Support vector machines for 3D object recognition

(M. Pontil and A. Verri, "Support vector machines for 3D object recognition", *IEEE Transaction* on Pattern Analysis and Machine Intelligence, vol. 20, no. 6, pp. 637-646, 1998 (on-line))

• The problem

- Recognize 3D objects from appearance (i.e., no geometrical models).

• The approach

- Linear SVM are used for 3D object recognition (COIL-100 database).
- Images are regarded as points of a space of high dimensionality.

- No features are extracted and recognition is performed without pose estimation.

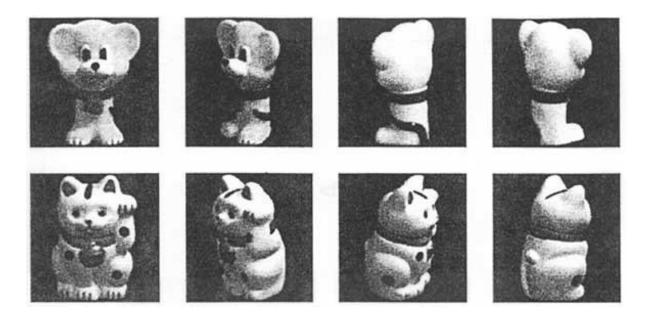
• Preprocessing

- Each image was converted to gray-scale (originals are RGB).
- Spatial resolution was reduced to 32 x 32 by averaging over 4 x 4 patches.
- Each image is thus represented as a vector with $32 \times 32 = 1,024$ values.

• Training

- One SVM was trained for each pair of objects (COIL-100 database).

- The images corresponding to some of the support vectors for a specific pair of objects are shown below.



- The typical number of support vectors found for each pair of objects was between 1/3 and 2/3 of the training images (72 images).

- The training stage takes about 15 minutes on a SPARC10 workstation.

• Testing

- Recognition was performed following the rules of a tennis tournament:

* Each object is regarded as a *player*.

* In each *match*, the system temporarily classifies an image using the SVM associated with the two players.

* Suppose there are 2^{K} players, 2^{K-1} matches are played in the first round.

* The 2^{K-1} winners are advanced to the next round.

* The k - 1 round is the final round which declares the winner (i.e., recognized object).

* This procedures requires $1 + 2 + \ldots + 2^{K-1} = 2^K - 1$ classifications.

- The test stage is very fast (31 dot products need to be computed).

• Experiments and results

- The COIL-100 database was used in the experiments.

* Contains 100 objects

- * 72 images/object (sampled every 5 degrees)
- Experiments were performed to test the following:
 - * recognition accuracy
 - * performance in the presence of noise
 - * performance in the presence of bias in the registration
 - * performance in the presence of occlusion

- In each experiment, a subset N from the 100 objects were considered (N was chosen randomly).

- Half images from each object (one every 10 degrees, i.e., 36 images) were used for training and the rest for testing.

Recognition accuracy

- N = 32 in these experiments/ 32 random experiments.

- Perfect recognition accuracy was achieved in all the experiments.

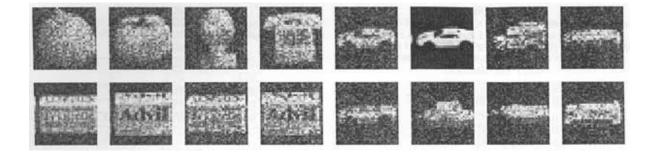
- Using a training set including the most "difficult" objects (selected manually), the system misclassified a view of a packet of chewing gum for another very similar packet of chewing gum.

Performance in the presence of noise

* Zero mean random noise, uniformly distributed in the interval [-n, n], was added to the gray value of each pixel.

* The analysis was carried out using the "difficult" training set only.

* Some noise was suppressed by the 4x4 averaging ...



