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Monocular Precrash Vehicle Detection:
Features and Classifiers
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Abstract—Robust and reliable vehicle detection from images ac-
quired by a moving vehicle (i.e., on-road vehicle detection) is an im-
portant problem with applications to driver assistance systems and
autonomous, self-guided vehicles. The focus of this work is on the
issues of feature extraction and classification for rear-view vehicle
detection. Specifically, by treating the problem of vehicle detection
as a two-class classification problem, we have investigated several
different feature extraction methods such as principal component
analysis, wavelets, and Gabor filters. To evaluate the extracted fea-
tures, we have experimented with two popular classifiers, neural
networks and support vector machines (SVMs). Based on our eval-
uation results, we have developed an on-board real-time monoc-
ular vehicle detection system that is capable of acquiring grey-scale
images, using Ford’s proprietary low-light camera, achieving an
average detection rate of 10 Hz. Our vehicle detection algorithm
consists of two main steps: a multiscale driven hypothesis gener-
ation step and an appearance-based hypothesis verification step.
During the hypothesis generation step, image locations where vehi-
cles might be present are extracted. This step uses multiscale tech-
niques not only to speed up detection, but also to improve system
robustness. The appearance-based hypothesis verification step ver-
ifies the hypotheses using Gabor features and SVMs. The system
has been tested in Ford’s concept vehicle under different traffic
conditions (e.g., structured highway, complex urban streets, and
varying weather conditions), illustrating good performance.

Index Terms—Gabor filters, neural networks (NNs), principal
component analysis (PCA), support vector machines (SVMs), ve-
hicle detection, wavelets.

1. INTRODUCTION

VERY minute, on average, at least one person dies in a ve-

hicle crash. Auto accidents also injure at least ten million
people each year, and two or three million of them seriously.
The hospital bill, damaged property, and other costs will add up
to 1%—3% of the world’s gross domestic product [1]. Each year
in the United States, motor vehicle crashes account for about
40,000 deaths, more than three million injuries, and over $130
billion in financial losses [2]. The loss is too startling to be ig-
nored. With the aim of reducing injury and accident severity,
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Fig. 1. Variety of vehicle appearances poses a big challenge for vehicle
detection.

precrash sensing is becoming an area of active research among
automotive manufacturers, suppliers and universities. Several
national and international projects have been launched over the
past several years to investigate new technologies for improving
safety and accident prevention.

Vehicle accident statistics disclose that the main threats
a driver is facing are from other vehicles. Consequently, an
on-board automotive driver assistance system aiming to alert
a driver about driving environments, and possible collision
with other vehicles has attracted a lot of attention. In these
systems, robust and reliable vehicle detection is the first step—a
successful vehicle detection algorithm will pave the way for
vehicle recognition, vehicle tracking, and collision avoidance.
The focus of this paper is on the problem of optical sensor
based vehicle detection. A comprehensive review on on-road
vehicle detection systems can be found in [3], while more
general overviews of intelligent driver assistance systems can
be found in [4], [5], [2].

Vehicle detection based on optical sensors is very chal-
lenging due to huge within-class variabilities. For example,
vehicles may vary in shape [Fig. 1(a)], size, and color. Also,
vehicle appearance depends on its pose [Fig. 1(b)] and is
affected by nearby objects. Complex outdoor environments,
e.g., illumination conditions [Fig. 1(c)], cluttered background,
and unpredictable interactions between traffic participants
[Fig. 1(d)] are difficult to control. Using on-board moving
cameras makes some well established techniques, such as back-
ground subtraction, unsuitable. Moreover, on-board vehicle
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Fig. 2.

Ilustration of the two-step vehicle detection strategy.

detection systems have high computational requirements. They
need to be able to process acquired images at real-time or close
to real-time to save more time for driver reaction.

A. Two-Step Scheme

Although it is a challenging task to be accomplished, many
optical sensor based vehicle detection algorithms and systems
have been proposed and implemented. The majority of them
follow two basic steps: 1) hypothesis generation (HG) where
the locations of possible vehicles in an image are hypothesized,
and 2) hypothesis verification (HV), where tests are performed
to verify the presence of vehicles in an image (see Fig. 2).

1) Hypothesis Generation: The objective of the HG step is
to provide some candidate locations quickly for further explo-
ration. Methods reported in the literatures fall in one of the
following three basic categories: knowledge-based, stereo-vi-
sion-based, and motion-based.

Knowledge-based methods employ a priori knowledge to hy-
pothesize vehicle locations in an image. We review below some
approaches using information about symmetry [6], color [7],
shadow [8], horizontal/vertical edges [9], and texture [10].

Stereo-based approaches take advantage of the inverse per-
spective mapping (IMP) [11] to estimate the locations of vehi-
cles and obstacles in images. Bertozzi et al. [12] computed the
IMP both from the left and right cameras. By comparing the
two IMPs, they were able to find objects that were not on the
ground plane. Using this information, they determined the free
space in front of the vehicle. In [13], the IPM was used to wrap
the left image to the right image. Knoeppel et al. [14] devel-
oped a stereo-system detecting vehicles up to 150 m. The main
problem with stereo-based methods is that they are sensitive to
the recovered camera parameters. Accurate and robust methods
are required to recover these parameters because of vehicle vi-
brations due to vehicle motion or windy conditions [15].

Motion-based methods detect vehicles and obstacles using
optical flow. Generating a displacement vector for each pixel
(continuous approach), however, is time-consuming and also
impractical for a real-time system. In contrast to continuous
methods, discrete methods reported better results using image
features, such as color blobs [16], lines [17], or local inten-
sity minima and maxima [18]. In particular, a real-time system
was reported in [17], implemented on a general-purpose image
processor, achieving a processing speed of 10 to 50 ms/frame
which is among the fastest reported in the literature although the
system does not perform verification. The main idea was testing
whether three horizontal lines on the vehicle satisfy the motion
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constraint of the ground plane or that of the surface plane of the
vehicle.

2) Hypothesis Verification: The input to the HV step is the
set of hypothesized locations from the HG step. During HV,
tests are performed to verify the correctness of a hypothesis. HV
approaches can be classified into two main categories: 1) tem-
plate-based and 2) appearance-based. Template-based methods
use predefined patterns of the vehicle class and perform corre-
lation between an input image and the template. Betke ef al.
[19] proposed a multiple-vehicle detection approach using de-
formable grayscale template matching. In [20], a deformable
model was formed from manually sampled data using PCA.
Both the structure and pose of a vehicle were recovered by fit-
ting the PCA model to the image.

Appearance-based methods learn the characteristics of the ve-
hicle class from a set of training images which capture the vari-
ability in vehicle appearance. Usually, the variability of the non-
vehicle class is also modelled to improve performance. First,
each training image is represented by a set of local or global
features. Then, the decision boundary between the vehicle and
nonvehicle classes is learned either by training a classifier [e.g.,
neural network (NN)] or by modeling the probability distribu-
tion of the features in each class (e.g., using the Bayes rule as-
suming Gaussian distributions). In [21], PCA was used for fea-
ture extraction and NN for classification. Goerick et al. [9] used
a method called local orientation coding (LOC) to extract edge
information. The histogram of LOC within the area of interest
was then provided to a NN for classification.

