IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 1, JANUARY 1998 39

Example-Based Learning for View-Based
Human Face Detection

Kah-Kay Sung and Tomaso Poggio

Abstract —We present an example-based learning approach for locating vertical frontal views of human faces in complex scenes.
The technique models the distribution of human face patterns by means of a few view-based “face” and “nonface” model clusters. At
each image location, a difference feature vector is computed between the local image pattern and the distribution-based model. A
trained classifier determines, based on the difference feature vector measurements, whether or not a human face exists at the
current image location. We show empirically that the distance metric we adopt for computing difference feature vectors, and the
“nonface” clusters we include in our distribution-based model, are both critical for the success of our system.

Index Terms —Face detection, object detection, example-based learning, example selection, pattern recognition, view-based

recognition, density estimation, Gaussian mixture model.

1 INTRODUCTION

F eature and pattern detection is a classical computer vi-
sion problem with many potential applications, ranging
from automatic target recognition to industrial inspection
tasks [4], [9], [10], [6]. This paper presents an image-based
feature and pattern-detection technique for finding human
faces and other classes of slightly deformable objects under
moderate amounts of lighting variation. To demonstrate
our technique, we have developed a generic human face
detection system that finds vertically oriented and unoc-
cluded frontal views of human faces in gray-level images,
over a range of scales. We stress that the underlying tech-
nique is fairly general, and can also be used for detecting
image patterns in other problem domains, where target
patterns may not be perfectly rigid or geometrically
parameterizable.

1.1 The Face-Detection Problem

Face detection determines the location and size of each hu-
man face (if any) in an input image. A closely related prob-
lem is face recognition: Compare an input face image against
models in a library of known faces and report if a match is
found. In recent years, face recognition has attracted much
attention because of its many possible applications in
automatic access control systems and human-computer
interfaces.

Face detection is interesting because it is usually the first
important step of a fully automatic human face recog-
nizer. It also has potential applications in surveillance and
census systems. From an academic standpoint, face detec-

* K.-K. Sung is with the Department of Information Systems and Computer
Science, National University of Singapore, Lower Kent Ridge Road, Singapore
119260. E-mail: sungkk@iscs.nus.edui.sg.

» T. Poggio is with the Center for Biological and Computational Learning, Massa-
chusetts Institute of Technology, Cambridge, MA 02142, USA.

E-mail: tp@ai.mit.edu.

Manuscript received 16 Jan. 1995; revised 13 Oct. 1997. Recommended for accep-
tance by S. Dunn.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 105880.

tion is interesting because faces make up a challenging
class of naturally structured objects with fairly complex
detailed pattern variations. A successful face detection
system can provide valuable insight on how one might
approach other similar feature and pattern detection
problems.

Face detection is difficult because face patterns can have
significantly variable image appearances. First, there are
pattern variations due to differences in facial appearance,
expression, and skin color. Second, certain common objects,
such as glasses or a mustache, can either be present or ab-
sent from a face. Third, because faces are essentially 3D
objects, lighting changes can cast or remove significant
shadows from a particular face. As such, classical template-
based matching techniques and geometric model-based
object recognition approaches that have worked well for
describing rigid and articulate objects, tend to perform
poorly for detecting faces.

1.2 Existing Face-Detection Work

There have been three main approaches for modeling and
detecting faces in images.

1.2.1 Correlation Templates

Correlation templates compute a difference measurement
between a fixed target pattern and candidate image loca-
tions, and the output is thresholded for matches. While the
class of all face patterns is probably too varied to be mod-
eled by a single correlation template, there are some face-
detection approaches that use several correlation templates
to detect local facial subfeatures that are approximately
rigid in appearance [2], [3].

A closely related approach to correlation templates is
that of view-based eigenspaces [12]. The approach assumes
that the set of all possible face patterns occupies a low-
dimensional linear subspace, within a high-dimensional
vector space of all possible image patterns. An image pat-
tern is classified as a face if its distance from the subspace
of faces is below a certain threshold. So far, this approach

0162-8828/98/$10.00 © 1998 IEEE

40 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 1, JANUARY 1998

Test
Pattem

!

Cormpute [mage
Measurements

Pre-process| | Canonical
& Pesize Face hModel

+ 4

FaceMot-Face
Classifier i}

"Tifference” measurements

Input Image

Face Pattern Becognizer

(@ (b)

FaceMlot-Face Classifier

©

Fig. 1. Overview of our face-detection system. (a) A “canonical” face pattern, a 19 x 19 mask for eliminating near-boundary pixels of canonical
face patterns, and the resulting “canonical” face pattern after applying the mask. (b) At each scale, the image is divided into many possibly over-
lapping windows. Each window pattern gets classified as either “a face” or “not a face,” based on a set of local image measurements. (c) The key

components of the Face Pattern Recognizer block in greater detail.

has only been demonstrated on images with little back-
ground clutter.

1.2.2 Deformable Templates

Deformable templates are similar to classical correlation
templates with some built-in nonrigidity component. One
deformable template approach uses parameterized curves
and surfaces to model the nonrigid elements of faces and
facial subfeatures, such as the eyes, nose, and lips [19]. The
parameterized curves and surfaces are fixed elastically to a
global template frame to allow for minor variations in posi-
tion between facial features. The matching process aligns
the parameterized curves and surfaces to their corre-
sponding image features, while minimizing deformation
“stress” in the template.

1.2.3 Image Invariants

Image-invariance schemes assume that there are certain
spatial image relationships common and possibly unique to
all face patterns, even under different imaging conditions.
To detect faces, one has to compile such a set of image in-
variants and search the image for places where they occur.
One image-invariance scheme is based on a set of observed
brightness invariants between different parts of the human
face [15].

1.3 Example-Based Learning and Face Detection

In this paper, we formulate the face-detection problem as
one of learning to recognize face patterns from examples.
We use an initial database of about 1,000 face images to
construct a distribution-based generic face model with all
its permissible pattern variations in a high-dimensional
image vector space. We then train a decision procedure on
a sequence of “face” and “nonface” examples, to empiri-
cally discover a set of operating parameters and thresholds
that differentiates “face” patterns from “nonface” patterns.
Our learning-based approach has the following key ad-
vantages over existing techniques:

1) Our modeling scheme does not depend much on do-
main specific knowledge or special handcrafting

techniques to parameterize face patterns and their
various sources of variation. This immediately elimi-
nates potential errors due to inaccurate or incomplete
knowledge.

