
Machine Learning with Applications 19 (2025) 100621

A
2
n

Contents lists available at ScienceDirect

Machine Learning with Applications

journal homepage: www.elsevier.com/locate/mlwa

Ensembles of deep one-class classifiers for multi-class image classification
Alexander Novotny a, George Bebis b ,∗, Alireza Tavakkoli b, Mircea Nicolescu b

a Department of Computer Science, Virginia Tech, USA
b Department of Computer Science and Engineering, University of Nevada, Reno, USA

A R T I C L E I N F O

Keywords:
Ensembles of classifiers
One-class classification
Multi-class classification
Generative adversarial networks
Auto-encoder
Principal component analysis

A B S T R A C T

Traditional methods for multi-class classification (MCC) involve using a monolithic feature extractor and
classifier trained on data from all the classes simultaneously. These methods are dependent on the number
and types of classes and are therefore rigid against changes to the class structure. For instance, if the number
of classes needs to be modified or new training data becomes available, retraining would be required for
optimum classification performance. Moreover, these classifiers can become biased toward classes with a large
data imbalance. An alternative, more attractive framework is to consider an ensemble of one-class classifiers
(EOCC) where each one-class classifier (OCC) is trained with data from a single class only, without using any
information from the other classes. Although this framework has not yet systematically matched or surpassed
the performance of traditional MCC approaches, it deserves further investigation for several reasons. First, it
provides a more flexible framework for handling changes in class structure compared to the traditional MCC
approach. Second, it is less biased toward classes with large data imbalances compared to the multi-class
classification approach. Finally, each OCC can be separately optimized depending on the characteristics of
the class it represents. In this paper, we have performed extensive experiments to evaluate EOCC for MCC
using traditional OCCs based on Principal Component Analysis (PCA) and Auto-encoders (AE) as well as
newly proposed OCCs based on Generative Adversarial Networks (GANs). Moreover, we have compared the
performance of EOCC with traditional multi-class DL classifiers including VGG-19, Resnet and EfficientNet.
Two different datasets were used in our experiments: (i) a subset from the Plant Village dataset plant disease
dataset with high variance in the number of classes and amount of data in each class, and (ii) an Alzheimer’s
disease dataset with low amounts of data and a large imbalance in data between classes. Our results show that
the GAN-based EOCC outperform previous EOCC approaches and improve the performance gap with traditional
MCC approaches.
1. Introduction

Multi-class classification (MCC) is a supervised learning task that
involves training a classifier to assign data to one of 𝐶 different classes
where 𝐶 ≥ 2; the special cases of 𝐶 = 2 and 𝐶 = 1 are referred to as
binary (or two-class) and unary (or one-class) classification problems
correspondingly. Deep Learning (DL) methods have demonstrated im-
pressive performance in the context of MCC (Krizhevsky, Sutskever, &
Hinton, 2017). Traditionally, MCC methods employ a single monolithic
model that simultaneously extracts and classifies features for each
class. This approach, however, does not provide flexibility when the
class structure of the problem needs to be modified (i.e., by adding
or removing classes and/or by splitting or merging classes). Many
practical applications require this kind of flexibility such as open set
problems (Scheirer, de Rezende Rocha, Sapkota, & Boult, 2013). For ex-
ample, a system for classifying plant diseases classification might need

∗ Corresponding author.
E-mail addresses: anovotny@vt.edu (A. Novotny), bebis@unr.edu (G. Bebis), tavakkol@unr.edu (A. Tavakkoli), mircea@unr.edu (M. Nicolescu).

to be modified by adding new diseases or combining known diseases
into the same disease. In this case, the model needs to be retrained
even for small changes to ensure optimum performance. Moreover,
monolithic multi-class classifiers face challenges when dealing with
imbalanced data, where classes are not represented equally (e.g., some
classes might have significantly more instances than others due to
skewed distributions). This can become an even more serious issue
in incremental learning scenarios where models need to continuously
learn as new data comes along.

An alternative approach to using a single classifier for MCC is
employing an ensemble of binary classifiers (Galar, Fernández, Bar-
renechea, Bustince, & Herrera, 2011). This requires splitting the MCC
problem into multiple, binary classification sub-problems and learning
a binary classifier for each. There are two main strategies in this
context: 𝑂 𝑛𝑒−𝑣𝑠−𝐴𝑙 𝑙 and 𝑂 𝑛𝑒−𝑣𝑠−𝑂 𝑛𝑒. In the 𝑂 𝑛𝑒−𝑣𝑠−𝐴𝑙 𝑙 strategy,
https://doi.org/10.1016/j.mlwa.2025.100621
Received 8 December 2024; Received in revised form 29 December 2024; Accepted
vailable online 22 January 2025
666-8270/© 2025 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).
 8 January 2025

icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/mlwa
https://www.elsevier.com/locate/mlwa
https://orcid.org/0009-0000-6222-5967
mailto:anovotny@vt.edu
mailto:bebis@unr.edu
mailto:tavakkol@unr.edu
mailto:mircea@unr.edu
https://doi.org/10.1016/j.mlwa.2025.100621
https://doi.org/10.1016/j.mlwa.2025.100621
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Novotny et al.