A statistical model for vehicle detection was investigated by
Schneiderman et al. [22], [23]. A view-based approach based on
multiple detectors was used to cope with viewpoint variations.
The statistics of both object and “nonobject” appearance were
represented using the product of two histograms with each his-
togram representing the joint statistics of a subset of PCA fea-
tures in [22] or Haar wavelet features in [23] and their position
on the object. A different statistical model was investigated by
Weber et al. [24]. They represented each vehicle image as a con-
stellation of local features and used the expectation-maximiza-
tion (EM) algorithm to learn the parameters of the probability
distribution of the constellations. An interest operator, followed
by clustering, was used to identify important local features in
vehicle images. Papageorgiou et al. [25] have proposed using
the Haar wavelet transform for feature extraction and support
vector machines (SVMs) for classification. In the past, Haar-like
features (i.e., gradient features) have been used for obstacle de-
tection in a number of studies [26], [27].

B. Main Contributions

The focus of this work is on feature extraction and classifi-
cation methods for on-road vehicle detection. Different feature
extraction methods determine different subspaces within the
original image space either in a linear or nonlinear way. These
subspaces are essentially the feature spaces, where the original
images are represented and interpreted differently. “Powerful”
features with high degree of separability are desirable for any
pattern classification system. Generally speaking, it is hard to
say which feature set is more powerful. The discrimination
power of a feature set is usually application dependent. In this
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Fig. 3.

Low-light camera in the prototype vehicle.

paper, we have investigated six different feature extraction
methods (PCA features, wavelet features, truncated/quantized
wavelet features, Gabor features, and combined wavelet and
Gabor features) in the context of vehicle detection. Some of
these features, such as PCA and Wavelet features, have been
investigated before for vehicle detection, while others, such as
quantized/truncated wavelet and Gabor features, have not been
fully explored. To evaluate the extracted features for vehicle
detection, we performed experiments using two powerful
classifiers: NNs and SVMs.

The evaluation results have guided us to develop a real-time,
rear-view vehicle-detection system from gray scale images
using Ford’s proprietary low-light camera. A forward facing
camera has been installed inside Ford’s prototype vehicle which
is connected to a frame-grabber of an embedded system (see
Fig. 3). Camera images are digitally captured and processed
in real-time enabling vehicle detection on timescales on the
order of 10 Hz. Our detection system consists of two steps: a
multiscale driven hypothesis generation step and an appear-
ance-based hypothesis verification step. Multiscale analysis in
HG provides not only robust hypothesis generation but also
speeds up the detection process. In appearance-based hypoth-
esis verification, Gabor filters are used for feature extraction
and SVMs for classification.

The rest of the paper is organized as follows. In Section II, we
provide a brief overview of the system developed. A description
of the multiscale driven hypothesis generation step is given in
Section III. Various features and classifiers are detailed in Sec-
tion IV. Comparisons of various HV approaches are presented
in Section VI. The final real-time system and its performances
are presented in Section VII. Our conclusions and directions for
future research are given in Section VIIL.

II. MONOCULAR PRECRASH VEHICLE DETECTION
SYSTEM OVERVIEW

Precrash sensing is an active research area with the aim of re-
ducing injury and accident severity. The ability to process spo-
radic sensing data from multiple sources (radar, camera, and
wireless communication) and to determine the appropriate ac-
tions (belt-pretensioning, airbag deployment, and brake-assist)
is essential in the development of active and passive safety sys-
tems. To this end, Ford Research Laboratory has developed sev-
eral prototype vehicles that include in-vehicle precrash sensing
technologies such as millimeter wavelength radar, wireless ve-
hicle-to-vehicle communication, and a low-light Ford propri-
etary optical system suitable for image recognition. An em-
bedded and distributed architecture is used in the vehicle to
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Fig. 4. Low-light camera versus normal camera. (a) Low-light camera day-
time image. (b) Same scene caught using normal camera. (c) Low-light camera
nighttime image. (d) Same nighttime scene caught suing normal camera.

process the sensing data, determine the likelihood of an acci-
dent, and when to warn the driver. This Smart Information Man-
agement System (SIMS) forms the cornerstone to Ford’s intel-
ligent vehicle system design and is responsible for determining
the driver safety warnings. Depending on the situation, SIMS
activates an audible or voice alert, visual warnings, and/or a
belt-pretensioning system. Extensive human factor studies are
underway to determine the appropriate combination of precrash
warning technologies, as well as the development of new threat
assessment algorithms that are robust in an environment of het-
erogeneous sensing technologies and vehicles on the roadway.

The optical system represents a principal component in pre-
crash sensing and, with the introduction of inexpensive camera
systems, can form a ubiquitous sensing tool for all vehicles. The
vehicle prototypes have forward and rearward facing cameras
enabling a nearly 360° field of view. Fig. 3 shows the orientation
of the forward facing camera in the vehicle prototypes. Forward
facing cameras are also mounted in the side-mirror housings
and are used for pedestrian and bicycle detection as well as to
see around large vehicles. The Ford proprietary camera system
was developed jointly between Ford Research Laboratory and
Sentech. The board level camera uses a Sony x-view CCD with
specifically designed electronic profiles to enhance the camera’s
dynamic range, thereby enabling daytime and nighttime oper-
ation without blooming. Fig. 4(a) and (c) shows the dynamic
range of the low-light camera, while Fig. 4(b) and (d) shows the
same scene images caught under same illumination conditions
by using a normal camera. Obviously, the low-light camera pro-
vides much wider dynamic range.

III. MULTISCALE DRIVEN HYPOTHESIS GENERATION

To hypothesize possible vehicle locations in an image, prior
knowledge about rear vehicle view appearance could be used.
For example, rear vehicle views contain lots of horizontal and
vertical structures, such as rear-window, fascia, and bumpers.
Based on this observation, the following procedure could be
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Fig.5. Multiscale hypothesis generation. The size of the images in the first row
are: 90 x 62; second row: 180 X 124; and third row: 360 x 248. The images in
the first column have been obtained by applying low pass filtering at different
scales; second column: vertical edge maps; third column: horizontal edge maps;
and fourth column: vertical and horizontal profiles. Note that all images have
been scaled back to 360 X 248 for illustration purposes.

applied to hypothesize candidate vehicle locations. First, in-
teresting horizontal and vertical structures could be identified
by applying horizontal and vertical edge detectors. To pick the
most promising horizontal and vertical structures, further anal-
ysis would be required, for example, extracting the horizontal
and vertical profiles of the edge images and perform some anal-
ysis to identify the strongest peaks (e.g., last row of Fig. 5).

Although this method could be very effective, it depends on a
number of parameters that affect system performance and ro-
bustness. For example, we need to decide the thresholds for
the edge detection step, the thresholds for choosing the most
important vertical and horizontal edges, and the thresholds for
choosing the best maxima (i.e., peaks) in the profile images. A
set of parameter values might work well under certain condi-
tions, however, they might fail in other situations. The problem
is even more severe for on-road vehicle detection since the dy-
namic range of the acquired images is much bigger than that of
an indoor vision system.

