Review on Eigenvalues and Eigenvectors

- **Reading Assignments**

- **Other Books**

Review on Eigenvalues and Eigenvectors

• Definition

- The vector \(v \) is an eigenvector of matrix \(A \) and the number \(\lambda \) is an eigenvalue of \(A \) if:
 \[Av = \lambda v \]
 (assuming the non-trivial solution \(v = 0 \))

- The linear transformation implied by \(A \) cannot change the direction of the eigenvectors, only their magnitude.

• Characteristic polynomial

- To find the eigenvalues \(\lambda \) of a matrix \(A \), find the roots of the characteristic polynomial:
 \[\det(A - \lambda I) = 0 \]

Example: \(A = \begin{bmatrix} 5 & -2 \\ 6 & -2 \end{bmatrix} \)

\[\det\left(\begin{bmatrix} 5 - \lambda & -2 \\ 6 & -2 - \lambda \end{bmatrix} \right) = 0 \] or \(\lambda^2 - 3\lambda + 2 = 0 \) or \(\lambda_1 = 1, \lambda_2 = 2 \)

\[v_1 = \begin{bmatrix} 1/2 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 2/3 \\ 1 \end{bmatrix} \]
• Some properties

- Eigenvalues and eigenvectors are only defined for square matrices ($m = n$)
- The eigenvectors are not unique (e.g., if v is an eigenvector, so is kv)
- Suppose $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A, then:

 (1) $\sum_i \lambda_i = \text{tr}(A)$

 (2) $\prod_i \lambda_i = \text{det}(A)$

 (3) if $\lambda = 0$ is an eigenvalue, then the matrix is not invertible

 (4) A and A^2 have the same eigenvectors

 (5) if λ is an eigenvalue of A, then λ^2 is an eigenvalue of A^2

 (6) a matrix A with positive eigenvalues is called positive definite (the following is true: $x^T Ax > 0$ for every $x \neq 0$)

• Diagonalization

- The problem is finding an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix (i.e., P diagonalizes A)

- Consider the matrix $P = [v_1 \ v_2 \ \cdots \ v_n]$, where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A (assume they are distinct) and $v_1 \ v_2 \ \cdots \ v_n$ are the eigenvectors of A:

 $AP = P \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 0 & 0 & \lambda_n \end{bmatrix}$ or $P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 0 & 0 & \lambda_n \end{bmatrix}$

 $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
\[
\lambda_1 = 0, \lambda_2 = 2, v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix},
\]
\[
P = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, P^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}
\]
\[
P^{-1}AP = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}
\]

- **Are all \(nxn \) matrices diagonalizable?**

 - \(A \) is diagonalizable if it has \(n \) linearly independent eigenvectors (these vectors form a basis too!)

 - If \(A \) has \(n \) distinct eigenvalues, then the corresponding eigenvectors are linearly independent.

 - In general, the multiplicity of an eigenvalue should be equal to the number of eigenvectors corresponding to this eigenvalue.

- **Decomposition**

 - Let us assume that \(A \) is diagonalizable, it’s easy to see that:

 \[
 A = P \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}
 \]
• The case of symmetric matrices

- The eigenvalues of symmetric matrices are all real, though not necessarily positive.

- The eigenvectors corresponding to distinct eigenvalues are orthogonal.

- Any symmetric $n \times n$ matrix A can be written as:

$$A = V D V^T = \sum_{i=1}^{n} \lambda_i v_i v_i^T$$

- V is an orthonormal matrix whose columns are the "normalized" eigenvectors of A (i.e., using Gram-Schmidt normalization) and D is a diagonal matrix containing the eigenvalues λ_i of A.

• Vector representation in the eigenvector space of A

- The following linear transformation represents a vector in the space of eigenvectors of A:

$$y_i = V_i^T x$$

• Whitening transformation

$$y_i = V D^{-1/2} x_i$$

- All the eigenvalues after a whitening transformation become identical.

• The case of non-square matrices

- We can extend the results of matrix diagonalization/decomposition to the case of non-square matrices using Singular Value Decomposition (SVD).