuming any knowledge of the original images or adding any
prior information to the images. The aim of these approaches
is to demonstrate the possibility of detecting forgeries in the
absence of any watermark [7].

In this study, our focus is on detecting copy–move (i.e.,
cloning) image forgery. Among the blind image forgery
detection methods proposed in the literature, pixel-based
approaches are the most popular; the key idea is exposing
image tampering by analyzing pixel level correlations [2].

Fig. 1 Copy–move image forgery: original image (left) and forged
image (right)

In general, pixel-based approaches for copy–move forgery
detection can be classified into categories: block matching
and feature matching [2]. The key idea behind these meth-
ods is discovering and clustering similar parts in an image.

In the first category of methods, block matching is used
to detect duplicated regions. The simplest approach is using
exhaustive search to find and match similar image regions [4].
The main drawback of this approach is high computational
complexity and inefficiency. To cope with this challenge,
several other approaches have been proposed. In an early
approach [4], quantized discrete cosine transform (DCT)
coefficients were used assuming overlapped blocks. DCT
blocks were stringed in vectors and sorted lexicographically;
copied blocks were then detected by finding similar block
pair vectors that had an equal offset as well. The method pro-
posed in [5] employed principal component analysis (PCA)
to reduce data dimensionality and improve robustness to
additive noise. In [1], seven different features were extracted
to describe blocks. The first three features were extracted
using the average values in the three-color channels. The rest
of the features were computed by dividing the block into two
equal parts in four directions and finding the proportion of
the first part to the sum of the two parts. Sorting the vectors
and finding similar blocks were carried out next, similar to
other methods.

In [6], nine normalized features in overlapped blocks
were extracted. These features were obtained by comput-
ing the ratio of sub-averages and total average in each block.
Radix sort was applied instead of lexicographic sort. In [7],
a blur invariant representation for each overlapped block
was employed to extract the feature vectors of each block.
Besides, PCA was used to reduce the number of features
and kd-trees to find similar blocks. In [8], discrete wavelet
transform (DWT) and singular value decomposition (SVD)
were used in order to reduce the dimensionality of images
before sorting the vectors lexicographically and checking for
duplicates. A similar approach was presented in [3] and then
completed in [9] where DWT was employed to reduce image
dimension and the phase correlation was used to detect dupli-
cation zones. In particular, the copied blocks were distin-
guished at the coarsest level of DWT and verified in finer
levels. In [10], a new technique was introduced using one-
level DWT. The low-frequency sub-band was selected as a
low-dimensional image and the diagonal detail coefficients
were considered as a resource to estimate noise in each part
of the image. It was assumed that interesting blocks have sim-
ilarities in the low-frequency band and dissimilarities in the
diagonal detail band, which are in fact noise. An extension
of this method can be found in [39].

The methods described above perform block matching to
detect copy parts in forged images; however, they rarely con-
sider large variations in scaling, rotation and illumination,
very common operations in image manipulation. To over-
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Accurate and robust localization of duplicated region 453

Fig. 2 Main steps of the
method of Pan et al. [12]

come this issue, a different category of approaches in copy–
move forgery detection try to emphasize the use of feature
matching for detecting forged regions in images. The method
presented in [11] employed local statistical features, known
as scale invariant feature transform (SIFT) [14]. Since, SIFT
features are invariant to changes in illumination, rotation, and
scaling, looking for similar features in an image could reveal
potential image forgery [12]. Huang et al. [11] adopted this
idea to detect image forgery. Using SIFT features for image
forgery detection has been adopted in several other studies
including Pan and Lyu [12] and Amerini et al. [13] where
the authors used almost similar techniques to find similar
features and potentially interesting areas. An affine transfor-
mation between matching regions was estimated using Ran-
dom Sample Consensus (RANSAC). The method proposed
by Pan and Lyu [12] includes a verification step which tries
to locate the duplicated regions using the normalized corre-
lation map and thresholding. The steps of this algorithm are
summarized in Fig. 2.

As shown in our experimental results, a weakness of Pan’s
method, as well as similar methods [11,13], is that they can-
not localize the forged region very accurately. Moreover,
these methods were evaluated on a relatively small number
of real forged images.

In this study, we improve on copy–move forgery detection
using keypoint-based features (e.g., SIFT) by focusing on
the issue of accurate detection and localization of duplicated
regions. Specifically, we have made several contributions in
this work. First, we employ mirror reflection invariant fea-
ture transform (MIFT) features [20] instead of SIFT features
for finding similar regions in images. MIFT features share
all good properties of SIFT features but are also invariant to
mirror reflection transformations. Like in other approaches,
we find similar regions by finding corresponding MIFT fea-
tures and estimate an affine transformation between them
using RANSAC [26]. Corresponding MIFT features define
the initial detection window. Second, since the quality of the
affine transformation computed is critical in localizing the
duplicated region accurately, we refine the parameters of the
affine transformation iteratively by increasing the detection

window slowly and computing new MIFT features. Third, to
extract the duplicated region, we use dense MIFT features
and apply hysteresis thresholding [12] instead of standard
thresholding, to reduce false positives and negatives. To fur-
ther reduce false positives and negatives, we apply morpho-
logical operations on the low and high hysteresis thresholded
images and combine the results. We have evaluated the per-
formance of the proposed methodology by performing a com-
prehensive set of experiments using a large database of real
images (i.e., CASIA v2.0). To better understand the strengths
and weaknesses of the proposed method, we have analyzed
independently the effects of different types of transforma-
tions (e.g., rotation, scale, reflection, blur, deformation) as
well as combinations of them. Comparisons with competi-
tive approaches show that the proposed method can detect
duplicated regions in copy–move image forgery more accu-
rately, especially when the size of the duplicated regions is
small.