To deal with this issue, we have developed a multiscale ap-
proach which combines subsampling with smoothing to hypoth-
esize possible vehicle locations more robustly. Assuming that
the input image is f, let set /(&) = f. The representation of
FU) at a coarser level f(E—1 is defined by a reduction oper-
ator. For simplicity, let us assume that the smoothing filter is
separable, and that the number of filter coefficients along one
dimension is odd. Then it is sufficient to study the one-dimen-
sional (1-D) case

fE=1 =REDUCE(f¥)
FEH @) =300 _ye(n) f¥ (22 —n) (1)

where the REDUCE operator performs down-sampling and
¢(n) are the coefficients of a low pass (i.e., Gaussian) filter.
The size of the input images from our video capturing card
is 360 x 248. We use three levels of detail: f% (360 x 248),
FE-1(180x124), and fX~2(90x62). Ateach level, we process
the image by applying the following steps: 1) low pass filtering
(e.g., first column of Fig. 5); 2) vertical edge detection (e.g.,
second column of Fig. 5), vertical profile computation of the
edge image (e.g., last column of Fig. 5), and profile filtering
using a low pass filter; 3) horizontal edge detection (e.g., third
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column of Fig. 5), horizontal profile computation of the edge
image (e.g., last column of Fig. 5), and profile filtering using
a low pass filter; 4) local maxima and minima detection (e.g.,
peaks and valleys) of the two profiles. The peaks and valleys of
the profiles provide strong information about the presence of a
vehicle in the image.

Starting from the coarsest level of detail (f K=2y first, we find
all the local maxima at that level. Although the resulted low res-
olution images have lost fine details, important vertical and hor-
izontal structures are mostly preserved (e.g., first row of Fig. 5).
Once we have found the maxima at the coarsest level, we trace
them down to the next finer level fX—. The results from f%~1
are finally traced down to level fX, where the final hypotheses
are generated. Candidate vehicles generate two peaks in the ver-
tical profile (i.e., due to the left and right sides of the vehicle)
and at least one peak in the horizontal profile (i.e., due to the
bottom of the vehicle). It should be noted that due to the com-
plexity of the scenes, some false peaks are expected to be found.
We use some heuristics and constraints to get rid of as many of
them as possible, for example, the ratio of successive maxima
and minima, the absolute value of a maximum, and perspective
projection constraints under the assumption of flat surface (i.e.,
road). To generate the hypotheses, we consider the two vertical
peaks with each of the horizontal peaks left. Each triplet of peaks
allows us to define a rectangular area that encloses the vehicle.
The rectangular area is defined by the intersection of a vertical
stripe, defined by the two vertical peaks, and a horizontal stripe,
defined by the horizontal peak and heuristics on the aspect ratio
of vehicles. Hypotheses that enclose the vehicle poorly are even-
tually rejected by the verification step. These rules are applied
at each level of detail.

The proposed multiscale approach improves system robust-
ness by making the hypothesis generation step less sensitive to
the choice of parameters. Forming the first hypotheses at the
lowest level of detail is very useful since this level contains only
the most salient structural features. Besides improving robust-
ness, the multiscale scheme speeds-up the whole process since
the low resolution images have much simpler structure as illus-
trated in Fig. 5 (i.e., candidate vehicle locations can be found
faster and easier). Several examples are provided in Fig. 6 (left
column).

IV. APPEARANCE-BASED HYPOTHESIS VERIFICATION

Verifying a hypothesis is essentially a two-class pattern clas-
sification problem (i.e., vehicle versus nonvehicle). Building a
pattern classification system requires finding an optimum de-
cision boundary among the classes to be categorized. In most
cases, pattern classification involves “concepts” having huge
within-class variability (e.g., vehicles), rather than specific ob-
jects. As aresult, there is no easy way to come up with a decision
boundary to separate certain‘‘conceptual objects” against others.
A feasible approach is to learn the decision boundary from a set
of training examples.

The majority of real-world pattern classification problems re-
quire supervised learning where each training instance is asso-
ciated with a class label. Building a pattern classification system
under this scenario involves two main steps: 1) extracting a
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Fig. 6. Examples of the (left column) HG and (right column) HV steps: The
black boxes indicate the hypothesized locations while the white boxes are the
ones verified by the HV step.

number of features and 2) training a classifier using the extracted
features to distinguish among different class instances. The ul-
timate goal of any pattern classification system is to achieve the
best possible classification performance, a task that is highly de-
pendent on the features and classifier employed.

In most cases, relevant features are often unknown a priori.
The goal of feature extraction is to determine an appropriate
subspace of dimensionality m in the original feature space of
dimensionality d where m is less than or equal to d [28]. De-
pending on the nature of the task at hand, the features can be
extracted either manually or automatically by applying trans-
formations. The transformations used for feature extraction per-
form dimensionality reduction which could be either linear or
nonlinear. Transformation-based methods have the potential of
generating better features than the manual ones, however, the
new features may not have clear physical meanings.

A. Feature Extraction

1) PCA Features: Eigenspace representations of images use
PCA [29] to linearly project an image in a low-dimensional
space. This space is spanned by the principal components (i.e.,
eigenvectors corresponding to the largest eigenvalues) of the
distribution of the training images. After an image has been pro-
jected in the eigenspace, a feature vector containing the coeffi-
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cients of the projection is used to represent the image. Here, we
just summarize the main ideas [29].

Representing each image I(x,y) asa N x N vector I';, first
the average face U is computed

1 R
\I!:E;Fi

where R is the number of faces in the training set. Next, the
difference ® of each face from the average face is computed:
®; = I'; — V. Then the covariance matrix is estimated by

@

R
_ ;&_ &L _— T
C = R;qmi = AA 3)

where, A = [P, ... Pg]. The eigenspace can then be defined
by computing the eigenvectors p; of C. Since C is very large
(N x N), computing its eigenvector will be very expensive.
Instead, we can compute v;, the eigenvectors of AT A, an R x R
matrix. Then y; can be computed from v;, as follows:

R
pi = vij®;,j=1.. R “4)
j=1

Usually, we only need to keep a smaller number of eigenvectors
Ry corresponding to the largest eigenvalues. Given a new image
T', we subtract the mean (® = I'— V) and compute the projection

~ Rk

= wip. )
i=1

where w; = puI'T are the coefficients of the projection. We refer

to {w;} as eigen-features.

2) Gabor Features: Gabor filters provide a mechanism for
obtaining some degree of invariance to intensity due to global
illumination, selectivity in scale, as well as selectivity in orien-
tation. Basically, they are orientation and scale tunable edge and
line detectors. Vehicles do contain strong edges and lines at dif-
ferent orientation and scales, thus, the statistics of these features
could be very powerful for vehicle verification.