Noise	e.r. (32 objs)	e.r. (30 objs)
± 25	0.3%	0.0%
± 50	0.8%	0.1%
± 75	1.1%	0.2%
± 100	1.6%	0.2%
± 150	2.7%	0.7%
± 200	6.2%	1.8%
± 250	11.0%	5.8%

TABLE 2 ERROR RATES (E.R.) FOR COIL IMAGES CORRUPTED BY NOISE

The noise is in gray levels (see text).

* Different spatial resolutions (8x8 to 128x128) were also tested using zero mean random noise, uniformly distributed in the interval [-100, 100]

* Recognition rates increase with spatial resolution.

Error RA Unifor	MLY DI	STRI	TABI FOR COIL BUTED IN T ENT SPATI	IMAGE THE IN	TERV	AL [-100,	by Noise 100] at
-	spat.	res.	e.r. (32	objs)	e.r.	(30 objs)	
	8	× 8		2.8%		0.5%	_
_	16 >	< 16		2.1%		0.3%	
-	32 >	(32		1.6%		0.2%	
-	64 >	< 64		0.9%		0.1%	-
	128 ×	128		0.3%		0.0%	2
-							

Performance in the presence of bias in the registration

- Each image in the most difficult test set was shifted by n pixels in the horizontal direction.

- Spatial registration seems to be very important.

DR RAT (S	ES (E.R.) FOR SI SHIFTS ARE IN PI	HIFTED COIL IM. XEL UNITS)
shift	e.r. (32 objs)	e.r. (30 objs)
3	0.6%	0.1%
5	2.0%	0.8%
7	6.7%	4.8%
10	18.6%	12.5%

TABLE 4

Performance in the presence of noise and bias in the registration

shift	noise	e.r. (32 objs)	e.r. (30 objs)
3	± 25	0.6%	0.1%
3	± 50	0.8%	0.1%
3	± 100	1.8%	0.2%
3	± 150	3.0%	0.5%
5	± 25	2.1%	0.6%
5	± 50	2.7%	0.8%
5	± 100	4.1%	1.3%
5	± 150	7.3%	2.7%

TABLE 5 ERROR RATES (E.R.) IN THE PRESENCE OF BOTH NOISE

Performance in the presence of occlusion

- Occlusion was introduced in two different ways:

(1) by randomly selecting a subwindow in the test images and assigning a random value between 0 and 255 to the pixels inside the subwindow.

(2) by randomly selecting n columns and m rows and assigning a random value to the corresponding pixels.

- The system seems to tolerate small amounts of noise.

TABLE 6 IABLE 0 ERROR RATES (E.R.) FOR COIL IMAGES OCCLUDED BY A RANDOMLY PLACED K × K WINDOW OF UNIFORMLY DISTRIBUTED RANDOM NOISE ERROR RATES (E.R.) FOR COIL IMAGES IN WHICH N COLUMNS AND M ROWS (RANDOMLY SELECTED) WERE REPLACED BY UNIFORMLY DISTRIBUTED RANDOM NOISE

k	e.r. (32 objs)	e.r. (30 objs)
4	0.7%	0.4%
6	2.0%	1.2%
8	5.7%	4.3%
10	12.7%	10.8%

TABLE 7

m	e.r. (32 objs)	e.r. (30 objs)
1	2.1%	1.3%
2	3.2%	1.9%
1	4.5%	2.8%
2	6.1%	3.2%
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Example-based object detection in images by components

(A. Mojan, C. Papageorgiou and T. Poggio, "Example-based object detection in images by components", *IEEE Transaction on Pattern Analysis and Machine Intelligence*, vol. 23, no. 4, pp. 349-361, 2001 (on-line))

• The problem

- Build a general example-based (i.e., appearance-based) framework for component-based object detection.

- A component-based object detection system searches for an object by looking for identifying its components rather than the whole object.

- The proposed system is demonstrated on the problem of detecting people in cluttered scenes.

• Applications and challenges

- Detection of people in images has many applications including
 - * Surveillance systems
 - * Driver assistance systems
 - * Image indexing
- More challenging that detecting other objects due to several reasons:
 - * People are highly articulated objects.
 - * Difficult to build a single model that captures the shape variation.
 - * People dress in a variety of colors and garment types.