The rest of this paper is organized as follows: Sect. 2
briefly reviews the problem of local feature extraction. Sec-
tion 3 describes the steps of the proposed approach in detail.
Section 4 presents our experimental results and comparisons.
Finally, Sect. 5 concludes our work and discusses directions
for future research.

2 Local feature extraction

Recently, significant research has been performed on extract-
ing local invariant features with application to object recog-
nition and categorization [14], image matching and retrieval
[15] and video mining. The goal of local feature extrac-
tion methods is to find interest points (or keypoints) and to
define a distinctive descriptor for the each of them which is
invariant to transformations such as scale, rotation, or affine.
More precisely, the key characteristics of these methods are
their distinctiveness, robustness to occlusion and clutter, and
light invariance [16]. Methods for finding local features can
be classified as sparse or dense. Sparse methods compute a
descriptor for each keypoint by selecting a small patch around
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Fig. 3 Comparing MIFT and
SIFT assuming mirror reflection

it. Dense methods, on the other hand, do not extract any key-
points explicitly but select a small patch around each pixel
and compute a descriptor [17]. The descriptors typically are
defined in the form of a vector of measured values inside the
patches. These image measurements can emphasize different
image properties like pixel intensity changes in a region or
curvatures.

Different algorithms have been proposed for keypoint
extraction. Among them, the Harris corner detector is one
of the most popular algorithms for extracting keypoints
invariant to translation, rotation, and partially to illumina-
tion [18]. The SIFT, proposed by Lowe [14], extracts a
sparse set of keypoints using a similar algorithm. The method
involves four main stages: scale-space extrema detection,
keypoint localization, orientation assignment, and keypoint
descriptor [14]. The descriptor produced is a normalized
128-element vector for each extracted keypoint [14,18].
Due to the success of SIFT, many studies have attempted
to improve its performance both in terms of accuracy and
time complexity. PCA-SIFT [23] is a variation of SIFT,
which projects gradient images to a lower dimension using
PCA. Histogram of oriented gradients (HOG) [19] employs
normalized local histograms to build the descriptor. RIFT
[35] is a rotation-invariant extension of SIFT which is
constructed using circular normalized patches divided into
concentric rings of equal width. Rotation invariance is
achieved by measuring orientation at each point relative to
the direction pointing outward from the center. Speeded up
robust features (SURF) [36] speeds-up computations using
a fast approximation of the Hessian matrix and “integral
images”.

These methods, however, cannot handle reflection. Mir-
ror reflection invariant feature [20] generalizes SIFT by pro-
ducing mirror reflection invariant descriptors. The resulted
descriptor is invariant to mirror reflection as well as to other
transformations such as affine. In general, mirror reflection
can be defined in the horizontal or vertical direction as well
as a combination of both directions. As explained in [20],
to handle mirror reflection, it is adequate to deal with the
horizontally or vertically reflected images. While the tradi-
tional SIFT approach uses a fixed order to organize the cells,

making the descriptor sensitive to mirror reflection, MIFT
reorganizes the order of the cells and restructures the order of
orientation bins in each cell. We have adopted MIFT descrip-
tors in this work to find duplicated regions with or without
mirror reflection. Figure 3 shows an example using SIFT and
MIFT in the case of mirror reflection.

As mentioned earlier, dense descriptors are extracted at
each pixel location and are usually used in texture and
background classification [21]. Local binary pattern (LPB)
[33,34], HOG-LBP [22], and Weber local descriptors (WLD)
[17] are some popular methods in this category. In this paper,
we use dense MIFT features for extracting the duplicated
region more accurately.

3 Method overview

The key objectives of the proposed approach are (1) to recog-
nize copy–move manipulated images, (2) to classify images
as forged or non-forged, and (3) to accurately locate the
duplicated region in the tampered images. Since in copy–
move image forgery a part of the image is copied and pasted
on another part of the same image, finding similar parts
in an image is the key idea explored here as well as in
other studies. This is accomplished using feature extrac-
tion methods (e.g., SIFT) to extract and match local fea-
tures from various regions of the image in order to find
similar regions. Figure 4 illustrates the main steps of our
approach.

Keypoint extraction and matching is the first step of our
method; we have experimented both with SIFT and MIFT
features for comparison purposes. The next step involves
finding corresponding features which allow us to find similar
regions and estimate an affine transformation between them.
The affine transformation parameters are later refined which
allows for localizing the duplicated regions more accurately.
To extract the duplicated regions, we employ dense MIFT
features, instead of standard correlation, along with hystere-
sis thresholding and morphological operations for reducing
false positives and negatives.
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Fig. 4 Main steps of proposed
methodology

3.1 Extracting keypoints and establishing correspondences

Copy–move image forgery detection requires detecting the
duplicated region in a single image. Feature extraction algo-
rithms find correspondences between similar regions in the
same image. As described in Sect. 2, SIFT is a powerful tech-
nique, which extracts features invariant to scale, rotation,
and brightness. However, SIFT descriptors are not invari-
ant to mirror reflection. To account for this issue, previ-
ous approaches proposed extracting SIFT descriptors from
horizontally and vertically reflected versions of the original
image [12,13]. In this paper, we have adopted MIFT features
which are invariant to reflection.