The general function g(x,y) of the two-dimensional (2-D)
Gabor filter family can be represented as a Gaussian function
modulated by an oriented complex sinusoidal signal

1 1 /32 ¢
=— —— | =+ = 2w Wz (6

27T(7m0'yexp|: 2(03—1_05)] exp[2mjW 7] (6)
T =xzcosf+ysinfh and y = —xsinf 4+ ycosf (7)

g(z,y)

where o, and o, are the scaling parameters of the filter, W is the
center frequency, and 6 determines the orientation of the filter,
and its Fourier transform G(u,v) is given by

(u—W)2 22

1

G(u,v) = exp {—5 [ ®)

Gabor filters act as local bandpass filters. Fig. 7(a) and (b)

shows the power spectra of two Gabor filter banks (the bright
areas indicate spatial frequencies and wave orientation).
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Fig. 7.

In this paper, we use the design strategy described in [30].
Given an input image I(z,y), Gabor feature extraction is
performed by convolving I(z,y) with a Gabor filter bank.
Although the raw responses of the Gabor filters could be used
directly as features, some kind of postprocessing is usually ap-
plied (e.g., Gabor-energy features, thresholded Gabor features,
and moments based on Gabor features [31]). We use Gabor
features based on moments, extracted from several subwindows
of the input image.

In particular, each hypothesized subimage is scaled to a fixed
size of 32 x 32. Then, it is subdivided into nine overlapping
16 x 16 subwindows. Assuming that each subimage consists of
16 8 x 8 patches [see Fig. 7(c)], patches 1, 2, 5, and 6 com-
prise the first 16 x 16 subwindow, 2, 3, 6, and 7 the second,
5,6, 9, and 10 the fourth, and so on. The Gabor filters are
then applied on each subwindow separately. The motivation for
extracting—possibly redundant—Gabor features from several
overlapping subwindows is to compensate for errors in the hy-
pothesis generation step (e.g., subimages containing partially
extracted vehicles or background information), making feature
extraction more robust.

The magnitudes of the Gabor filter responses are collected
from each subwindow and represented by three moments: the
mean i, the standard deviation o;;, and the skewness «;; (i.e.,
1 corresponds to the sth filter and j to the jth subwindow). Using
moments implies that only the statistical properties of a group of
pixels is taken into consideration, while position information is
essentially discarded. This is particularly useful to compensate
for errors in the hypothesis generation step (i.e., errors in the
extraction of the subimages). Suppose we are using S = 2 scales
and K = 3 orientations (i.e., S X K filters). Applying the filter
bank on each of the nine subwindows yields a feature vector of
size 162, having the following form:

(11011611, H120126K12; - - - [169069K69)- &)

We have experimented with using the first two moments only,
however, much worst results were obtained which implies that
the skewness information is very important for our problem. Al-
though we believe that the fourth moment (kurtosis, a measure
of normality) would also be very helpful, we do not use it since
it is computationally expensive.

3) Wavelet Features: Wavelets are a essentially a multireso-
lution function approximation method that allow for the hierar-
chical decomposition of a signal or image. Several reasons make
these features attractive for vehicle detection. First, they form a
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(a) Gabor filter bank with three scales and five orientations. (b) Gabor filter bank with four scales and six orientations. (c¢) Feature extraction subwindows.

compact representation. Second, they encode edge information,
an important feature to represent the general shape of vehicles
as a class. Third, they capture information from multiple resolu-
tion levels. Finally, there exist fast algorithms, especially in the
case of Haar wavelets, for computing them.

Any given decomposition of a signal into wavelets involves
just a pair of waveforms (mother wavelet and scaling function).
The two shapes are translated and scaled to produce wavelets
(wavelet basis) at different locations (positions) and on dif-
ferent scales (durations). We formulate the basic requirement of
multiresolution analysis by requiring a nesting of the spanned
spaces as

Voo cVoc Vi C L2, (10)

In space V11, we can describe finer details than in space
V;. In order to construct a multiresolution analysis, a scaling
function ¢ is necessary, together with a dilated and translated
version of it

l(x) =222 e —i). i=0,...,20 —1.  (11)

The important features of a signal can be better described or
parameterized, not by using ¢? () and increasing j to increase
the size of the subspace spanned by the scaling function, but by
defining a slightly different set of function 4} (x) that span the
difference between the spaces spanned by various scales of the
scale function. These functions are the wavelets, which spanned
the wavelet space W; such that V;; = V; @ W, and can be
described as

Pl (z) = 22p(2x —i). i=0,...,27 — 1. (12)

Different scaling functions ¢ () and wavelets 17 (') deter-
mine various wavelet transforms. In this paper, we use the Haar
wavelet which is the simplest to implement and computation-
ally the least demanding. Furthermore, since Haar basis forms
an orthogonal basis, the transform provides a nonredundant rep-
resentation of the input images. The Haar scaling function is

1, for0<z <1
() = {0, otherwise (13)
and the Haar wavelet is defined as
1, for0 <z < %
Y(r) =4 -1, fori<az<1 (14)

0, otherwise.
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Fig. 8. First row: Vehicle subimages used for training. Second row:
Reconstructed subimages using the 50 largest coefficients. Third row:
Ilustration of the 50 quantized largest coefficients. Fourth and Fifth rows:
Similar results for some nonvehicle subimages.

Wavelets capture visually plausible features of the shape and
interior structure of objects. Features at different scales capture
different levels of detail. Coarse scale features encode large re-
gions while fine scale features describe smaller, local regions.
All these features together disclose the structure of an object in
different resolutions.

We use the wavelet decomposition coefficients as our features
directly. We do not keep the coefficients in the HH subband of
the first level since they encode mostly fine details and noise
[23], which is not helpful at all given we aim to model the gen-
eral shape of the vehicle class.

4) Truncated and Quantized Wavelet Features: Fora N x N
image, there are N2 wavelet coefficients. Given that many of
them are pretty small, rather than using all of them, it is prefer-
able to “truncate” them by discarding those coefficients having
small magnitude. This is essentially a form of subset feature se-
lection. The motivation is keeping as much information as pos-
sible while rejecting coefficients that are likely to encode fine
details or noise that might not be essential for vehicle detection.
Fig. 8 (second row) shows examples of reconstructed vehicle
images using only the 50 largest coefficients. It should be clear
from Fig. 8 that these coefficients convey important shape in-
formation, a very important feature for vehicle detection, while
unimportant details have been removed.

We go one step further here by quantizing the truncated
coefficients based on an observation—the actual values of the
wavelet coefficients might not be very important since we are
interested in the general shape of vehicles only. In fact, the
magnitudes indicate local oriented intensity differences, infor-
mation that could be very different even for the same vehicle
under different lighting conditions. Therefore, the actual coef-
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ficient values might be less important or less reliable compared
to the simple presence or absence of those coefficients. Similar
observations have been made in [32] in the context of an image
retrieval application. We use three quantization levels: —1,
0, and +1 (i.e., —1 representing large negative coefficients,
+1 representing large positive coefficients, and 0 representing
everything else). The images in the third row of Fig. 8 illustrate
the quantized wavelet coefficients of the vehicle images shown
in the first row. For comparison purposes, the last row of Fig. 8
shows the quantized wavelet coefficients of the nonvehicle
images shown in the fourth row.

5) Combined Wavelet and Gabor Features: Careful exami-
nation of our results using wavelet or Gabor features revealed
that the detection methods based on these two types of features
yield different misclassifications. This observation suggests that
wavelet features and Gabor features offer complementary infor-
mation about the pattern to be classified, which could be used
to improve the overall detection performance. This led us to the
idea of combining the wavelet and Gabor features for improving
performance.