2) Unlike most non-learning-based approaches that
typically obtain their operating parameters and
thresholds manually from a few trial cases, our detec-
tion scheme derives its parameters and thresholds
automatically from many input-output examples. The
resulting parameter and threshold values should
therefore be statistically more reliable.

3) Our resulting system can also be made arbitrarily ro-
bust by increasing the size and variety of its training
examples. Both false positive and false negative detec-
tion errors can be easily corrected by further training
with the wrongly classified patterns. The system can
also be similarly trained to detect human faces over a
wider range of poses.

2 SYSTEM OVERVIEW AND APPROACH

In our view-based approach, faces are treated as a class of
spatially local target patterns to be detected in an image.
Fig. 1la shows a frontal human face image patch that just
encloses the eyes and the mouth. To detect faces, we try to
model the class of all such “face-like” image patches, and
search the image exhaustively for these face-like patterns at
all possible locations and scales. Each time a “matching”
window pattern is found, the system reports a face of the
current window size at the current location. We handle
multiple scales by matching windows of different sizes
against our face model.

Clearly, the most critical part of our system is the algo-
rithm for classifying window patterns as “faces” or
“nonfaces.” Fig. 1c shows the key components of the algo-
rithm which works as follows:

1) We use a normalized image window size of 19 x 19
pixels to model the distribution of canonical frontal
face patterns.

2) To classify new window patterns at runtime, we first

SUNG AND POGGIO: EXAMPLE-BASED LEARNING FOR VIEW-BASED HUMAN FACE DETECTION 41

resize each window pattern to 19 x 19 pixels. Next, we
compute a set of “difference” measurements between
the resized window pattern and the face distribution
model. We then present the “difference” measurements
to a trained classifier which determines whether or not
the new window pattern contains a face.

Section 3 describes our distribution-based model for
representing canonical face window patterns. Section 4
explains the distance measures we use for matching new
window patterns against our distribution-based face
model. Section 5 discusses the classifier training process,
and in particular, our method of selecting a comprehen-
sive but tractable set of training examples. In Section 6, we
evaluate the system’s overall performance, and identify
the algorithm’s critical components for generating correct
results.

3 A DISTRIBUTION-BASED FACE MODEL

Our window classification algorithm finds faces by
matching each new window pattern against a canonical
face model. One of the key difficulties in face detection is
to account for the wide range of permissible pattern
variations in face images. We address this problem by
using a distribution-based modeling scheme to represent
the set of all 19 x 19 pixel patterns that are canonical face
views (see Fig. 1a). The scheme treats the class of all 19 x 19
pixel images as a vector space whose dimensionality equals
the number of image pixels. The set of all 19 x 19 pixel ca-
nonical face patterns occupies some fixed volume in this
multidimensional vector space. So, in theory, one can
model faces by identifying this “face” volume, and repre-
senting it in some tractable fashion.

3.1 Identifying and Representing the Canonical Face
Manifold

In practice, one does not have the set of all 19 x 19 pixel
frontal face patterns to recover the volume of canonical face
views exactly. Instead, we use a reasonably large example
database of hand-cropped 19 x 19 pixel frontal face pat-
terns, to obtain a coarse but fairly reliable representation of
the actual face manifold. We also use a carefully chosen
database of nonface patterns to help refine the boundaries
of the face manifold, by carving out regions around the
“face” sample distribution that do not correspond to ca-
nonical face views. Section 5.1 explains how we choose the
special nonface patterns.

Our approach uses a few (six in our implementation)
“face” clusters to piecewise approximate the multi-
dimensional distribution of canonical face patterns, and a
few (six in our implementation) “nonface” clusters to
model the distribution of “nonface” patterns. Each cluster is
a multidimensional Gaussian with a centroid location and a
covariance matrix that describes the local data distribution
(see Fig. 2).

Our piecewise-continuous modeling scheme serves two
important functions. First, it performs generalization by
smoothing the observed data sample distribution. This re-
sults in a stored data distribution function that is well de-
fined even in regions of the image vector space where no

data samples have been observed. Second, it serves as a
tractable scheme for representing an arbitrary data distri-
bution by means of a few Gaussian basis functions. The rest
of this section describes our modeling process in greater
detail.

3.2 Preprocessing

The first step of our modeling process is to normalize the
individual sample patterns in the “face” and “nonface”
training databases, before using them to synthesize
“face” and “nonface” pattern clusters. We perform the
following normalization steps on all patterns in both
training databases:

1) Image resizing: This operation resizes all image pat-
terns in both training databases to 19 x 19 pixels. We
choose a 19 x 19 pixel window size to keep the di-
mensionality of the window vector space manageably
small, but still large enough to preserve distinctive
visual features of face patterns.

2) Masking: We use the 19 x 19 pixel binary mask in
Fig. 1a to eliminate some near-boundary pixels of
each window pattern. For our hand-cropped “face”
patterns, these masked pixels are mostly back-
ground pixels. Removing them ensures that we do
not wrongly introduce any unwanted background
structure into our face representation. Masking also
helps reduce the effective dimensionality of the 19 x 19
pixel window vector space from 361 dimensions to
283 dimensions (the number of unmasked pixels).

3) Ilumination gradient correction: This operation
subtracts a best-fit brightness plane from the un-
masked window pixels. For face patterns, it helps
reduce heavy shadows caused by extreme lighting
angles.

4) Histogram equalization: This operation compensates
for imaging effects due to changes in illumination
brightness and differences in camera response curves.

Notice that we must also apply the same preprocessing steps
to all new window patterns being classified at runtime.

3.3 Modeling the Distribution of “Face” Patterns

We use a database of 4,150 normalized frontal face patterns
to synthesize six “face” pattern clusters in our 19 x 19 di-
mensional image vector space. The six face clusters serve as
a model for our empirical face pattern distribution. Of the
4,150 database patterns, 1,067 are real face patterns, hand-
cropped from several different image sources. Before nor-
malization, we artificially enlarge the “face” database by
adding to it slightly rotated versions of some real face pat-
terns and their mirror images. This helps to ensure that the
final database contains a reasonably dense and representa-
tive sample of canonical face patterns.