As described earlier, each keypoint is characterized by
a feature vector that consists of a set of image statistics
collected at a local neighborhood around the keypoint. In
general, to find matching keypoints between images, the key-
points from one of the images are first indexed using a kd-
tree [32]; then, the matching keypoints from the other image
are identified. Due to the high dimensionality of the feature
vectors, the search within the kd-tree is performed using the
“best bin first” search algorithm [31,32]. In our case, since we
search for duplicated regions in a single image, we divide the
image into smaller parts and compare the descriptors among
them. The search is performed outside a small window cen-
tered at the detected keypoint to avoid finding nearest neigh-
bors of a keypoint from the same region [12]. Once a match-
ing candidate has been found, it is accepted as a distinctive
matched point if the ratio of the distances from the first and
second nearest neighbors is smaller than the threshold [14].
This threshold can vary from zero to one; a threshold closer
to zero yields more accurate but fewer matches. Here, a low
threshold is utilized since it reduces false matches. Figure 5
shows an image and the extracted keypoints.

3.2 Estimating affine transformation from keypoint
correspondences

Using the keypoint correspondences from the previous step,
an affine transformation is estimated. The transformation
can be used to verify whether two regions correspond by
mapping one region to the other. To eliminate incorrectly

Fig. 5 An example of extracted keypoints in an image

matched keypoints before estimating the affine transforma-
tion parameters, a pre-processing step is applied using some
simple geometric constraints. To further remove incorrect
matches, the affine transformation parameters are estimated
using RANSAC [26] which can estimate the model parame-
ters with a high degree of accuracy even when a significant
number of errors are present.

3.2.1 Removing incorrect matches

Corresponding keypoints extracted during matching can lie
in different parts of the image. Since in copy–move image
forgery a region of an image is duplicated, matching key-
points should lie within two regions; we refer to this as the
“location” constraint. Moreover, if we were to connect with
lines corresponding keypoints in those regions, then the lines
formed should have similar slopes; we refer to this as the
“slope” constraint. We take advantage of these two geomet-
ric constraints to eliminate incorrect matches between key-
points. To apply the “slope” constraint, we find the slope of all
lines connecting corresponding keypoints and cluster them in
different groups. The group with the largest number of key-
points is selected as the main group. Then, we compare all
other groups to the main group and eliminate any group hav-
ing a different slope (i.e., within a threshold) from the slope
of the main group. Next, we apply the “location” constraint
on the remaining groups by eliminating groups containing a
small number of correspondences as well as removing corre-
sponding keypoints from groups if the keypoint locations are
rather far (i.e., within a threshold) from the average keypoint
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Fig. 6 Removing incorrect
correspondences using
geometric constraints

Fig. 7 Removing incorrect
matches using RANSAC

location of the group. Figure 6 shows an example of corre-
sponding keypoints before and after removing mismatched
keypoints.

3.2.2 Estimating affine transformation

Although the geometric constraints described in the previ-
ous section can be used to eliminate many incorrect matches,
they cannot eliminate all of them as it is evident from Fig. 6b.
To further remove incorrect matches, we apply the RANSAC
algorithm [26]. RANSAC is a simple, yet powerful parameter
estimation approach designed to cope with a large proportion
of outliers in the input data. In essence, RANSAC is a resam-
pling technique that generates candidate solutions using the
minimum number data points required to estimate the under-
lying model parameters. This algorithm estimates a global
relation that fits the data, while simultaneously classifying the
data into inliers (points consistent with the relation) and out-
liers (points not consistent with the relation). Due to its ability
to tolerate a large fraction of outliers, RANSAC is a popular
choice for a variety of robust estimation problems [27,28].

Using RANSAC, the affine transformation is calculated
iteratively by selecting three or more non-collinear keypoints
from all possible pairs. The affine transformation is then esti-
mated based on these nominated points. The accuracy of the
parameters is examined by classifying all available corre-
sponding keypoints into inliers and outliers. Considering the
fact that the estimated transformation should map more key-
points to their correspondences with a smaller error, the accu-

racy of the transformation is estimated by finding how well
the keypoints map to their correspondences. If the difference
of a mapped point and its correspondence is less than the
threshold, then it will be selected as inlier; otherwise, it will
become an outlier. As mentioned earlier, the algorithm calcu-
lates the transformation iteratively and selects the parameters
that yield the largest set of inliers. Figure 7 shows an example
of applying RANSAC on the matches found from the previ-
ous step. As it can be observed, RANSAC was able to find a
highly accurate set of correspondences.

The affine transformation matrix computed by RANSAC
can be used to locate the duplicated region in the image. How-
ever, to estimate the duplicated region more accurately, we
apply one more step to further refine the affine transformation
parameters.