As in Section IV-A3, we use the wavelet decomposition co-
efficients as our features directly. Performing the wavelet trans-
form on the 32 x 32 images and throwing out the coefficients
in the HH subband of the first level, yields a vector of 768 fea-
tures. A filter bank consisting of four scales and six orientations
is used here as it has demonstrated better performance (see Sec-
tion VI-B). The combined feature set contains 1416 features.
Since the values of Gabor and wavelet features are within dif-
ferent ranges, we normalize them in the range [—1 1] before
combining them in a single vector.

B. Classifiers

1) Multilyer Feed Forward NN: NNs have been very pop-
ular over the last 15 years, therefore, we provide only a brief
review. In general, NNs implement a nonlinear mapping of the
from u = G(z). The mapping function G is established during
a training phase where the network learns to correctly associate
input patterns z to output patterns u (i.e., supervised learning).
During training, their free parameters (i.e., weights and biases)
are adjusted in a systematic way so as to minimize a cost func-
tion. Typically, the cost function is defined on the basis of the
mean-square error between a desired network response (i.e., u)
and the actual network output. In the context of classification,
NNs can learn highly nonlinear decision boundaries, without
explicitly estimating the probability distribution of the data.

There have been a number of important theoretical results
illustrating the powerful computational capabilities of two-layer
feed-forward NNs. Specifically, it has been shown that a single
hidden layer feed-forward network with arbitrary sigmoid
hidden layer activation functions can approximate arbitrarily
well an arbitrary mapping from one finite-dimensional space to
another [33]. This means that feed-forward networks can approx-
imate virtually any function of interest to any desired degree of
accuracy, provided sufficiently many hidden units are available.

In practice, determining the number of hidden nodes is not
straightforward and can affect generalization performance [34].
Unlike the number of input and output nodes, which are deter-
mined by the dimensionality of the input vectors and the number
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of classes, the number of hidden nodes is not simply related to
any obvious properties of the data. Although several methods
have been proposed for choosing a proper number of hidden
nodes, reaching the optimal point is still an open problem [35].
Other issues affecting NN performance include the choice of
the activation functions, initial weights, and learning rates. In
this paper, we consider a two-layer feed-forward NN with sig-
moidal activation functions, trained by back-propagation, a pop-
ular learning algorithm that uses gradient descent to adjust the
network weights and biases [35].

2) SVMs: SVMs are primarily two-class classifiers that have
been shown to be an attractive and more systematic approach
to learning linear or nonlinear decision boundaries [36], [37].
Their key characteristic is their mathematical tractability and
geometric interpretation. This has facilitated a rapid growth of
interest in SVMs over the last few years. SVMs have demon-
strated remarkable success in fields as diverse as text catego-
rization, bioinformatics, and computer vision [38].

Given a set of points, which belong to either of two classes,
SVM finds the hyper-plane leaving the largest possible fraction
of points of the same class on the same side, while maximizing
the distance of either class from the hyper-plane. This is equiva-
lent to performing structural risk minimization to achieve good
generalization [36], [37]. Assuming [ examples from two classes

(z1,91)(@2,92) ... (x1, 1), zi € RN,y € {=1,4+1} (15)

finding the optimal hyper-plane implies solving a constrained
optimization problem using quadratic programming. The opti-
mization criterion is the width of the margin between the classes.
The discriminate hyper-plane is defined as

l
f@) = yiaik(z,z;) +b (16)
i=1

where k(z, ;) is a kernel function and the sign of f(z) indicates
the membership of . Constructing the optimal hyper-plane is
equivalent to finding all the nonzero a;. Any data point z; cor-
responding to a nonzero a; is a support vector of the optimal
hyper-plane.

Suitable kernel functions can be expressed as a dot product
in some space and satisfy the Mercer’s condition [36]. By
using different kernels, SVMs implement a variety of learning
machines (e.g., a sigmoidal kernel corresponding to a two-layer
sigmoidal neural network while a Gaussian kernel corre-
sponding to a radial basis function (RBF) neural network). The
Gaussian radial basis kernel is given by

r — T; 2
k(xz,x;) = exp <—%> .

The Gaussian kernel is used in this study (i.e., our experiments
have shown that the Gaussian kernel outperforms other kernels
in the context of our application).

3) Empirical Data Modelling: NN Versus SVM: Pattern
classification problems root in the old topic—empirical data
modelling. In empirical data modelling, a process of induction
is used to build up a model of the system. The ultimate goal is
to deduce the response of the system on unseen data. In general,
system performance depends on the quantity and quality of
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Fig. 9. Subimages for training.

the data used to build the model. In practice, the data obtained
is finite and nonuniformly sampled. If the problem is high
dimensional, then the sampled data will only form a sparse
distribution in the input space which will yield the problem
ill-defined.

Traditional NN approaches have suffered difficulties with
generalization. This is a consequence of the optimization algo-
rithms used for parameter selection and the statistical measures
used to select the “best” model [36], [37]. Conventional NNs
employ the traditional empirical risk minimization (ERM)
principle, where the error on the training data is minimized.
Different from those methods, the formulation of SVMs
embodies the structural risk minimization (SRM) principle,
which has been shown to be superior to ERM principle. SRM
minimizes an upper bound on the expected risk. It is this
difference that equips SVM with greater ability to generalize
nicely—the goal in statistical learning. Roughly speaking, for a
given learning task, with a given finite amount of training data,
the best generalization performance will be achieved if the
right balance is achieved between the accuracy attained on that
particular training set, and the capacity of the machine, that is,
the ability of the machine to learn any training set without error.

A key characteristic of SVMs is their mathematical
tractability and geometric interpretation. In contrast, al-
though there is a body of solid mathematical results today about
NNs, many of them are asymptotic or based on assumptions.
These results are hard to verify when applied to finite data sets
which means that applying the NN theory in practice is not
straightforward. SVMs contain only a small number of tun-
able parameters, while training a SVM (i.e., solving a convex
quadratic programming problem) leads to solutions that are
global and usually unique [39]. In contrast, NNs involve many
more parameters and suffer from local minima.

V. DATASET

The images used for training were collected in two different
sessions, one in Summer 2001 and one in Fall 2001, using Ford’s
proprietary low-light camera. To ensure a good variety of data
in each session, the images were taken on different days and
times, as well as on five different highways. The training sets
contain subimages of rear vehicle views and nonvehicles which
were extracted manually from the Fall 2001 data set. A total of
1051 vehicle subimages and 1051 nonvehicle subimages were
extracted by several students in our lab. There is some variability
in the way the subimages were extracted; for example, certain
subimages cover the whole vehicle, others cover the vehicle par-
tially, while some contain the vehicle and some background (see
Fig. 9). In [25], the subimages were aligned by warping the
bumpers to approximately the same position. We have not at-
tempted to align the data in our case since alignment requires
detecting certain features on the vehicle accurately. Moreover,



SUN et al.: MONOCULAR PRECRASH VEHICLE DETECTION

we believe that some variability in the extraction of the subim-
ages could actually improve performance. Each subimage in the
training and test sets was scaled to 32 x 32 and preprocessed to
account for different lighting conditions and contrast [40]. First,
a linear function was fit to the intensity of the image. The result
was subtracted out from the original image to correct for lighting
differences.