• The approach

- Four exampled-based detectors (implemented as SVM) are used to detect the following four components of the human body: head, legs, left arm, and right arm.

- The input to each detector are features based on the Haar wavelet transform.

- The spatial configuration of the detected parts is validated.

- An example-based classifier (implemented as a SVM) combines the results of the component detectors to classify a pattern as either a "person" or a "non-person".

• Why using components?

- It allows to combine the visual information present in an image with the geometric information concerning the human body.

- Often, it is difficult to detect the human body as a whole due to variations in lighting and orientation.

- Can provide tolerance to partial occlusions.

- Hierarchical classification schemes have been shown to perform better than single classifiers.

• Overview of proposed system

- Given an input image, a 128×64 window is shifted across and down the image, starting from the upper left corner.

- To allow detecting various sizes of people, the image is processed at several sizes ranging from 0.2 to 1.5 times its original size.

- Each input window is classified as a "person" or "non-person" as follows:

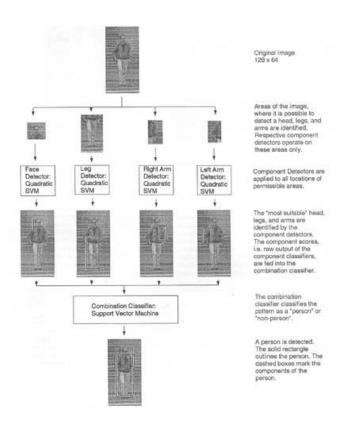
* Apply the component detectors within the window.

* Each candidate body part region is processed by applying the Haar wavelet transform.

* A vector containing the wavelet coefficients is then classified by the component detectors (quadratic SVM).

* The detector with the highest output (*component score*) determines the classification of the body part.

* The highest component score for each body part is fed to the combination classifier (linear SVM) which determines if the input window is a person.

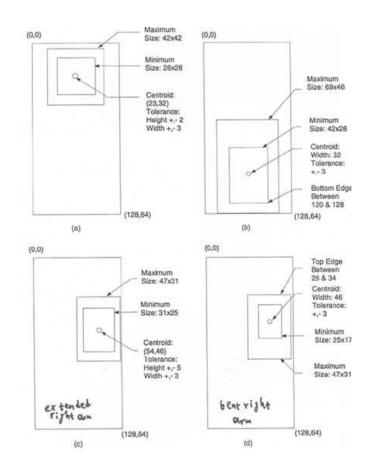


• First stage: identifying components of people

- The component detectors are applied only to specific areas of the window (i.e., approximate configuration of body parts is known) and only at particular scales (i.e., relative proportions must match).

- These areas were determined from the training set based on geometric constraints for each component within a 128×64 window (training images have been aligned such as people are in the center of the image).

-11-



- A 32x32 window is used for the head and a 48x32 window for the lower body and the arms.

- The information in each window is represented by a set of Haar wavelet coefficients (582 coefficients for the head window and 954 coefficients for the lower body and the arms windows - see paper and ref. [16] for more details):

* They consider two scales only (8x8 and 16x16).

* They run the Haar transform (non-standard basis) over each color channel separately.

- For each scale, they keep the largest wavelet coefficient among the three color channels.

- The wavelet coefficients are fed to component detectors which are implemented as quadratic SVM.

$$K(x, x_k) = (x. x_k + 1)^2$$

- The component SVM are trained on positive and negative examples.

• Second stage: combining component classifications

- The highest response of each component detector (*component score*) is fed to the combination classifier.

- The component score is a rough measurement of how "well" a test point fits into its designated class (i.e., proportional to the distance of the test point from the SVM hyperplane).

- The combination classifier is implemented as a linear SVM:

$$K(x, x_k) = (x. x_k + 1)$$

• Data sets

- The data set contains images of people taken with different cameras, under different lighting conditions, and in different seasons.