3.3 Refining affine transformation

The purpose of this step is to refine the affine transforma-
tion parameters estimated from the previous step. As Fig. 7
shows, there are cases where the correspondences selected as
inliers do not cover well the region of duplication. Thus, the
estimated affine transformation is not precise enough to map
the whole duplicated region to the copied region. In this step,
we refine the affine transformation parameters iteratively, by
slowly increasing the search window around the correspond-
ing regions. Figure 8 shows the main steps of the refinement
process.
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Fig. 8 Mains steps of refining
the affine transformation

Fig. 9 Refining the affine transformation iteratively; the green points show the initial correspondences while the red points show the inliers found
by RANSAC (color figure online)

Table 1 Number of correspondences and RANSAC inliers at each
iteration

Iterations

Initial step 1 2 3 4 5 6

Correspondences 27 28 36 50 71 77

RANSAC inliers 22 23 28 29 31 33 33

Given a pair of corresponding regions, first we define a
detection window for each region using the inliers found
by RANSAC (see Fig. 9). The detection windows are then
slowly resized (i.e., horizontally and vertically). Then, key-
points are detected inside the resized windows and RANSAC
is applied to find a new set of inliers. The new inliers are
used to re-estimate the affine transformation parameters.
Repeating these steps, the affine transformation parameters
are refined iteratively until the number of inliers does not
increase anymore. Figure 9 shows an example with five iter-
ations. The number of correspondences and inliers at each
iteration are shown in Table 1.

As it is evident from the example, the iterative process
yields more correspondences, covering a larger area inside
the original and duplicated regions; this yields a more accu-
rate affine transformation. It should be mentioned that the

threshold used for finding corresponding keypoints during
the iterative process is greater than the one used in the initial
step. This allows finding more correspondences compared to
the initial stage.

3.4 Locating duplicated region

The last step of our algorithm attempts to accurately locate
the duplicated region. Cross-correlation has been used before
to locate the duplicated region and verify similarity with the
original region [12]. In this study, we detect the duplicated
region using dense MIFT features.

3.4.1 Dense MIFT feature extraction

To detect as many pixels as possible inside the duplicated
region, we employ dense MIFT features. The key idea is
computing a MIFT descriptor at each pixel location inside
the detection window instead of at the keypoint locations
only. This is on contrast to traditional methods employing
pixel correlation for finding the duplicated region. Since
MIFT descriptors can be matched more accurately than using
pixel correlation, the duplicated region can be detected more
precisely. Other dense feature descriptors, such as LBP or
WLD, could be employed at this stage. Using the estimated
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Fig. 10 Detection of original and duplicated regions using dense SIFT
descriptors

affine transformation, the correspondences between the orig-
inal and forged regions can be computed for each pixel loca-
tion. The similarity between corresponding locations is then
calculated using dense MIFT descriptors. Thresholding the
distance between corresponding MIFT descriptors can then
reveal the duplicated region. Figure 10 shows an example
using this process.

3.4.2 Hysteresis thresholding

Using a single threshold to determine the similarity between
corresponding MIFT descriptors in the original and dupli-
cated regions might compromise detection results. In this
work, we have opted for using hysteresis thresholding [37],
a process based on two thresholds, one low and one high,
which takes into consideration spatial information. Hystere-
sis thresholding has been used before in the context of edge
detection [37]. The high threshold is used to detect “strong”
edges while the low threshold is used to fill in gaps between
“strong” edges using “weak” edges. The key idea is to include
edge points whose strength exceeds the low threshold but are
also adjacent to “strong” edge points. In a similar manner,
we use the high threshold to detect “strong” corresponding
pixels, that is, corresponding pixels from the original and
duplicated region having very similar MIFT descriptors (i.e.,
very likely to belong to the duplicated region). Additional
pixels (i.e., “weak” pixels”) are detected if they are adjacent
to “strong” pixels and the distance between the correspond-
ing MIFT descriptors in the original and duplicated regions
exceeds the low threshold. In our experiments, the low thresh-
old is chosen to be R times lower than the high one, where R
is a parameter.

3.4.3 Morphological operations

The output of the previous step is a group of pixels, which
might still include holes or contain isolated pixels. To deal
with these issues, we apply morphological operations (i.e.,
dilation and erosion) to remove small holes and eliminate

isolated pixels. These operations are applied separately on the
images obtained using the high and low thresholds described
in the previous section. Then, we simply combine the results
to obtain the final duplicated region.

4 Experimental results

In this section, the performance of the proposed approach is
analyzed through a comprehensive set of experiments. For
comparison purposes, we have also compared our method
with the method of Pan and Lyu [12].

4.1 Dataset

To examine digital forgery detection methods, a dataset con-
taining different types of forgery is required. In this study,
we have used a realistic dataset, the CASIA tampered image
detection evaluation database V2.0 (CASIA, 2010) [29].
CASIA v2.0 includes samples of copy–move and copy–paste
digital forgeries applied in color images of different sizes,
varying from 240 × 160 to 900 × 600. The tampered images
have been generated by cutting-and-pasting image region(s).
The image region(s) selected for duplication can be trans-
formed before copying them by applying scaling, rotation,
reflection, or distortion. The duplicated region can vary in
size (e.g., small, medium, or large). The resulted image can
be post-processed (e.g., by applying blurring) in order to
create the final tampered image. Information about the type
of transformations applied to generate a tampered image is
encoded in its filename.

In this paper, we have only used images corresponding to
copy–move forgery. Since the dataset includes both the orig-
inal and forged images, we have applied pixel subtraction
followed by binary thresholding and morphological closing
to extract the duplicated region (i.e., ground truth) for evalu-
ating the accuracy of our method. We have also added a new
flag to identify images where the duplicated region has under-
gone mirror reflection. A sample of forged images and the
ground truth indicating the forged area is shown in Fig. 11.