Each “face” pattern cluster is a multidimensional Gaus-
sian function with a centroid location and a covariance ma-
trix that describes the local data distribution around the
centroid. We approximate the observed “face” distribution
with only a small number of Gaussian clusters because the
sample size is still very small compared to the image vector
space dimensionality (we have 4,150 data samples in a 283-
dimensional masked image vector space). Using a large

42 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 1, JANUARY 1998

¥3 Face Sample
— 15— 4 Distibution

!

Frontal Face Pattem

sarnples to approimate
vector subspace of

canonical face views

¥3 Mon-Face Sample
4 Distribution

Special Mon-Face Pattemn
sarnples to refine vector
subspace boundaries of
canonical face wiews

X3 Approxdmation with
i Qaussian clusters
3

Face Centroids

s
5
anmﬂ ==

Mon-Face Centroids

x3 Approxmation with
4 Gaussian clusters

Fig. 2. Our distribution-based canonical face model. Top Row: We model an empirical distribution of face patterns using six multi-dimensional
Gaussian clusters, whose centers are as shown on the right. Bottom Row: We also model a carefully chosen sample of nonface patterns using six
multidimensional Gaussian clusters to help localize the boundaries of the face distribution. The final model consists of six Gaussian “face” clusters

and six “nonface” clusters.

number of model clusters can lead to overfitting the ob-
served data distribution with poor generalization results.
We arrived at the chosen number of “face” clusters empiri-
cally. The system’s performance, i.e., its face-detection rate
versus the number of false alarms, does not change much
with slightly fewer or more pattern clusters.

We use a modified version of the k-means clustering al-
gorithm to compute the six face-pattern centroids and their
cluster covariance matrices from the enlarged database of
4,150 normalized face patterns. Our clustering algorithm
fits directionally elongated (i.e., elliptical) Gaussian distri-
butions to the data sample. We adopt a nonisotropic Gaus-
sian mixture model, because we believe that the actual face
distribution can be locally more elongated along certain
vector space directions than others.

Our elliptical k-means clustering algorithm uses an adap-
tively changing normalized Mahalanobis distance metric to
partition the data sample into clusters. Let ¥ be a new
window pattern (in column vector form) and i be a Gaus-
sian cluster centroid (also as a column vector). The nor-
malized Mahalanobis distance between X and g is:

M,(%, i) = %(d In27 + Infz| + (% - 1) =7 (% - 1)),

where d is the vector space dimensionality and X is the

covariance matrix that encodes the cluster’s shape and
directions of elongation. The normalized Mahalanobis
distance reduces the penalty of pattern differences along
a cluster’s major directions of data distribution, to form
elliptical clusters instead of spherical clusters where
there is a nonisotropic local data distribution. Section 4.2
explains the normalized Mahalanobis distance metric in
greater detail.

The following is an outline of our elliptical k-means clus-
tering procedure:

1) Obtain k (six in our case) initial pattern centers by
performing vector quantization with Euclidean dis-
tances on the enlarged face database. Divide the
data set into k partitions (clusters) by assigning each
data sample to the nearest pattern center in Euclid-
ean space.

2) Initialize the covariance matrices of all k clusters to be
the identity matrix.

3) Recompute pattern centers to be the centroids of the
current data partitions.

4) Using the current set of k pattern centers and their
cluster covariance matrices, recompute data partitions
by reassigning each data sample to the nearest pattern
center in normalized Mahalanobis distance space. If the
data partitions remain unchanged or if the maximum

SUNG AND POGGIO: EXAMPLE-BASED LEARNING FOR VIEW-BASED HUMAN FACE DETECTION 43

Fig. 3. An example of a naturally occurring “nonface” pattern that resembles a face. Left: Viewed in isolation. Right: Viewed in the context of its

environment.

number of inner-loop (i.e., Steps 3 and 4) iterations has
been exceeded, proceed to Step 5. Otherwise, return
to Step 3.

5) Recompute the covariance matrices of all k clusters
from their data partitions.

6) Using the current set of k pattern centers and their
cluster covariance matrices, recompute data partitions
by reassigning each data sample to the nearest pattern
center in normalized Mahalanobis distance space. If the
data partitions remain unchanged or if the maximum
number of outer-loop (i.e., Steps 3 to 6) iterations has
been exceeded, proceed to Step 7. Otherwise, return
to Step 3.

7) Return the current set of k pattern centers and their
cluster covariance matrices.

The inner loop (i.e., Steps 3 and 4) is similar to the tradi-
tional k-means algorithm. Given a fixed distance metric, it
finds a set of k pattern prototypes that partitions the sample
data set. Our algorithm differs from the traditional k-means
algorithm because of Steps 5 and 6 in the outer loop, where
we try to iteratively refine and recover the cluster shapes,
i.e., the cluster covariance matrices.

3.4 Modeling the Distribution of “Nonface” Patterns

There are many naturally occurring “nonface” patterns in
the real world that look like faces when viewed in isolation
(see Fig. 3). Because we are coarsely representing the face
manifold with a few (six) Gaussian clusters, some of these
face-like patterns may even be located nearer the “face”
cluster centroids than some real “face” patterns. This may
give rise to misclassifications, because, in general, we ex-
pect the opposite to be true, i.e., face patterns should lie
nearer the “face” clusters than nonface patterns.

In order to reduce misclassification, we collect a com-
prehensive sample of these face-like patterns and explic-
itly model their distribution using a few (six in our im-
plementation) “nonface” clusters. These “nonface” clus-
ters carve out negative regions around the “face” clusters
that do not correspond to face patterns. We also arrived at
the chosen number “nonface” clusters empirically. The
system’s face-detection rate versus false-alarm ratio does
not change much with slightly fewer or more “nonface”
pattern clusters.

We use our elliptical k-means clustering algorithm to ob-
tain six “nonface” centroids and their cluster covariance
matrices from a database of 6,189 normalized face-like pat-
terns. The database was incrementally generated in a

“bootstrap” fashion by first building a reduced version of
our face detection system with only “face” prototypes, and
collecting all the false positive patterns it detects over a large
set of real images. Section 5.1 elaborates further on our
“boot-strap” data generation procedure.