- There are images of people who are

* rotated in depth
* walking
* stationary (frontal and rear views)

- The positive examples of the lower body include images of

* women in skirts

* people wearing full length overcoats

* people dressed in pants

• Training data

- The positive examples for the arms included arms at various positions in relation to the body.

- The negative examples were taken from scenes that do not contain people.

- Number of positive/negative examples used to train the component detectors:

* head detector: 856 positive, 9,315 negative
* lower body: 866 positive, 9,260 negative
* left arm: 835 positive, 9,260 negative
* right arm: 838 positive, 9,260 negative

- Number of positive/negative examples used to train the combination classifier:

* 889 positive, 3,106 negative

• Test set

- The proposed system was run on a database containing 123 images of people to determine the detection rate.

- The system was also run on a database containing 50 images that do not contain people to determine the false-alarm rate (796,904 windows).

• Comparisons

- The proposed method was compared with two other methods:

- A method similar to the proposed but with the combination of component scores being done through voting (*voting-based combination*)

* Classifies an input as a person only if all components have been detected in the proper configuration.

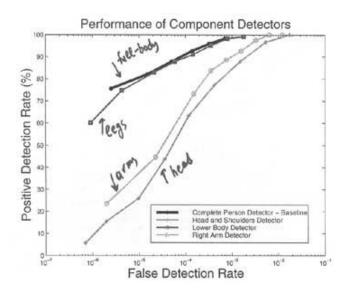
- A full-body person detector (based on their previous work).

* uses the Haar wavelet too

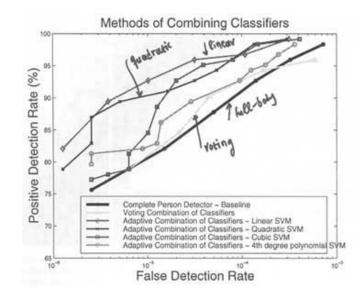
* was trained using 869 positive examples and 9,225 negative examples

• Experiments and results

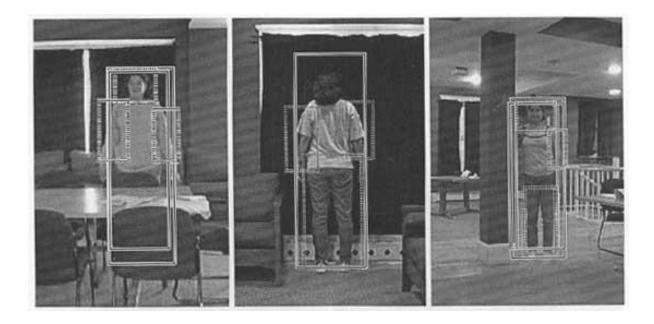
Compare component detectors with full-body detector

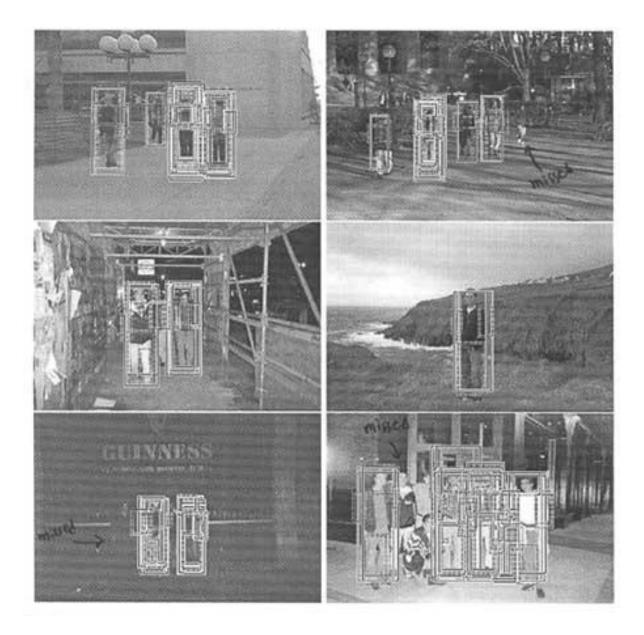


Compare various methods



Performance under occlusion and clutter





• Extensions

- Learn the geometric constraints to be placed on the components of an object from examples (some preliminary results are presented in section 3.3).