s
p
𝑂
A
𝐶
n
c
c
i
o

d

w
r

w

o

c
y
i
t
f
t
p

e
r
b
b
e

W
c
d
t

l

(

M
t
c
e
A
o
b
w
i
f
c
p
c
m
c
t
E
h

m

l
t
i

d
o
A
n
s
a
d
t
o
d
O
n
d

Machine Learning with Applications 19 (2025) 100621
a binary classifier is trained on a single class versus all other classes.
Assuming 𝐶 classes, this strategy requires creating an ensemble of 𝐶
binary classifiers; we typically refer to this type of binary classifiers as
𝑐 𝑙 𝑎𝑠𝑠 − 𝑠𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 𝑐 𝑙 𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑟𝑠 (CSCs) since their task is to identify data
amples that belong to a specific category. The final classification is
erformed by selecting the class with the highest probability. In the
 𝑛𝑒 − 𝑣𝑠 − 𝑂 𝑛𝑒 strategy, each classifier is trained on a pair of classes.
ssuming 𝐶 classes, this strategy requires building an ensemble of
(𝐶 − 1)∕2 binary classifiers, which is significantly higher than the
umber of classifiers required by the 𝑂 𝑛𝑒−𝑣𝑠−𝐴𝑙 𝑙 approach. The final
lassification is performed by aggregating the predictions from each
lassifier (e.g., using the majority rule). These methods can be general-
zed by exploiting more diverse binary partitions using error-correcting
utput coding which trades redundancy for robustness (Dietterich &

Bakiri, 1995). Although these strategies can deal efficiently with the
issue of removing or merging classes, they still face challenges when
adding or splitting classes since retraining some or all of the ensemble
classifiers is required. Moreover, they suffer from ambiguous classifica-
tion regions (Duda, Hart, & Stork, 2000) while the issue of imbalanced
atasets could become even more challenging in the case of CSCs.

Addressing the above issues requires designing ensembles of clas-
sifiers (ECs) that satisfy two main requirements: (1) each class is
associated with a classifier that learns from that class only without
any information from the other classes and (2) the rule for aggregat-
ing the responses of the classifiers for the final decision can easily
accommodate changes in the class structure without requiring extensive
modifications or retraining. In the rest of the paper, we will refer to
them as 𝐸 𝐶 𝑟𝑒𝑞 𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠. Employing one-class classifiers (OCCs) to de-
sign ensembles that satisfy the EC requirements represents a promising
research direction. Traditionally, OCCs have been deployed in 𝑎𝑛𝑜𝑚𝑎𝑙 𝑦
detection (Chandola, Banerjee, & Kumar, 2009; Salehi et al., 2022)

here the goal is to identify instances that do not fit in well with the
est of the data in a target distribution (e.g., detecting abnormalities in

medical images). Our interest in this work is to leverage the attractive
properties of OCC to design ensembles of one-class classifiers (EOCC)
for solving MCC problems.

One-class classification (Khan & Madden, 2014; Perera, Oza, &
Patel, 2021; Seliya, Zadeh, & Khoshgoftaar, 2021) aims to determine

hether data samples belong to a target class which is the only class
that the classifier has seen during training. This is fundamentally differ-
ent from class-specific classification where a binary classifier is trained
to separate a given class from the rest (i.e., the classifier is trained
with data from all classes). Typically, a unary classifier is trained for
ne-class classification; however, one-class classification can also be

addressed using a binary classifier where training uses both target and
pseudo-non-target data which is generated without any knowledge of
the non-target distribution (Hempstalk, Frank, & Witten, 2008; Kang,
2022; Oza & Patel, 2019). We have investigated both unary and binary
lassifiers for one-class classification in this work. Once trained, an OCC
ields a 𝑐 𝑜𝑛𝑓 𝑖𝑑 𝑒𝑛𝑐 𝑒 𝑠𝑐 𝑜𝑟𝑒 that determines how close a given sample
s to the target class. This confidence score can then be thresholded
o perform one-class classification. An EOCC can be used for MCC by
irst generating a confidence score for each class and then combining
hem using some aggregation rule (Hadjadji, Chibani, & Guerbai, 2017)
rovided that it satisfies the second EC requirement.