4.2 Implementation details

As mentioned earlier, the first step of our approach is to
extract a set of keypoint descriptors. In this study, we extract
MIFT features; the window centered at keypoints is defined
to be 15 × 15 pixels. Since our aim in his step is to find
quite accurate correspondences, we use threshold equal to
0.2 for comparing MIFT descriptors which gives less but
more accurate matches. If the number of correspondences
was less than 10, then we increase the threshold to 0.3 with
step of 0.05. When removing incorrect matches using geo-
metric constraints, we group corresponding points based on
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Fig. 11 A sample of images
and the ground truth in the
CASIA dataset

their slope in 10 groups. In addition, to refine the affine trans-
formation, the search windows are resized with a rate of 0.2
(i.e., both horizontally and vertically) in each iteration. In
this step, we match the MIFT descriptors using a threshold
equal to 0.3 in order to allow more matches to be found. In
hysteresis thresholding, the high threshold is defined to be
R = 2 times smaller than the low one.1

To evaluate the performance of our method, we employ
precision–recall (PR) curves [38]. Equations (1) and (2) show
how the precision and recall rates are calculated; TP repre-
sents the number of true positives while FP represents the
number of false positives. The number of pixels selected
incorrectly as non-duplicated represents the number of false
negatives (FN).

Recall = TP/(TP + FN) (1)

Precision = TP/(TP + FP) (2)

4.3 Detailed results

As mentioned earlier, the CASIA dataset includes various
images where operations have been applied on the copied
region to generate the duplicated region. To better evaluate
the performance of our method, we have classified images
into different categories based on the size of the duplicated
region and the operations used to create the forgery. Tables 2
and 3 show the different categories and the number of images
within each category. We have evaluated our method on the
colored entries of the tables since the other entries contain a
very small number of images. For each experiment, we report
the average PR curves over all the images of the dataset.

1 Since in finding correspondences, a higher threshold yields a lower
number of matches, we define the high and low values of hysteresis
thresholding in opposite order compared to their definition in the liter-
ature.

Table 2 Image categories when duplicated region size is medium

Operations Total

Translation Blurring 0

Translation Rotate 15

Translation Rotate Blurring 2

Translation Scale 30

Translation Scale Blurring 5

Translation Scale Rotate 17

Translation Scale Rotate Blurring 3

Translation Deform 3

Translation Deform Blurring 3

Translation Rotate Deform 2

Translation Rotate Deform Blurring 0

Translation Scale Deform 2

Translation Scale Deform Blurring 1

Translation Scale Rotate Deform 3

Translation Scale Rotate Deform Blurring 0

Translation Reflection 0

Translation Reflection Blurring 0

Translation Reflection Rotate 169

Translation Reflection Rotate Blurring 6

Translation Reflection Scale 9

Translation Reflection Scale Blurring 0

Translation Reflection Scale Rotate 48

Translation Reflection Scale Rotate Blurring 4

Translation Reflection Deform 1

Translation Reflection Deform Blurring 0

Translation Reflection Rotate Deform 2

Translation Reflection Rotate Deform Blurring 1

Translation Reflection Scale Deform 0

Translation Reflection Scale Deform Blurring 0

Translation Reflection Scale Rotate Deform 4

Translation Reflection Scale Rotate Deform Blurring 1

Sum 331

4.3.1 Effect of thresholding

First, we compare standard thresholding with hysteresis
thresholding. Since the output of thresholding is a group
of pixels that might contain holes or isolated pixels, we
apply morphological operations, as mentioned earlier, to
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Table 3 Image categories when
duplicated region size is small

Operations Total

Translation Blurring 0

Translation Rotate 168

Translation Rotate Blurring 22

Translation Scale 336

Translation Scale Blurring 60

Translation Scale Rotate 87

Translation Scale Rotate Blurring 8

Translation Deform 48

Translation Deform Blurring 8

Translation Rotate Deform 9

Translation Rotate Deform Blurring 3

Translation Scale Deform 48

Translation Scale Deform Blurring 33

Translation Scale Rotate Deform 19

Translation Scale Rotate Deform Blurring 4

Translation Reflection 0

Translation Reflection Blurring 0

Translation Reflection Rotate 50

Translation Reflection Rotate Blurring 6

Translation Reflection Scale 12

Translation Reflection Scale Blurring 3

Translation Reflection Scale Rotate 35

Translation Reflection Scale Rotate Blurring 2

Translation Reflection Deform 66

Translation Reflection Deform Blurring 16

Translation Reflection Rotate Deform 12

Translation Reflection Rotate Deform Blurring 2

Translation Reflection Scale Deform 20

Translation Reflection Scale Deform Blurring 11

Translation Reflection Scale Rotate Deform 6

Translation Reflection Scale Rotate Deform Blurring 4

Sum 1, 098

reduce false positives and negatives. Hysteresis threshold-
ing includes a low and a high threshold which are applied
to threshold the distance between MIFT features; the results
are then combined to make the final region. The morpholog-
ical operations are applied prior to combining the results of
the high and low thresholds. Figure 12 shows two examples
comparing standard with hysteresis thresholding. The dupli-
cated regions have been produced using scaling in the top
image and reflection in the bottom image. Figure 13 shows
the corresponding PR curves. Clearly, hysteresis threshold-
ing can locate the duplicated region more accurately. Addi-
tional experiments are reported in Sect. 4.5.3.