4 MATCHING PATTERNS WITH THE MODEL

To detect faces in an input image, our system matches win-
dow patterns at different image locations and scales against
our distribution-based face model. Before each match, the
system first applies the preprocessing operations of Section
3.2 to the current window pattern. Each match returns a set
of “difference” measurements which is fed to a trained clas-
sifier that determines whether or not the current window
pattern is a frontal face view.

This section describes the set of “difference” measure-
ments we compute for each new window pattern. Each set
of measurements is a vector of 12 distances between the
normalized window pattern and the model’s 12 cluster
centroids in our multidimensional image vector space (see
Fig. 4a). One can treat each distance measurement as the
test pattern’s actual distance from some local portion of
the canonical face pattern manifold. The set of all 12 dis-
tances can thus be viewed as a crude “difference” notion
between the test pattern and the entire “canonical face”
pattern class.

Test Pattern

Centroid

Hullspace of

\J‘ 74 Largest Eigensnectors

@) (b)

Fig. 4. Matching a test pattern against our distribution-based model. (a)
Each set of measurements is a vector of 12 distances between the test
pattern and the model's 12 cluster centroids. (b) Each distance meas-
urement between the test pattern and a cluster centroid is a two-value
distance metric. D; is a Mahalanobis distance between the test pat-
tern’s projection and the cluster centroid in a subspace spanned by the
cluster's 75 largest eigenvectors. D, is the Euclidean distance be-
tween the test pattern and its projection in the subspace.

44 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 1, JANUARY 1998

4.1 A Two-Value Distance Metric

We now define how we measure distance between a test
pattern and each model cluster. The distance measure con-
sists of two components (see Fig. 4b). The first value is a
normalized Mahalanobis distance between the test pattern
and the cluster centroid, in a lower-dimensional subspace
spanned by the cluster’s largest few eigenvectors. This dis-
tance component is directionally weighted to reflect the test
pattern’s location relative to the major elongation directions
of the local data distribution. The second value is a nor-
malized Euclidean distance between the test pattern and its
projection in the lower-dimensional subspace. This is a uni-
formly weighted distance component that accounts for
pattern differences not included in the first component due
to possible modeling inaccuracies. We elaborate further on
the two components below.

4.2 The Normalized Mahalanobis Distance

We begin with a brief review of the normalized Mahalanobis
distance. Let X be a column vector test pattern, i be a col-

umn vector cluster centroid, and X be the covariance matrix
describing the local data distribution near the centroid. The
normalized Mahalanobis distance between the test pattern and
the cluster centroid is given by:

M, (%, i) = %(d In27 + Infx] + (¥ - 1) =7 (% - 1)),

where d is the vector space dimensionality and |Z| means

the determinant of X.

One can reason about the normalized Mahalanobis distance
as follows: If one models a local data distribution with a
best-fit multidimensional Gaussian distribution centered at
I with covariance matrix X, then all points at a given nor-
malized Mahalanobis distance from [I occupy a constant den-
sity surface in this multidimensional vector space. As a
distance metric for classifying patterns, the normalized Ma-
halanobis distance is intuitively pleasing, because it measures
pattern differences in a distribution-dependent manner that
accounts for the location of all known patterns in the local
target class.

4.3 The First Distance Component—Distance Within
a Normalized Low-Dimensional Mahalanobis
Subspace

The first distance component, D), is a normalized Mahalano-
bis distance between the test pattern and the cluster cen-
troid, measured within a lower-dimensional subspace
spanned by the cluster’s 75 largest eigenvectors. We arrived
at our choice of 75 “significant” eigenvectors per cluster
using the following criterion: For each cluster, eliminate as
many trailing eigenvectors as possible, so that the sum of
all the eliminated eigenvalues is still smaller than the clus-
ter’s largest eigenvalue. This procedure leaves us with ap-
proximately 75 eigenvectors for each cluster, which we
standardize at 75 for simplicity.

Mathematically, we compute D, by first projecting the
test pattern onto the cluster’s 75-dimensional vector sub-
space. Then we measure the normalized Mahalanobis dis-
tance between the test pattern’s projection and the cluster

centroid. Let ¥ be the column vector test pattern, i be the

cluster centroid, E;; be a matrix with 75 columns, where
column i is a unit vector in the direction of the cluster’s ith
largest eigenvector, and W5 be a diagonal matrix of the
corresponding 75 largest eigenvalues. The covariance
matrix for the cluster’'s data distribution in the 75-
dimensional subspace is given by X, = (E75W75E7TS). The
first distance value is:

1
Dy(%, 1) = (7527 + In|Z5| + (% — 1) T;4(% -).

This first value locates the test pattern relative to the
cluster’s major directions of data distribution. It ignores
pattern differences in the cluster’s smaller eigenvector di-
rections, because the eigenvalues we recover in these direc-
tions may be significantly inaccurate due to insufficient
data (see Section 4.5 for a detailed analysis). Using the
smaller eigenvectors and eigenvalues to compute a distri-
bution dependent distance can therefore lead to meaning-
less results.

4.4 The Second Distance Component—Distance
From the Low-Dimensional Mahalanobis
Subspace

The second distance component, D,, is a standard Euclid-
ean distance between the test pattern and its projection in
the 75-dimensional subspace. This distance component ac-
counts for pattern differences not captured by the first
component, namely, pattern differences in the cluster’s
smaller eigenvector directions. Because we may not have a
reasonable estimate of the smaller eigenvalues, we simply
assume an isotropic Gaussian data distribution in the
smaller eigenvector directions, and hence a Euclidean dis-
tance measure.