Using EOCC for MCC provides a flexible framework. Assuming that
ach class is represented by a single classifier, a total of 𝐶 classifiers is
equired for a 𝐶-class classification problem. New classes can be added
y simply adding new classifiers while existing classes can be removed
y removing their corresponding classifiers. Associating an OCC with
ach class can better address the issue of imbalanced data since each

classifier is only trained with data from a single class (Krawczyk,
oźniak, & Herrera, 2015; Lee & Cho, 2006). In particular, EOCC

an easily accommodate incremental learning applications where new
ata is leveraged to further improve classification performance by fine-
uning a subset of OCCs instead of the whole model. They can also
2
better support the ‘‘fitted learning’’ framework introduced by Kardan
and Stanley (2018). Moreover, each classifier can be independently
optimized, for example, by choosing different features (Baggenstoss,
2004; Tax & Duin, 2001) or models (Kang, Cho, & Kang, 2015). On
the other hand, OCCs cannot leverage inter-class information which
might be important for some classification tasks. This can be partially
addressed using a binary classifier by introducing pseudo-non-target
data as discussed earlier.

Using EOCC for MCC has received rather limited attention in the
iterature, most likely because this approach has not yet matched

or exceeded the performance of monolithic multi-class classifiers. In
fact, many previous studies used artificial or less interesting datasets
e.g., non-image data from the UCI repository Blake & Merz, 1998) and

did not explicitly compare the performance of EOCC with traditional
CC approaches. Additionally, they did not perform any experiments

o demonstrate how EOCC handle changes in the structure of the
lasses (e.g., adding or removing classes). This study benchmarks sev-
ral classical OCCs based on Principal Component Analysis (PCA) and
uto-encoders (AEs) for designing EOCC to solve MCC problems. More-
ver, we leverage recent advances in DL to design more powerful EOCC
y proposing some new OCCs based on Generative Adversarial Net-
orks (GANs). AEs, for example, suffer from training stability problems

f made too deep, and are therefore difficult to get sophisticated enough
or classification tasks. We have performed extensive experiments and
omparisons to evaluate the performance of EOCC using more com-
lex computer vision datasets. In our experiments, we have explicitly
ompared the performance of EOCC with some state-of-the-art DL
ulti-class classifiers. We have also investigated scenarios where new

lasses are added or existing classes are removed to better understand
he overall benefits of EOCC approaches. It should be mentioned that
OCC can be extended to include a reject option (Tax & Duin, 2008);
owever, this is beyond the scope of this work.

The rest of the paper is organized as follows: Section 2 provides
a brief overview of OCCs and EOCC with emphasis on MCC. Section 3
gives an overview of the datasets used in our experiments for testing the

odels presented. Section 4 provides an overview of previous methods
and introduces new ones, based on DL models, for building EOCC for
MCC Section 5 presents our experiments, results, and comparisons.
Finally, Section 6 presents our conclusions and directions for future
research.

2. Background

This section provides a brief review of OCCs and applications fol-
owed by a review of EOCC with emphasis on MCC. OCCs are designed
o learn the characteristics of a single class so that they can identify
nstances that do not belong to that class (Khan & Madden, 2014;

Perera et al., 2021; Seliya et al., 2021). This is useful in anomaly
etection and related problems such as novelty detection, and out-
f-distribution detection (Chandola et al., 2009; Salehi et al., 2022).
nomalous data can be defined as rare and unusual examples that do
ot fit in with the rest of the data (i.e., outliers). Examples include
tructural defects, malicious actions like bank fraud and cyberattacks,
nd abnormalities in medical data. Novelty data represents unknown
ata that a classifier has not been exposed to during training (e.g., due
o ill sampling) but are not in principle anomalies or outliers. Out-
f-distribution data represent instances that belong to a distribution
ifferent from the target distribution. Depending on the application,
CC designed for anomaly detection could be applied in the context of
ovelty or out-of-distribution detection. However, these are in general
ifferent problems.

One-class classification approaches fall into four main categories:
(i) density-based, (ii) boundary-based, (iii) distance-based, and (v)
reconstruction-based. Density-based approaches work by fitting a sta-
tistical distribution to the target data (i.e., training data representing
the target class). Both parametric and non-parametric methods can be