4.3.2 Effect of scale and rotation

In this set of experiments, we have evaluated the proposed
approach assuming that the duplicated regions have been

created using rotation and/or scale transformations. We have
considered both medium and small size duplicated regions.

Scale or rotation Scale and rotation represent the simplest
operations for creating duplicated regions. Figure 14 shows
some examples; as it can be observed, the duplicated regions
have been located quite accurately. Figures 15 and 16 show
the corresponding average PR curves; as the results indicate,
the proposed method performs considerably better than the
method of [12].

Scale–rotation In this set of experiments, we consider the
case where both scale and rotation have been applied to cre-
ate the image forgery. Figure 17 shows an example along
with detection results for our method and the method of [12].
Figure 18 shows the corresponding average PR curves; as the
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Fig. 12 Comparison between standard and hysteresis thresholding

Fig. 13 Comparison between standard (single) and hysteresis thresh-
olding

results indicate, the proposed method performs considerably
better than the method of [12], especially when the size of
the duplicated region is small.

4.3.3 Effect of reflection

As described earlier, mirror reflection is a common opera-
tion used in copy–move image forgery. MIFT is robust to
the reflection. However, SIFT which was used in [12] is
not robust to reflection. To make SIFT robust to reflection,
the feature vector of each keypoint is translated horizontally
and vertically before finding the similarities among the vec-
tors. The accuracy of the proposed method and the method
of [12] are examined in this set of experiments assuming
medium and small duplicated region sizes as well as mirror

reflection, rotation and scale. Our results indicate that the
accuracy of proposed method is noticeably better than the
method of [12], especially when the duplication region size
is small.

Reflection–scale and reflection–rotation In the first set of
experiments, we considered the case of mirror reflection and
scale in creating the image forgery, assuming both medium
and small duplication region sizes. In the second set of exper-
iments, we considered the case of mirror reflection and rota-
tion, assuming both medium and small duplication region
sizes. Some example images in these two categories are
shown in Fig. 19.

The method of [12] uses SIFT features, which are not
robust to mirror reflection. As described earlier, to make the
SIFT algorithm robust to mirror reflection, we find SIFT cor-
respondences both in the original image as well as in its mir-
ror reflected image (i.e., obtained by filliping the original
image horizontally and vertically). The accuracy of the pro-
posed method and the method of [12] are shown in Figs. 20
and 21. For medium size regions, the two methods have simi-
lar performance; however, the proposed method outperforms
the method of [12] for large size regions.

Reflection–scale–rotation Combining mirror reflection with
scale and rotation to create the duplicated region is investi-
gated next. Figure 22 shows an example along with detection
results. The accuracy of proposed method and the method of
[12] are compared in Fig. 23. The proposed method out-
performs the method of [12], especially when the size of the
duplicated region is small. When region size is medium, both
methods perform about the same.
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(c) (d) (c) (d)

(a) (b) (a) (b)

Fig. 14 Detection of image forgery assuming scale or rotation
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Fig. 15 Comparison between the proposed method and the method of [12] assuming scale differences (average PR curves)

4.3.4 Effect of blurring

Retouching the duplicated region is a common operation for
removing inconsistencies and hiding the forgery. To achieve
this goal, blurring is used often. In the CASIA dataset, blur-
ring has been applied either on the edges of the duplicated

region or on the whole region. This operation is typically
combined with other operations such as scale and rotation.

Blurring–scale and blurring–rotation In this section, we
consider combining blurring with scale or with rotation
for creating the image forgery. We only consider the case
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Fig. 16 Comparison between the proposed method and the method of [12] assuming rotation changes (average PR curves)

Fig. 17 Detection of image
forgery assuming both scale
and rotation
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Fig. 18 Comparison between the proposed method and the method of [12] assuming scale and rotation changes (average PR curves)
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(a) (b) (a) (b)

(d)(c)(d)(c)

Fig. 19 Detection of image forgery assuming mirror reflection and scale or mirror reflection and rotation
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Fig. 20 Comparison between the proposed method and the method of [12] assuming mirror reflection and scale changes (average PR curves)

of small duplicated regions since there are not enough
images with medium size duplicated regions for these cases
in the CASIA dataset. Figure 24 shows some examples

along with detections of duplicated regions. Figures 25
and 26 compare the proposed approach with the method
of [12].
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Fig. 21 Comparison between the proposed method and the method of [12] assuming mirror reflection and rotation changes (average PR curves)

Fig. 22 Detection of image
forgery assuming mirror
reflection, scale, and rotation

(a)(a) (b)

(c) (d)

Blurring–scale–rotation In this set of experiments, blurring,
scale, and rotation are combined to create the image forgery.
Figure 27 shows an example along with detection of the

duplicated region. The accuracy of proposed method and the
method presented in [12] are compared in Fig. 28. This com-
parison was done using small duplicated region sizes only.
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Fig. 23 Comparison between the proposed method and the method of [12] assuming mirror reflection, scale, and rotation changes (average PR
curves)
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(c) (d) (c) (d)

Fig. 24 Detection of image forgery assuming blurring, scale, or rotation

4.3.5 Effect of deformation

Deformation is another operation applied on the images of the
CASIA dataset. This operation is typically a non-linear trans-
formation. As shown below, detecting this kind of forgery has
lower accuracy than forgery detection in other categories.
This is due to the fact that we employ a linear transfor-
mation (e.g., affine) to bring similar regions into correspon-
dence. Nevertheless, the proposed method still outperforms
the method of [12].