Using the notation from the previous subsection, we can
show that the second component is simply the L, norm of
the displacement vector between ¥ and its projection X,,:
2

D, (%, 1) = ‘(J—C -%,)‘2 = ‘(1 - E75E7TS)(;C —[1)‘

4.5 Relationship Between Our Two-Value Distance
and the Mahalanobis Distance

There is an interesting relationship between our two-
value distance metric, and the “complete” normalized
Mahalanobis distance between an input pattern and a
model cluster in our 19 x 19 pixel image vector space
(see also [7] for a similar interpretation and presenta-
tion). Recall from Section 4.2 that the normalized Ma-
halanobis distance arises from fitting a multidimen-
sional full-covariance Gaussian to an empirical data
distribution. For high-dimensional vector spaces,
modeling a distribution with a full-covariance Gaus-
sian is often not feasible because one may not have
enough data samples to estimate the covariance matrix
accurately. Specifically, in a d-dimensional vector
space, we need, in principle, at least (4 + 1) data sam-
ples to form a d-dimensional cluster of points to con-
struct a d-dimensional full-covariance Gaussian distri-

SUNG AND POGGIO: EXAMPLE-BASED LEARNING FOR VIEW-BASED HUMAN FACE DETECTION 45

bution. In practice, one would normally use a much
larger number of data samples to accurately approxi-
mate the shape of the d-dimensional Gaussian cluster.
In our application, we have, on the average, fewer
than 700 data points (i.e., fewer than three times the
minimum required number of data samples) to ap-
proximate each 283-dimensional masked “face” cluster.
This, we feel, is still too small a data sample size for
estimating the parameters of a full-covariance Gaus-
sian model reliably.

One way of getting by with less data is to use a restricted
Gaussian model with a diagonal covariance matrix, i.e., a
multidimensional Gaussian distribution whose elongation
axes are aligned to the vector space axes. In our domain of
19 x 19 pixel images, this corresponds to a model whose
individual pixel values may have different variances, and
whose pairwise pixel values are all uncorrelated. Clearly,
this is a very poor model for face patterns which are highly
structured with groups of pixels having very highly corre-
lated intensities.

An alternative way of simplifying the Gaussian model is
to preserve only a small number of “significant” eigenvectors
in the covariance matrix. One can show that in order to con-
struct a d-dimensional Gaussian model with h “significant”
eigenvectors, we need only a minimum of (4 + 1) data sam-
ples. This can easily be a tractable number of data samples
if h is small. Geometrically, the operation projects the origi-
nal d-dimensional Gaussian cluster onto an /i-dimensional
subspace, spanned by the cluster’s & most “significant”
elongation directions. The projection remembers the most
prominent pixel correlations among patterns in the target
class. To exploit these pixelwise correlations for pattern
classification, one computes a directionally weighted Ma-
halanobis distance between the test pattern’s projection and
the Gaussian centroid in this h-dimensional subspace—D,
of our two-value distance metric.

The orthogonal subspace is spanned by the (d —h) re-
maining eigenvectors of the original Gaussian cluster.
Because this subspace encodes pixel correlations that are
less prominent and possibly less reliable due to limited
training data, we simply assume an isotropic Gaussian
distribution of data samples in this subspace, i.e., a diago-
nal covariance matrix Gaussian with equal variances
along the diagonal. One can recover this diagonal covari-
ance matrix with only one additional data sample beyond
the (h + 1) data samples we already require. In practice,
one would use many more data samples. To measure
distances in this subspace of isotropic data distribution,
we use a directionally independent Euclidean distance—
D, of our two-value distance metric.

We can thus view our two-value distance metric as a ro-
bust approximate Mahalanobis distance that one uses when
there is insufficient training data to accurately recover all
the eigenvectors and eigenvalues of a full-covariance Gaus-
sian model. The approximation uses its limited degrees of
freedom to capture the most prominent pixel correlations in
the data distribution. As the data sample size increases, one
can preserve a larger number of principal components in

the Gaussian model. This results in D, becoming increas-

ingly like the “complete” Mahalanobis distance with D,
vanishing in size and importance.

5 THE CLASSIFIER

We use a multilayer perceptron (MLP) net classifier to
identify “face” window patterns from “nonface” patterns
based on their “difference” feature vectors of 12 distance
measurements. The net has 12 pairs of input units, one out-
put unit and 24 hidden units. Each hidden and output unit
computes a weighted sum of its input links and performs
sigmoidal thresholding on its output. During classification,
the net is given a vector of the current test pattern’s dis-
tance measurements to the 12 cluster centroids. Each input
pair receives the two-value distance to a specific centroid.
The output unit returns a 1 if the input distance vector
arises from a “face” pattern, and a 0 otherwise. Our ex-
periments in the next section show that the number of hid-
den units and network connectivity structure do not sig-
nificantly affect the classifier’s performance.

We train our MLP classifier on feature distance vectors
from a database of 47,316 window patterns. There are 4,150
positive examples of “face” patterns in the database and the
rest are “nonface” patterns. The net is trained with a stan-
dard back-propagation learning algorithm [14] until the
output error stabilizes at a very small value.

5.1 Generating and Selecting Training Examples
Because our face detection system learns its task from ex-
amples, it would be desirable to have as large a set of
training examples as possible, in order to attain a compre-
hensive sampling of the input space. Unfortunately, there
are real-world considerations that could seriously limit the
size of training databases, such as shortage of free disk
space and computation resource constraints.

How do we build a comprehensive but tractable data-
base of “face” and “nonface” patterns? For “face” patterns,
we simply collect all the frontal views of human faces we
can find. Because we do not have many face patterns, we
had to artificially enlarge our data set [13] by generating
mirror images and slightly rotated versions of the original
face patterns, as shown in Fig. 5a.

For “nonface” patterns, the task is more tricky. In es-
sence, every square nonface window pattern of any size in
any image is a valid training example. Clearly, our set of
“nonface” patterns can grow intractably large if we are to
include all possible “nonface” patterns in our training data-
base. To constrain the number of “nonface” examples in our
database, we use the following “bootstrap” strategy that
incrementally selects only those “nonface” patterns with
high utility value:

1) Start with a small set of “nonface” examples in the
training database.

2) Train the MLP classifier with the current database of
examples.

3) Run the face detector on a sequence of random im-
ages. Collect all the “nonface” patterns that the cur-
rent system wrongly classifies as “faces” (see Fig. 5b).
Add these “nonface” patterns to the training database
as new negative examples.

46 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 1, JANUARY 1998

Rotate H

-5 deg

G

4) Return to Step 2.