To evaluate the performance of the proposed approach, the
average error (ER), false positives (FPs), and false negatives
(FNs), were recorded using a three-fold cross-validation proce-
dure. Specifically, we split the training dataset randomly three
times (Setl, Set2, and Set3) by keeping 80% of the vehicle
subimages and 80% of the nonvehicle subimages (i.e., 841
vehicle subimages and 841 nonvehicle subimages) for training.
The remaining 20% of the data was used for validation. For
testing, we used a fixed set of 231 vehicle and nonvehicle
subimages which were extracted from the Summer 2001 data
set.

VI. EXPERIMENTAL COMPARISON OF
VARIOUS HV APPROACHES

In this section, we present experimental results of the HV ap-
proaches using the data set described in Section V and two clas-
sifiers: SVMs and NNs. Both of these classifiers require proper
parameter values for good performance. Here, we evaluate each
classifier by varying its parameters.

In the case of SVMs, we employ the Gaussian kernel, where
o is the only parameter for the kernel function. Our experiments
indicate that SVM performance is not sensitive to o, as long as
it is within a certain range. We have found that performance dif-
ferences are negligible when 0.005 < o < 0.5. In the following
experiments, we have set o = 0.1. Besides o, another important
parameter for SVMs is the regularization parameter C'. A larger
C corresponds to assigning a higher penalty to miss-classifica-
tions. We have experimented with C' values in the range of 10
to 100 without noticing important performance differences. In
the following experiments, we use C' = 10.

In the case of NNs, we have experimented with one hidden
layer, assuming different numbers of hidden units and different
random initial weights. As we discussed in Section IV-B1,
choosing the right number of hidden nodes is very important.
If we choose a large number of hidden nodes, the training error
can become very small, however, the NN would become tuned
to the particular training set (i.e., overfitting). Consequently, the
test error will be very high. On the other hand, if we use too few
hidden nodes, the NN will not be able to fit the training data
well, and again the test error will be high. In our experiments,
we varied the number of hidden nodes (i.e., 15, 20, 25, 30, and
35) and used cross validation to terminate training. For each of
these five different architectures, we trained the NN five times,
using different random initial weights each time. We report the
average performance on the test sets.

A. HV Using PCA Features

From our literature review in Section I, PCA features have
been used quite extensively for vehicle detection. These fea-
tures can be regarded as global features since changes in even
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Fig. 10. HV using P90-PCA feature set preserving 90% information.
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Fig. 11. HV using P95-PCA feature set preserving 95% information.

one pixel value of the image affect all the features. Two sets of
PCA features have been used here, one preserving 90% informa-
tion(P90) and one preserving 95% of the information (P95). For
comparison purposes, we evaluated the performance of these
feature sets using both NNs and SVMs. First, we used PCA fea-
tures to train NN classifiers, referred to as P9ON and P95N.
Then, we tried the same PCA feature sets using SVMs (P90S
and P95S).

Figs. 10 and 11 show the performances of the PCA feature
sets in terms of error rate and FP/FN. When utilizing the fea-
ture set P90, the best performance was yielded by a NN with
25 hidden nodes P9ON25—an average error rate of 18.6%, an
average FP rate of 17.34% and an average FN rate of 1.26%.
Slightly better than the feature set P90, the error rate, FP and
FN using P95 were 17.61%, 16.25%, and 1.36% with 20 hidden
nodes. Compared to the NN classifier, the SVM classifier per-
formed much better. P95S achieved an average error rate of
9.09%, which is almost 9% lower compared to NN’s lowest
error (i.e., P95SN20). P90S achieved an error rate of 10.97%,
which is almost 8% lower than P9ON25. Obviously, SVM out-
performed NN in this vehicle detection experiment using PCA
features.

B. HV Using Gabor Features

In contrast to PCA features, Gabor features can be consid-
ered as local features. Two different Gabor feature sets were in-
vestigated in this paper. The first was extracted using a filter
bank with 4 scales and 6 orientations [Fig. 7(b)], referred to as
G46. The second one was extracted using a filter bank with three
scales and five orientations (G35), illustrated in Fig. 7(a). First,
we evaluated the performance of the two feature sets using NNs
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Fig. 13. HYV using Gabor feature set G46.

with different architectures, as we did in the previous subsec-
tion. We refer to these those methods as G46N15, G35N15 etc.
Fig. 12 shows the performance using G35, while Fig. 13 shows
the performance using G46. The best performance in the case of
G35 was achieved by a NN with 25 hidden nodes — an average
error rate of 16.467%, an average FP rate of 15.23% and FN
rate of 1.237%. Slightly better than G35, the lowest error rate
using G46N was 16.04%, yielded by the NN with 25 hidden
nodes. Then, we applied SVMs on these two feature sets. We
refer to them as G46S and G35S. Figs. 12 and 13 illustrate that
SVMs performed much better than NNs. In particular, the av-
erage error rate of G465 was 5.33%, the FP rate was 3.46% and
FN rate was 1.88%. The error rates, FP and FN for G355 were
6.78%, 4.62%, and 2.16% correspondingly.

Fig. 14 shows some successful detection examples using
G46S. The results illustrate several strong points of this
method(G46S). Fig. 14(a) shows a case where only the general
shape of the vehicle is available (i.e., no details) due to its
distance from the camera. The method seems to discard irrel-
evant details, leading to improved robustness. In Fig. 14(b),
the vehicle was detected successfully from its front view,
although we did not use any front views in the training set.
This demonstrates good generalization properties. Also, the
method can tolerate some illumination changes as can be seen
in Fig. 14(c)—(d).

C. HV Using Wavelet Features

Wavelet features can also be considered as local features. As
described before, each of the images was scaled to 32 x 32 and
then a five level Haar wavelet decomposition was performed
on it, yielding 1024 coefficients. The final set contained 768
features after getting rid of the coefficients in the HH subband
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Fig. 14. Some examples of successful detection using Haar wavelet features
(or Gabor features).
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Fig. 15. HV using wavelet features.

in the first level of the decomposition. We refer to this feature
set as W. Experimental results are graphicly shown in Fig. 15.

Using SVMs, the average error rate was 8.52%, the average
FP rate was 6.50%, and the average FN rate was 2.02%. Next
we evaluated the performance of wavelet features using NN,
referred to as WN (see Fig. 15). Following the same evalua-
tion methodology as before, the lowest error rate was 16.4%
(FP 12.81% and FN 3.59% and was achieved by a NN with
30 hidden nodes. Similar to the observations made previously,
SVMs performed better than NN using wavelet features).
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Fig. 14 shows some successful detection examples using
wavelet features and SVMs (i.e., same examples presented ear-
lier to demonstrate Gabor features). Wavelet features seem to
have similar properties to Gabor features — modelling general
shape information [Fig. 14(a)], having good generalization
properties [Fig. 14(b)], and demonstrating some degree of
insensitivity to illumination changes [Fig. 14(c)—(d)].