Deformation In this set of experiments, image forgery has
been created using deformation only. Figure 29 shows an
example along with duplicated region detection results.

Figure 30 compares the proposed method with the method
of [12]. This comparison was done using small duplicated
region sizes only.

Deformation–scale and deformation–rotation In this cate-
gory of experiments, image forgery was created using defor-
mation and scale as well deformation and rotation. Figure 31
shows an example of deformation and scale along with dupli-
cated region detection results. Figure 33 shows an example of
deformation and rotation along with duplicated region detec-
tion results. Figures 32 and 34 compare the proposed method
with the method of [12]. These comparisons were done using
small duplicated region sizes only.

123

Author's personal copy



Accurate and robust localization of duplicated region 467

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Precision

Scale, Blurring,  WinSize:small

Pan Method: SIFT

Proposed Method: MIFT

Fig. 25 Comparison between the proposed method and the method of
[12] assuming blurring and scale changes (average PR curves)
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Fig. 26 Comparison between the proposed method and the method of
[12] assuming blurring and rotation changes (average PR curves)
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Fig. 28 Comparison between the proposed method and the method of
[12] assuming blurring, scale, and rotation changes (average PR curves)

Deformation–scale–rotation In this set of experiments, we
considered deformation, scale, and rotation for image forgery.
Figure 35 shows an example along with duplicated region
detection results. Figure 36 compares the proposed method
with the method of [12]. Our method outperforms the method
of [12], however, extracting the duplicated region has a lower
accuracy overall when combining all three transformations
together. This comparison was done using small duplicated
region sizes only.

4.3.6 Other combinations

In addition to the combinations investigated above, there are a
few more combinations worth of investigating in the dataset.
These combinations which include a reasonable number of
images are investigated next.

(a) (b) (c) (d)

Fig. 27 Detection of image forgery assuming blurring, scale, and rotation
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Fig. 29 Detection of image
forgery assuming deformation
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(c) (d)
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Fig. 30 Comparison between the proposed method and the method of
[12] assuming deformation changes (average PR curves)

Deformation–reflection–scale In this set of experiments, we
consider applying deformation, reflection, and scale together
for image forgery. Figure 37 shows an example along with
duplicated region detection results. Figure 38 compares the
proposed method with the method of [12]. Our method out-
performs the method of [12]. This comparison was done
using small duplicated region sizes only.

Deformation–reflection–rotation In this set of experiments,
we consider deformation, reflection, and rotation for image

(a) (b)

(c) (d)

Fig. 31 Detection of image forgery assuming deformation and scale
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Fig. 32 Comparison between the proposed method and the method of
[12] assuming deformation and scale changes (average PR curves)

(a) (b) 

(c) 

Fig. 33 Detection of image forgery assuming deformation and rotation

forgery. Figure 39 shows an example along with duplicated
region detection results. Figure 40 compares the proposed
method with the method of [12]. This comparison was done
using small duplicated region sizes only.

Deformation–reflection–blurring This category of images
combines the deformation, reflection, and blurring trans-
formations to make the forged images. Figure 41 shows
an example along with duplicated region detection results.
Figure 42 compares the proposed method with the method
of [12]. This comparison was done using small duplicated
region sizes only.
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Fig. 34 Comparison between the proposed method and the method of
[12] assuming deformation and rotation changes (average PR curves)

(a) (b)

(d)(c)

Fig. 35 Detection of image forgery assuming deformation, scale, and
rotation

4.4 F-measure

When computing recall and precision rates, it might be useful
to define a relative cost α between these quantities, which
focuses attention to a specific point on the PR curve. The
F-measure [40], defined below, captures this tradeoff as the
weighted harmonic mean of P and R.

F = P R/(a R + (1 − a)P)

The location of the maximum F-measure along the PR curve
provides the optimal detector threshold for the application
given α. The higher the F-measure is, the better the method
performs. Table 4 shows the F-measure for the experiments
reported in the previous section, assuming α = 0.5. As it can
be observed, the proposed method yields a higher F-measure
than the method of Pan [12] in all cases.
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Fig. 36 Comparison between the proposed method and the method of
[12] assuming deformation, scale, and rotation changes (average PR
curves)

(a) (b)

(c) (d)

Fig. 37 Detection of image forgery assuming deformation, reflection,
and scale

4.5 Effect of different algorithmic steps

In this section, we investigate the effect on performance
of different algorithmic steps of the proposed method. In
particular, we investigate the effect of MIFT features, itera-
tive affine refinements, and hysteresis thresholding. In these
experiments, we have used the ‘Translation Reflection, Scale,
Rotate’ category assuming both medium and small size of
forged regions.