At the end of each iteration, the “bootstrap” strategy
enlarges the current set of “nonface” patterns with new
“nonface” patterns that the current system classifies
wrongly. We argue that this incremental example selec-
tion strategy makes sense, because we expect these new
examples to help steer the classifier away from its current
mistakes.

Notice that if necessary, we can apply the same
“bootstrap” technique to enlarge the set of positive
“face” patterns in our training database. Also, notice that
at the end of each iteration, we may recluster our “face”
and “nonface” databases to generate new model clusters
that approximate the distribution of face patterns more
accurately.

5.2 A Probabilistic Interpretation on Combining MLP

Net Classifiers With the Distribution-Based Face

Model
Section 3 describes how we model the distribution of “face”
and “nonface” patterns using a few multidimensional
Gaussian clusters in our 19 x 19 pixel image vector space. In
Section 4, we introduce a two-value distance metric as a
“difference” notion between an input window pattern and
a model cluster. Each two-value distance measures the log-
likelihood that the input pattern belongs to the local pattern
distribution modeled by the cluster. The set of all 12 two-
value distance measurements can thus be viewed as a
model-centered coordinate system that locates the test pat-
tern with respect to the entire “face” and “nonface” pattern
distribution.

To identify “face” window patterns from “nonface”
patterns, we train a MLP net classifier to combine the 12
distance measurements into a single “similarity” measure
that can be thresholded for positive matches. From a prob-
abilistic standpoint, one can treat the “similarity” measure
as a conditional probability density function for face pat-
terns: i.e., P(Class(z?) = Facd Fc), where ¥ is the input

(b)

Fig. 5. (a) Atrtificially generating virtual examples of face patterns. For each original face pattern in our training database, we generate a few new
face patterns using some simple image transformations. (b) Some false detects by an earlier version of our face detection system, marked by
solid squares on the two images above. We use these false detects as new negative examples to retrain our system in a “boot-strap” fashion.

window pattern. Because we expect most “face” patterns to
be located near the “face” model clusters and away from
the “nonface” clusters, the resulting conditional probability
density function should be high near the “face” clusters,
low near the “nonface” clusters and low at places far away
from the Gaussian mixture model.

6 RESULTS AND PERFORMANCE ANALYSIS

Fig. 6 shows some face-detection results by our system. The
system detects frontal faces across scales, beginning with a
window size of 19 x 19 pixels and ending with a window
size of 100 x 100 pixels. At 19 x 19 pixels, the system scans
the image for faces at one-pixel increments horizontally and
vertically. To detect faces at a larger scale, we first shrink
the image by an appropriate scaling factor, before scanning
the scaled image for 19 x 19 pixel face patterns at one-pixel
intervals. Between successive scales, the window width is
enlarged (or equivalently, the image width is reduced) by a
factor of 1.2.

Each time a “face” pattern is found, the system draws an
appropriately sized dotted box at the corresponding win-
dow location in an output image. Notice that there can be
multiple dotted boxes enclosing each face pattern in the
output image, because the same face pattern can be de-
tected at multiple scales and at slightly displaced window
locations. The current system is not trained to detect faces
with large off-plane rotation components.

6.1 Measuring the System’s Performance

We ran our system on two test databases of new images,
and counted the number of correct detections versus false
alarms. The first test database consists of 301 frontal and
near-frontal face mugshots of 71 different people. All the
images are high quality digitized images with a fair amount
of lighting variation. We use this database to obtain a “best
case” detection rate for our system on high quality input
patterns.

SUNG AND POGGIO: EXAMPLE-BASED LEARNING FOR VIEW-BASED HUMAN FACE DETECTION 47

Fig. 6. Some face-detection results by our system. See text for details.

The second database contains 23 images with a total of
149 face patterns. There is a wide variation in image qual-
ity, ranging from high-quality CCD camera pictures to low-
quality newspaper scans. Most of these images have com-
plex background patterns with faces taking up only a very
small percentage of the total image area. We use this data-
base to obtain an “average case” performance measure for
our system.

For the first database, our system correctly finds 96.3
percent of all the face patterns and makes only three false
detects. All the face patterns that it misses have either strong
illumination shadows or fairly large off-plane rotation
components. For the second database, our system achieves
a79.9 percent detection rate with five false positives. The face
patterns it misses are mostly either from low-quality news-

paper scans or hand-drawn pictures. Also, many of the
missed faces have either strong illumination shadows or
fairly large rotation components. Most of the false detects are
image patches with dark regions that look like eyes. Fig. 7
shows some failure modes of the system.

6.2 Analyzing the System’s Components

We conducted some additional experiments to investigate
how the following three aspects of our system architecture
affect its face-detection and false-alarm rates:

1) the classifier architecture,

2) our two-value distance metric as a difference measure
for computing distance feature vectors, and

3) the “nonface” clusters in our face model.

48

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 1, JANUARY 1998

Fig. 7. Some face-detection results with mistakes. The top right image is very heavily quantized with only 46 gray levels. The system misses
only one face. In the middle right image, the system misses some faces with significant illumination shadows. In the bottom left image, the
system misses some faces with fairly large rotation components. Most of the false detects are images patches with eye-like dark regions.
Note: The images here are not among those from our test databases.

6.2.1 Classifier Architecture

The first experiment looks at how varying the classifier ar-
chitecture affects our system’s performance. To do this, we
create two new systems with different classifier architec-
tures and compare their face-detection versus false-alarm
statistics with those of our original system. Our two new
classifier architectures are:

1) A single perceptron unit. We replace the original

MLP net with a single perceptron unit connected di-
rectly to the 12 pairs of input terminals. The single
perceptron unit is the simplest possible MLP net, and
its purpose here is to provide an “extreme case” per-
formance figure for network-based classifiers in this

problem domain.

2) A nearest neighbor classifier. We perform nearest

neighbor classification on the 24-value distance
feature vectors computed by the matching stage.
For each training pattern, we precompute and store
its 24-value distance feature vector and output class
at compile time. When classifying a new test pat-
tern, we compute its 24-value distance feature vec-
tor and return the output class of the closest stored
feature vector in Euclidean space. The nearest
neighbor classifier provides us with a performance
figure for a different classifier type in this problem
domain.