- Build more sophisticated systems where the important components of an object are learned too.

Gender Classification with SVM

(B. Moghaddam and M. Yang, "Gender Classification with SVM", *IEEE Conference on Face and Gesture Recognition*, pp. 306-311, 2000 (on-line)).

• The problem

- Visual gender classification from face images.

• The approach

- Use SVM to learn and classify gender from a large set of images.

- Low resolution, hairless face image are used.

• The dataset

- 1755 images (1044 males and 711 females) from the FERET database were used in the experiments.

- The face images were normalized (i.e., feature alignment, hair removal through masking) and their resolution was reduced to 21×12 .

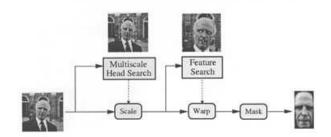


Figure 2. Face alignment system

-18-

• Training/Test sets

- They created 5 train/test sets randomly.

* The number of training patterns was 1496 (793 males, 713 females).

* The number of test patterns was 259 (133 males and 126 females).

- The average error was estimated for each classifier tested.

• Other methods used for comparison

- The proposed method based on SVM was compared with the following methods:

(1) Radial basis functions

$$g(x) = \sum_{i}^{K} w_i G(x; \mu aubi, \sigma_i) + b$$

(2) LDA

(3) Linear classifier (Gaussian densities, same covariance Σ , equal priors)

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_i)^t \Sigma^{-1} (\mathbf{x} - \mu_i)$$

which can be written as $g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$

(4) Quadratic classifier (Gaussian densities, different covariance matrices Σ_1 and Σ_2 , equal priors)

$$g_i(\mathbf{x}) = -\frac{1}{2} \left(\mathbf{x} - \mu_i \right)^t \Sigma_i^{-1} \left(\mathbf{x} - \mu_i \right) - \frac{1}{2} \ln |\Sigma_i|$$

which can be written as $g_i(\mathbf{x}) = \mathbf{x}^t \mathbf{W}_i \mathbf{x} + \mathbf{w}_i \mathbf{x} + w_{i0}$

(5) Nearest neighbor classifier

• Results

Classifier	Error Rate		
100000000000000000000000000000000000000	Overall	Male	Female
SVM with Gaussian RBF kernel	3.38%	2.05%	4.79%
SVM with cubic polynomial kernel	4.88%	4.21%	5.59%
Large ensemble-RBF	5.54%	4.59%	6.55%
Classical RBF	7.79%	6.89%	8.75%
Quadratic classifier	10.63%	9.44%	11.88%
Fisher linear discriminant	13.03%	12.31%	13.78%
Nearest neighbor	27.16%	26.53%	28.04%
Linear classifier	58.95%	58.47%	59.45%

Table 1. Experimental results with thumbnails.

- The number of support vectors found by SVM was about 20% of the training data.

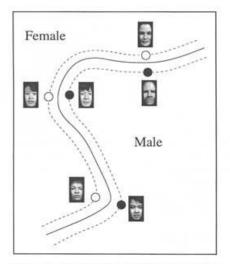


Figure 5. Support faces at the boundary

• Comparisons with human performance

- 30 subjects (22 males and 8 females) participated in an experiment with high resolution images.

- 10 subjects (6 males and 4 females) participated in an experiment with low resolution images.

- All subjects were asked to classify the gender of 254 faces.

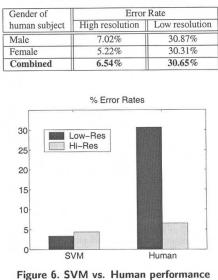


Table 2. Human error rates

- Faces misclassified by SVM were almost always misclassified by humans as

well (the converse was not true).