D. HV Using Truncated Quantized Wavelet Features

The main argument for using the truncated quantized wavelet
coefficients is that fine details of the training vehicle examples
are not helpful. In order to eliminate the fine details, we trun-
cated the wavelet coefficients by keeping only the ones having
large magnitude. Using SVMs, we ran several experiments by
keeping the largest 25, 50, 100, 125, 150, and 200 coefficients,
setting the rest zero. The best results were obtained in the
case of keeping 125 coefficients [see Fig. 17(a)-(c) for the
performances]. Specifically, the average error rate of 77255
was 7.94%, the average FP rate was 4.33%, and the average
FN rate was 3.61%.

Then, we quantized the truncated coefficients to either “—1”
or “+1” and trained SVMs using the quantized coefficients.
We ran several experiments again by quantizing the largest 25,
50, 100, 125, 150, and 200 coefficients as described in Sec-
tion IV-A4. Fig. 17(a)—(c) shows the error rate, FP, and FN rates
obtained in this case. The best results were obtained again using
125 coefficients (see Fig. 16). The error rate obtained by Q1258
was 6.06%, the average FP rate was 2.31%, and the average FN
rate was 3.75%. As can be observed from Fig. 17(a), the QSVM
approach demonstrated lower error than the TSVM approach
in all cases. In terms of FPs, the performance of the QSVM
approach was consistently better or equal to the performance
of the TSVM approach when keeping 100 coefficients or more
[see Fig. 17(b)]. In terms of FNs, the performance of the QSVM
approach was consistently better or equal to that of the 7SVM
approach when keeping 25 coefficients or more [see Fig. 17(c)].

The superiority of the SVM classifier has been demonstrated
over the PCA features (P90 and P95), Gabor features (G35 and
G46), as well as the standard wavelet features (W32). Here-
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HV using quantized/truncated wavelet features (a) error rate and (b) FPs and FNs.

after, only the best performance yielded by NN classifiers is re-
ported. Overall, feature sets Q725 and 77123 demonstrated the
best performance using SVMs. For comparison purposes, we
tested these two feature sets using NNs. The average error rate
of T125N was 14.78%, while that of Q125N was 16.02%. Once
again, SVMs yielded better performance.

E. HV Using Combined Wavelet and Gabor Features

A careful analysis of our results using wavelet and Gabor fea-
tures revealed that, many times, the two approaches would make
different classification errors. This observation motivated us to
consider a simple feature fusion approach by simply combining
wavelet features with Gabor features, referred to as GW. In par-
ticular, we chose Gabor features extracted using a filter bank
with four scales and six orientations on 32 X 32 images, and the
original wavelet features described in Section VI-C. Fig. 18(a)
and (b) shows the results using the combined features. Using
SVMs, the average error rate obtained in this case was 3.89%,
the average FP rate was 2.29%, and the average FN rate was
1.6%. It should be reminded that the Gabor feature alone (i.e.,
G46S5) yielded an error rate of 5.33%, while using wavelet fea-
tures alone (i.e., WS) yielded an error rate of 8.52%. Using the
combined feature set and NNs (WGN), the error rate achieved
was 11.54%, which was lower than G46N25 (i.e., 16.04%) or
WN30 (i.e., 16.4%).

Fig. 19 shows some examples that were classified correctly
by the GWS approach, however, neither G465 nor WS were able
to perform correct classification in all cases. Fig. 19(a), for ex-
ample, shows a case that was classified correctly by the G46S
approach but incorrectly by the WS approach. Fig. 19(c) shows
another case which was classified incorrectly by the G46S but
correctly by the WS approach. Neither G46S nor WS were able
to classify correctly the case shown in Fig. 19(b). Obviously,
feature fusion is a promising direction that requires further in-
vestigation.

F. Overall Evaluation

Several interesting observations can be made from analyzing
the above experimental results. First, the local features con-
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Fig. 17. Performances versus number of coefficients kept. (a) Detection
accuracy. (b) FPs. (c) FNs.

sidered in this study (i.e., Gabor and wavelet features) outper-
formed the global ones (i.e., PCA features)—the lowest error
rate using PCA features was 9.09%), (i.e, P95S), while the lowest

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 7, JULY 2006

error rate using wavelet features was 6.06% (i.e, Q1255), 5.33%
using Gabor features (i.e., G46S), and 3.89% using the com-
bined feature set (i.e., WGS). A possible reason for this is that
the relative location of vehicles within the hypothesized win-
dows is not fixed. Since we do not employ any normalization
step prior to hypothesis verification, PCA features lack robust-
ness. In contrast, local features, such as wavelet and Gabor fea-
tures, can tolerate these “drifts” better.

Second, in the context of vehicle detection, SVMs yielded
much better results than NNs. For instance, using the same PCA
features, SVMs yielded an error rate of about 8% lower than
NNs. Similar observations can be made using the other features.
Due to the huge within-class variability, it is very difficult to
obtain a perfect training data set for on-road vehicle detection.
SVMs are capable of maximizing the generalization error on
novel data by performing structural risk minimization, while NN
can only minimize the empirical risk. This might be the main
reason why NNs did not work as well as SVMs.

Third, the choice of features is an important issue. For
example, using the same classifier (i.e., SVMs), the combined
wavelet-Gabor feature set yielded an average error rate of
3.89%, while PCA features yielded an error rate of 9.09%. For
vehicle detection, we would like features capturing general
information of vehicle shape. Fine details are not preferred,
for they might be present in specific vehicles only. The feature
set should also be robust enough to cope with the uncertainty
introduced by the HG step (i.e., “drift”).

Fourth, feature selection is an area for further exploration.
The quantized wavelet features yielded an average error rate
of 6.06%, while the original wavelet features yielded an error
rate of 8.52%. By varying the number of coefficients kept (i.e.,
some form of subset feature selection), truncated/quantized fea-
ture based methods demonstrated different performances. This
implies that by ignoring or paying less attention to certain fea-
tures, better performance can be obtained. However, the issue of
selecting an optimum subset of features is still an open problem.
We are currently investigating the problem of feature selection
using genetic algorithms [41], [42].

Fifth, feature fusion can help improve detection. By simply
concatenating the wavelet and Gabor features together, the de-
tection error rate went down to 3.89% from 5.33% using Gabor
features and 8.52% using wavelet features. Obviously, feature
fusion is a subject that requires further investigation.

In terms of accuracy, the combined wavelet and Gabor fea-
tures yielded the best results. Limited by real-time constraints,
however, it is not realistic to use the WGS approach because
of higher computational requirements (i.e., requires computing
both wavelet and Gabor features). The performance of G465
(i.e., using Gabor feature only) was slightly worse than the WGS.
Thus, our real-time system was based on the G46S approach.

Standard deviations can provide a measure of confidence. In
our experiments, the standard deviations for accuracy obtained
based on our cross-validation strategy were in the range of 10~2
to 1073, NNs were more unstable, especially when considering
different number of layers and nodes per layer.