SUNG AND POGGIO: EXAMPLE-BASED LEARNING FOR VIEW-BASED HUMAN FACE DETECTION 49

6.2.2 The Distance Metric

The second experiment investigates how using a different
distance metric for computing distance feature vectors in
the matching stage affects the system’s performance. We
compare our two-value distance metric against three other
distance measures:

1) The normalized Mahalanobis distance within a 75-
dimensional vector subspace spanned by each model
cluster’s 75 largest eigenvectors—i.e., D, only of our
two-value distance.

2) The Euclidean distance between the test pattern and
its projection in the 75-dimensional subspace—i.e., D,
only of our two-value distance.

3) The standard normalized Mahalanobis distance (M,,)
between the test pattern and the cluster centroid
within the full image vector space.

To conduct this experiment, we repeat the previous set
of classifier experiments three additional times, once for
each new distance metric we are comparing. Because the
three new distances are all single-value measurements, we
also have to modify the classifier architectures accordingly
to accept length-12 feature vectors instead of length-24
feature vectors.

6.2.3 “Nonface” Model Clusters

This experiment looks at how well the system performs
with and without “nonface” clusters in the distribution-
based model. We compare results from our original system
against results from two new systems whose internal mod-
els contain only “face” clusters:

1) A system with 12 “face” clusters and no “nonface”
clusters. In this system, we use the same total number
of model clusters in the distribution-based face
model. We obtain the 12 “face” clusters by perform-
ing elliptical k-means clustering with 12 centers on our
enlarged face database of 4,150 patterns (see Section
3.3). The matching stage uses our two-value distance
metric to compute a 24-value distance feature vector
for each test pattern.

2) A system with only six “face” clusters. In this sys-
tem, we preserve only the “face” clusters from the
original system. The matching stage computes the
same two-value distances between each test pattern
and the six “face” centroids. The resulting distance
feature vectors have only six pairs of values.

We generate two sets of performance statistics for each
of the two new systems above. For the first set, we use a
trained MLP net with 24 hidden units to classify new pat-
terns from their distance feature vectors. For the second set,
we replace the MLP net classifier with a trained single per-
ceptron unit classifier.

6.3 Performance Figures and Interpretation

Tables 1 and 2 summarize the performance statistics for our
three experiments.

6.3.1 Classifier Architecture
The vertical columns of Table 1 show how different classifier

architectures affect the system’s face-detection rate versus
false-alarm instances. Qualitatively, the two network-based
classifiers have very similar performance figures, especially
on the first test database. Depending on the distance metric
being used, the nearest neighbor classifier has either a some-
what higher face-detection rate with a lot more false alarms,
or a much lower face-detection rate with somewhat fewer
false alarms than the two network-based classifiers. The fig-
ures here suggest that the system’s performance depends
most critically on the type of classifier being used, and little
on the detailed classifier configuration.

Why does the nearest neighbor classifier give seemingly
poorer results than the two network-based classifiers? We
believe this has to do with the much larger number of non-
face patterns in our training database than face patterns
(43,166 nonface patterns versus 4,150 face patterns). The
good performance figures from the single perceptron classi-
fier suggest that the two pattern classes are linearly highly
separable in our 24 value distance feature space. Assuming
that roughly the same fraction of face and nonface patterns
lie along the linear class boundary, we get a boundary
population with 10 times as many nonface samples as face
samples. A new face pattern near the class boundary will
therefore have a much higher chance of lying nearer a non-
face sample than a face sample and hence be wrongly clas-
sified by a nearest-neighbor scheme.

TABLE 1
DETECTION RATES VERSUS NUMBER OF FALSE POSITIVES
FOR DIFFERENT CLASSIFIER ARCHITECTURES
AND DISTANCE METRICS

?iassiﬁer Distance Metric

Architecture | 2-Value Component D; | Component D, | Std. Mahalanobis

Multi-Layer | 96.3% 3 | 91.6% 21 | 91.4% 4184.1% 9

79.9% 5|85.1% 114 | 65.1% 5| 42.6% 5

Single Unit | 96.7% 3| 93.3% 15 | 92.3% 3193.0% 13

84.6% 13 |85.1% 94 | 68.2% 5 | 58.6% 11

Nearest 65.1% 1|97.4% 208 | 53.9% 1171.8% 5
Neighbor

Note: The four numbers for each entry are: Top left: detection rate for first
database. Top right: number of false positives for first database. Bottom left:
detection rate for second database. Bottom right: number of false positives for
second database. We did not test the nearest neighbor architecture on the
second database because the test results from the first database already show
that the nearest neighbor classifier is significantly inferior to the other two
classifiers in this problem domain.

6.3.2 The Distance Metric

The horizontal rows of Table 1 show how the system’s per-
formance changes with different distance metrics in the
pattern matching stage. Both the network-based classifier
systems produce significantly better performance statistics
with our two-value distance metric than with the other
three distance measures. The observation should not at all
be surprising, since our two-value distance metric consists
of both D, and D,—two of the three other distance meas-
ures we are comparing against. A system that uses our two-
value distance should therefore produce results that are at

50 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 1, JANUARY 1998

least as good as a similar system that uses either D, or D,
only.

Our two-value distance metric should also produce
classification results that are at least as good as those ob-
tained with a standard Mahalanobis distance metric, be-
cause both metrics are based on very similar Gaussian
generative models of the local data distribution. With
network-based classifiers, the two-value distance metric
actually out-performs the standard Mahalanobis distance
metric consistently. As discussed in Section 4.5, we be-
lieve this is because we have too few sample points in our
local data distribution to accurately recover a full Gaus-
sian covariance matrix for computing standard Maha-
lanobis distances. By naively trying to do so, we get a
distance measure that poorly reflects the “difference” no-
tion we want to capture.