4.5.1 Effect of MIFT features

As mentioned earlier, to resolve the issue of mirror reflec-
tion and find correspondences in duplicated regions, pervi-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Precision

Scale, Reflection, Deformation,  WinSize:small

Pan Method: SIFT

Proposed Method: MIFT

Fig. 38 Comparison between the proposed method and the method of
[12] assuming deformation, reflection, and scale changes (average PR
curves)

(c) (d)

(b)(a)

Fig. 39 Detection of image forgery assuming deformation, reflection,
and rotation

ous methods [12] used SIFT descriptors extracted both from
horizontally and vertically reflected versions of the original
image. However, MIFT descriptors are invariant to mirror
reflection transformations. To evaluate the effect of using
MIFT features, we have performed experiments comparing
MIFT with SIFT features assuming that all other steps are
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Fig. 40 Comparison between the proposed method and the method of
[12] assuming deformation, reflection, and rotation changes (average
PR curves)

(a) (b)
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Fig. 41 Detection of image forgery assuming deformation, reflection,
and blurring

the same. Figure 43 shows the average PR curves for each
case. As it can be observed, the performance using MIFT fea-
tures does not degrade performance; on the contrary, there
is a slight performance improvement using MIFT features.
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Fig. 42 Comparison between the proposed method and the method of
[12] assuming deformation, reflection, and blurring changes (average
PR curves)

Moreover, Table 5 shows that MIFT features have lower aver-
age time requirements compared to SIFT features.

4.5.2 Effect of iterative affine refinements

As discussed in Sect. 3.3, we iteratively refine the parameters
of the affine transformation which is estimated using MIFT
matches and RANSAC for removing outliers. In addition to
refining the affine transformation parameters, we also deter-
mine the size of the search window both for the copy and
moved regions. In this experiment, we examine the effect of
refining the affine transformation parameters. For this, we
compare the performance of the method with and without
using affine refinements. Figure 44 shows the average PR
curves for each case. As it can be observed, affine refinements
improve performance in the case of small-size regions.

4.5.3 Effect of hysteresis thresholding

We have already illustrated the effect of hysteresis threshold-
ing in Sect. 4.3.1. For completeness purposes, we have also
tested the effect of hysteresis thresholding on the ‘Trans-
lation Reflection, Scale, Rotate’ category. Figure 45 shows
the average PR curves; clearly, hysteresis thresholding can
locate the duplicated region more accurately than using sin-
gle thresholding.

5 Conclusions

In this paper, we have considered the problem of copy–move
image forgery detection. Our emphasis was on detecting
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Table 4 F-measure for the different datasets used in our experiments

Transformations Datasets

Proposed method Pan’s method

Medium size Small size Medium size Small size

Effect of scale and rotation Scale 0.7969 0.6834 0.6412 0.5572

Rotation 0.7831 0.6634 0.6384 0.4369

Scale Rotation 0.7299 0.7217 0.6115 0.4893

Effect of reflection Scale Reflection 0.9576 0.8127 0.9569 0.5987

Rotation Reflection 0.9063 0.7735 0.8792 0.7042

Scale Rotation Reflection 0.8766 0.7206 0.7699 0.5293

Effect of blurring Scale Blurring − 0.5534 − 0.3061

Rotation Blurring − 0.6522 − 0.5139

Scale Rotation Blurring − 0.6494 − 0.3597

Effect of deformation Deformation − 0.4451 − 0.2506

Scale Deformation − 0.4917 − 0.1937

Rotation Deformation − 0.4490 − 0.1747

Scale Rotation Deformation − 0.3436 − 0.1728

Other combinations Deformation Blurring − 0.4009 − 0.1957

Scale Deformation Blurring − 0.3433 − 0.1421

Reflection Deformation − 0.6022 − 0.4589

Reflection Deformation Blurring − 0.7060 − 0.5115

Rotation Reflection Deformation − 0.6407 − 0.4622

Scale Reflection Deformation − 0.6458 − 0.4977
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Fig. 43 Comparison between MIFT and SIFT features to resolve mirror reflection (average PR curves)

and extracting duplicated regions with higher accuracy and
robustness. The proposed methodology employs a new set
of keypoint-based features, called MIFT, for finding similar
regions in an image. To estimate the affine transformation
between similar regions more accurately, we have proposed
an iterative scheme which refines the affine transformation
parameter by finding more keypoint matches incrementally.
To reduce false positives and negatives when extracting the
duplicated region, we have proposed using dense MIFT
features in conjunction with hysteresis thresholding and

morphological operations. We have performed comprehen-
sive experiments using a large dataset of real images to
evaluate the proposed approach. In particular, we have inves-
tigated the effect of different transformations in creating the
image forgery on detection accuracy. Among all transfor-
mation considered, blurring and deformation affect detec-
tion results most. Obviously, blurring affects the accuracy of
matching keypoint-based features while deformation cannot
be modeled well by the affine transformation model being
used here for bringing similar regions into correspondence.
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Fig. 44 Comparison between using and not using affine refinements (average PR curves)
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Fig. 45 Comparison between using single and hysteresis thresholding (average PR curves)

Table 5 Time requirements using MIFT and SIFT features to resolve
mirror reflection

Feature type Time (s)

Medium size Small size

SIFT 1.8252 3.0387

MIFT 1.6312 2.6938

Comparisons with competitive methods indicate that the
proposed methodology can extract duplicated regions more
accurately. It should be mentioned that like similar methods
employing keypoint-based features for matching, the pro-
posed approach will not work well if the duplicated region
corresponds to a flat surface where no interest points can be
detected. For future work, we plan to investigate different
types of dense feature descriptors, such as LBP or WLD, for
improving detection results.
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