In terms of time requirements, we were not able to draw any
useful conclusions. There are many different factors that af-
fect the speed of a certain combination including the number
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Fig. 19. Cases where either the G46S approach or the WS approach had failed
to perform correct classification (all cases were classified correctly by the GWS
approach).

of layers and nodes in the NN, the number of support vectors
in the SVM, the number of scales and orientations in the Gabor
filters, and the number of levels in the wavelet transform. Gen-
erally speaking, we did not notice significant time differences
for each of the combinations considered in this study.

VII. REAL-TIME SYSTEM

In order to evaluate the performance of the two-step vehicle
detection system, tests were carried out under different driving
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Fig. 20. Vehicle detection examples in rather simple scenes.

conditions. Figs. 20 and 21 show some representative detection
results. The bounding boxes superimposed on the original im-
ages indicate the final detections. All the results shown in this
section were generated by driving Ford’s concept car around in
the Detroit area. Fig. 20 shows some detection results assuming
rather simple scenes like national highways. This is the easiest
traffic scenario for any vision-based on-road vehicle detection
system. Our system worked very well under this scenario. De-
tection under an urban area is much more difficult because vehi-
cles are closer to each other, while buildings or trees might cast
shadows both on the road and the vehicles. Fig. 21(a)—(f) shows
some detection results under this scenario, where our system
worked quite satisfactory. The performance of the system de-
graded when we drove the prototype vehicle under some ab-
normal conditions, such as, rain, little contrast between cars and
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Fig. 21. Vehicle detection examples in complex scenes.

background, heavy congested traffic, etc. Fig. 21(g)—(h) shows
two successful examples under this scenario.

The system demonstrated some tolerance to detecting vehi-
cles from slightly nonrear views [e.g., see Fig. 21(b)], however,
we have not analyzed the sensitivity of our system with respect
to this factor since the objective of this study was different.
There are several ways to improve the sensitivity of our method
to small angle changes, for example, by training the classifier on
data from slightly different angles or building a two-stage classi-
fication scheme in the spirit of [43]. In this approach, the second
stage contains classifiers trained on different aspects while the
first stage contains a classifier trained to assign a given input to
a particular aspect.

We have achieved a detection rate of approximately 10 fps
(NTSC: processing on the average every third frame) using a
standard PC machine (Pentium III 1133 MHz), without making
particular efforts to optimize our code. This is an average perfor-
mance since some times images can be processed much faster
than others (i.e., when there is only one vehicle present). It
should be mentioned that vehicle detection for precrash sensing
requires three-dimensional (3-D) interpretation (i.e., 3-D dis-
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tance) for precise precrash actions. In general, 3-D information
can be obtained using a stereo camera or an active sensor (e.g.,
radar or lidar). Alternatively, given the intrinsic camera parame-
ters and assuming that the road is flat and vehicle size is approx-
imately known (e.g., through classifying vehicles in different
classes such as sedan, truck, bus, etc.) 3-D information can be
inferred from a single camera [44].

Vehicle detection for precrash sensing requires, under certain
circumstances, a higher sampling rate in order to provide a satis-
factory solution. Our solution, presently, has a 10-Hz sampling
rate. If the vehicle’s speed is about 70 mph, 10-Hz corresponds
to a 3-m interval. For many situations, this level of resolution
is sufficient. We are currently working to increase the temporal
resolution to 20 Hz, enabling side-impact collision avoidance
and mitigation.

VIII. CONCLUSION AND FUTURE WORK

Robust and reliable vehicle detection in images acquired by
a moving vehicle is an important problem with applications to
driver assistance systems or autonomous, self-guided vehicles.
On-road vehicle detection is essentially a two-class pattern clas-
sification problem (i.e., vehicle versus nonvehicle). The focus of
this paper is on feature extraction and classification for vehicle
detection. We have investigated six different feature extraction
methods (i.e., PCA features, wavelet features, truncated/quan-
tized wavelet features, Gabor features, and combined wavelet
and Gabor features) in the context of vehicle detection. For eval-
uation purposes, we considered two popular classifiers: NNs and
SVMs.

A real-time monocular precrash vehicle detection system
using Ford’s proprietary low-light camera has been developed
based on our evaluations. The vehicle detection algorithm
includes two main steps: a multiscale driven hypothesis gen-
eration step and an appearance-based hypothesis verification
step. The multiscale driven hypothesis generation step forms
possible hypotheses at a coarse level of detail first. Then, it
traces them down to the finer resolution. This scheme not only
provides robustness but also speeds-up the whole process. The
hypothesis verification is based on vehicle appearance. Specifi-
cally, we used statistical Gabor features extracted using a filter
bank with four scales and six orientations, and SVMs (G465).

We have evaluated the system using Ford’s concept vehicle
under different traffic scenario: simple scenes, complex urban
scenes, and scenes assuming varying weather conditions. Our
system worked very well on structured highways, provided good
results in urban streets under normal conditions, and degraded
gracefully under some adverse conditions, such as inclement
weather and heavy congested traffic.

For future work, we plan to enhance the proposed vehicle de-
tection scheme by exploiting temporal continuity. This can be
achieved by employing a tracking mechanism to hypothesize the
location of vehicles in future frames [19]. Tracking takes advan-
tage of the fact that it is very unlikely for a vehicle to show up
only in one frame. Therefore, vehicle location can be hypoth-
esized using past history and a prediction mechanism. When
tracking performance drops, the proposed hypothesis genera-
tion scheme can be deployed to maintain performance levels.
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The majority of existing on-road vehicle detection and
tracking systems use a detect-then-track approach (i.e., vehi-
cles are first detected and then turned over to the tracker). This
approach aims to resolve detection and tracking sequentially
and separately. We envision a different strategy (i.e., detect-
and-track), where detection and tracking are addressed simul-
taneously in a unified framework (i.e., detection results trigger
tracking, and tracking re-enforces detection by accumulating
temporal information through some probabilistic models). Ap-
proaches following this framework would have better chances
to filter out false detections in subsequent frames. In addition,
tracking template updates would be achieved through repeated
detection verifications.

It should be mentioned that the number of negative examples
used for training in this study was equal to the number of posi-
tive examples. This might not sound quite reasonable given that
the nonvehicle class is much larger. Our motivation to use a rel-
atively small number of negative examples was in order to keep
training time within reasonable limits. However, although the
set of negative examples used in this study was smaller than typ-
ically, the examples were of much better quality. This is because
all negative examples were extracted in a controlled manner
from a set of realistic images. Specifically, the negative exam-
ples in this study were extracted manually by a group of students
using images of traffic scenes. This is in contrast to other studies
where, although they used much larger sets of negative exam-
ples, the negative examples were selected randomly from a set
of random images (e.g., in [45], the nonface examples were se-
lected randomly from a set of scenery images). This might yield
quite redundant (i.e., similar examples repeated over and over
again) and/or irrelevant examples (i.e., might not have a great
effect on determining the final solution).

We plan to improve classification performance using a “boot-
strapping” strategy like in [45]. Bootstrapping allows to choose
a more representative set of training examples, especially when
the nontarget class (i.e., nonvehicles) has huge variability. More-
over, we plan to select the training examples based on the out-
puts of the hypothesis generation step (i.e., hypotheses classified
incorrectly) instead of choosing them manually.
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