
Linear Discriminant Analysis (LDA)
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• Case Studies

D. Swets and J. Weng, "Using Discriminant Eigenfeatuers for Image Retrieval",
IEEE Transactions on Pattern Analysis and Machine Intelligenve, vol. 18, no. 8,
pp. 831-836, 1996 (on-line).

A. Martinez and A. Kak, "PCA versus LDA", IEEE Transactions on Pattern Analy
sis and Machine Intelligenve, vol. 23, no. 2, pp. 228-233, 2001, (on-line)

P. Belhumeur et al., "Eigenfaces vs Fisherfaces: Recognition Using Class Specific
Linear Projection",IEEE Transactions on Pattern Analysis and Machine Intelli-
genve, vol. 19, no. 7, pp. 711-720, 1997 (on-line)
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Linear Discriminant Analysis (LDA)

• Multiple classes and PCA

- Suppose there areC classes in the training data.

- PCA is based on the sample covariance which characterizes the scatter of the
entire data set,irr espective of class-membership.

- The projection axes chosen by PCA might not provide good discrimination
power.

• What is the goal of LDA?

- The objective of LDA is to perform dimensionality reduction while preserving
as much of the class discriminatory information as possible.

- It seeks to find directions along which the classes are best separated.
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- It does so by taking into consideration the scatterwithin-classesbut also the
scatterbetween-classes.

- It is also more capable of distinguishing image variation due to identity from
variation due to other sources such as illumination and expression.
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• Methodology

- Suppose there areC classes
- Let i be the mean vector of classi , i = 1, 2, . . ,C
- Let Mi be the number of samples within classi , i = 1, 2, . . ,C,

- Let M =
C

i=0
Σ Mi be the total number of samples.and

Within-class scatter matrix:

Sw =
C

i=1
Σ

Mi

j=1
Σ (y j − i )(y j − i )

T

Between-class scatter matrix:

Sb =
C

i=1
Σ( i − )( i − )T

= 1/C
C

i=1
Σ i (mean of entire data set)

- LDA computes a transformation that maximizes the between-class scatter
while minimizing the within-class scatter:

maximize
det(Sb)

det(Sw)

- Such a tranformation should retain class separability while reducing the varia-
tion due to sources other than identity (e.g., illumination).
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• Linear tranformation implied by LDA

- The linear tranformation is given by a matrix U whose columns are the eigen-
vectors ofS−1

w Sb (calledFisherfaces).







b1

b2

...

bK







=







uT
1

uT
2

...

uT
K







(x − ) = UT(x − )

- The eigenvectors are solutions of thegeneralized eigenvector problem:

SBuk = kSwuk

- There are at mostC − 1 non-zero generalized eigenvectors (i.e.,K < C)

• Does S−1
w always exist?

- If Sw is non-singular, we can obtain a conventional eigenvalue problem by
writing:

S−1
w SBuk = kuk

- In practice,Sw is often singular since the data are image vectors with large
dimensionality while the size of the data set is much smaller (M << N )
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To alleviate this problem, we can perform two projections:

(1) PCA is first applied to the data set to reduce its dimensionality.
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(2) LDA is then applied to further reduce the dimensionality ofC − 1.
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