TABLE 2
DETECTION RATES VERSUS NUMBER OF FALSE POSITIVES FOR
DIFFERENT CLASSIFIER ARCHITECTURES AND COMPOSITION OF
PROTOTYPES IN DISTRIBUTION-BASED MODEL

Composition of Prototypes
Classifier 6 Face & 12 Face 6 Face
Architecture 6 Non-Face
Multi-layer Perceptron | 96.3% 3 | 85.3% 21| 59.7% 17
79.9% 5169.6% 74|60.9% 41
Single Perceptron | 96.7% 3 |52.1% 6] 66.6% 25
84.6% 13 |49.7% 16| 55.4% 56

Note. The four numbers for each entry are: Top left: detection rate for first
database. Top right: number of false positives for first database. Bottom left:
detection rate for second database. Bottom right: number of false positives for
second database.

6.3.3 “Nonface” Model Clusters

Table 2 summarizes the performance statistics for compar-
ing systems with and without “nonface” model clusters. As
expected, the systems with “nonface” model clusters clearly
outperform those without “nonface” clusters. Our results
suggest that the “nonface” clusters give rise to a very dis-
criminative set of additional distance features for identify-
ing face patterns.

7 CONCLUSION

We have successfully developed a system for finding unoc-
cluded vertical frontal views of human faces in images. The
approach builds a distribution-based model of face pat-
terns, and learns from examples a set of distance parame-
ters for distinguishing between “face” and “nonface” win-
dow patterns. We stress again that the underlying tech-
nique is fairly general and has been recently used by our-
selves and others for taking on feature-detection and pat-
tern-recognition tasks in other problem domains [11], [17].

ACKNOWLEDGMENT

Support for the MIT Center of Biological and Computa-
tional Learning is provided in part by a grant from the U.S.
National Science Foundation under contract ASC-9217041.

REFERENCES

[1] D. Beymer, A. Shashua, and T. Poggio, “Example Based Image
Analysis and Synthesis,” AIM-1431, Artificial Intelligence Labo-
ratory, Massachusetts Institute of Technology, 1993.

[2] M. Bichsel, “Strategies of Robust Objects Recognition for Auto-
matic Identification of Human Faces,” PhD thesis, ETH, Zurich,
1991.

[3] R. Brunelli and T. Poggio, “Face Recognition: Features Versus
Templates,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 15, no. 10, pp. 1,042-1,052, Oct. 1993.

[4] M.C. Burl, U. Fayyad, P. Perona, P. Smyth, and M.P. Burl, “A
Trainable Tool for Finding Small Volcanoes in SAR Imagery of
Venus,” CNS TR-34, Calif. Inst. of Technology, 1993.

[5] R.O.Duda and P.E. Hart, Pattern Classification and Scene Analysis.
New York: John Wiley and Sons Inc., 1973.

[6] W.E.L. Grimson and T. Lozano-Perez, “Model-Based Recognition
and Localization From Sparse Range Data,” A. Rosenfeld, ed.,
Techniques for 3-D Machine Perception. Amsterdam: North-
Holland, 1985.

[7] G. Hinton, M. Revow, and P. Dayan, “Recognizing Handwritten
Digits Using Mixture of Linear Models,” Proc. Advances in Neural
Information Processings Systems, vol. 7, 1995.

[8] M. Kirby and L. Sirovich, “Applications of the Karhunen-Loeve
Procedure for the Characterization of Human Faces,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 103-
108, Jan. 1990.

[9] B.Kumar, D. Casasent, and H. Murakami, “Principal Component
Imagery for Statistical Pattern Recognition Correlators,” Optical
Eng.,vol. 21, no. 1, Jan./Feb. 1982.

[10] A. Mahalanobis, A. Forman, N. Day, M. Bower, and R. Cherry,
“Multi-Class SAR ATR Using Shift-Invariant Correlation Filters,”
Pattern Recognition, vol. 27, no. 4, pp. 619-626, 1994.

[11] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio,
“Pedestrian Detection Using Wavelet Templates,” Proc. CVPR,
1997.

[12] A. Pentland, B. Moghaddam, and T. Starner, “View-Based and
Modular Eigenspaces for Face Recognition,” Proc. CVPR, pp. 84—
91, 1994.

[13] T. Poggio and T. Vetter, “Recognition and Structure From One
(2D) Model View: Observations on Prototypes, Object Classes,
and Symmetries,” AIM-1347, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, 1992.

[14] D. Rumelhart and J. McClelland, Parallel Distributed Processing,
vol. 1. Cambridge, Mass.: MIT Press, 1986.

[15] P. Sinha, “Object Recognition via Image Invariants: A Case
Study,” Investigative Ophthalmology and Visual Science, vol. 35, pp.
1,735-1,740, May 1994.

[16] K. Sung and T. Poggio, “Example-Based Learning for View-Based
Human Face Detection,” Proc. Image Understanding Workshop, vol.
2, pp- 843-850, 1994.

[17] K. Sung, “Learning and Example Selection for Object and Pattern
Detection,” PhD thesis, Massachusetts Institute of Technology,
1995.

[18] M. Turk and A. Pentland, “Eigenfaces for Recognition,” J. Cogni-
tive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.

[19] A. Yuille, P. Hallinan, and D. Cohen, “Feature Extraction From
Faces Using Deformable Templates,” Int’l . Computer Vision, vol.
8, no. 2, pp. 99-111, 1992.

SUNG AND POGGIO: EXAMPLE-BASED LEARNING FOR VIEW-BASED HUMAN FACE DETECTION 51

Kah-Kay Sung received his PhD degree in
electrical engineering and computer science
from the Massachusetts Institute of Technology
in 1995. He is currently a lecturer at the Depart-
ment of Information Systems and Computer
Science, National University of Singapore. His
research interests include computer vision and
machine learning.

Tomaso Poggio received his PhD in theoretical
physics from the University of Genoa in 1970
and was a member of the Max-Planck Institute
fuer Biologische Kybernetik, Germany. He
worked on the visual system of the fly with W.
Reichardt and on computational analysis of hu-
man and machine vision with D. Marr. Dr. Poggio
holds the Uncas and Helen Whitaker Professor-
ship of Vision Sciences and Biophysics at the
Massachusetts Institute of Technology (MIT)
Department of Brain and Cognitive Science. He
is also affiliated with the MIT Atrtificial Intelligence Laboratory. In addi-
tion, he has been codirector of the MIT Center for Biological and Com-
putational Learning. His current research focuses on the application of
new learning techniques to time series analysis, object recognition,
adaptive control, and computer graphics.