A. Novotny et al.

f
o
k

t
e

W

b
d
C

i
a

n

c

c
m
y
B

i

e

&

d

(
E
e
t
o
a
o
e
m
e
a
p

a

B
c

o
t
q

Machine Learning with Applications 19 (2025) 100621
used to model the target class. Parametric methods model the density
unction using a specific functional form (e.g., Gaussian or mixture
f Gaussians) while non-parametric methods use a weighted sum of
ernel functions (e.g., Parzen Windows) (Duda et al., 2000). Instances

having a low likelihood can then be considered outliers. These methods
ypically require a large amount of training data for accurate density
stimation and their performance depends on selecting an appropriate

likelihood threshold.
Boundary-based approaches fit a decision boundary around the

target data such that instances falling outside the decision boundary are
considered outliers. The main challenge with this approach is how to
find the optimal size of the volume enclosing the target class. Some rep-
resentative methods in this category include One-Class Support Vector
Machine (OC-SVM), Support Vector Data Description (SVDD), and One-
Class Convolutional Neural Network (OC-CNN). OC-SVM (Scholkopf,

illiamson, Smola, Taylor, & Platt, 1999), which is a variation of the
Support Vector Machine (SVM) classifier (Hearst, Dumais, Osuna, Platt,
& Scholkopf, 1998), finds a hyperplane that separates the training data
from the origin while at the same time maximizing the hyperplane’s
distance from the origin. SVDD (Tax & Duin, 2004) extends OC-SVM
y finding a hypersphere with a minimum radius enclosing the target
ata; any data outside of the hypersphere is considered an outlier. OC-
NN (Oza & Patel, 2019) uses a zero-centered Gaussian noise in the

latent space is used as the pseudo-non-target distribution.
Distance-based approaches measure some form of distance to deter-

mine how much an unknown instance deviates from the target class;
nstances that are distant from the training data are rejected as an
nomaly. Some representative methods in this category include nearest

neighbor (NN) methods (e.g., One-Class Nearest Neighbor (OC-NN) and
K-Nearest Neighbor (OC-KNN)), clustering methods (e.g., One-Class K-
Means (OC-KM)), Local Outlier Factor (LOF), and Isolation Forest (IF).
Giver a test sample, OC-NN (Khan & Madden, 2014) finds its first
earest neighbor in the target class and the first nearest neighbor of

this neighbor in the target class. If the ratio of these distances is high,
then the test sample is considered an outlier. OC-KNN (Khan & Madden,
2014) is an extension of this idea to using the K nearest neighbors
where K is a parameter; the final decision is typically performed using
majority voting. Clustering methods such as OC-KM work similarly,
however, they consider the distance from the closest clusters instead
of the nearest neighbors. LOF (Breunig, Kriegel, Ng, & Sander, 2000),
computes the LOF score of a test sample by taking the ratios of the
local density of the instance and the local densities of its neighbors;
test samples with a high LOF score are considered outliers. IF (Liu, Ting,
& Zhou, 2008), which has been inspired by the Random Forests (RF)
classifier (Breiman, 2001), builds multiple binary trees that separate
the feature space recursively where each node divides its child nodes
based on a randomly selected feature and threshold. Instances that are
placed deeper in a tree are typically not outliers. The final decision is
made by averaging the predictions over all binary trees.

Reconstruction-based methods work by first projecting the data
in a low-dimensional manifold which is embedded within a higher-
dimensional space formed by the target class. The projected data is
then reconstructed back in the original space and the error between
the original and reconstructed data is computed. The reconstruction
error can be used to estimate the distance of the data from the target
lass and perform anomaly detection. The motivation is that data that

fit well in the target class have a low reconstruction error while other
data have a higher reconstruction error. A popular one-class classifier
based on this idea was introduced in the context of face detection by
Turk and Pentland (1991) using PCA (Duda et al., 2000). Since PCA
an only compute a linear manifold, extensions to the case of non-linear
anifolds have been proposed using Kernel Principal Component Anal-

sis (KPCA) (Scholkopf, Smola, & Muller, 1998) and AEs (Goodfellow,
engio, & Courville, 2016).

Hybrid OCC methods have also been proposed, for example, us-
ng a boundary-based OCC (e.g., SVDD) for pseudo-density one-class
3
classification (Lee & Lee, 2007) or combining boundary-based with
density-based OCCs (Hempstalk et al., 2008). OCCs have been extended
to EOCC (Khan & Madden, 2014; Perera et al., 2021; Seliya et al.,
2021) since the target class might not always be characterized well
by a single OCC (i.e., due to multi-modal data); this is analogous to
using ensembles of multi-class classifiers (Dietterich, 2000). To avoid
confusion, an EOCC used to solve a one-class classification problem will
be denoted as OC-EOCC while an EOCC used to solve an MCC problem,
which is the focus of this work, will be denoted as MC-EOCC. OCCs and
OC-EOCC have been primarily used for anomaly detection (Chandola
t al., 2009; Fernando, Gammulle, Denman, Sridharan, & Fookes, 2021;

Salehi et al., 2022), out-of-distribution detection (Chandola et al., 2009;
Salehi et al., 2022) and novelty detection (Pimentel, Clifton, Clifton,
 Tarassenko, 2014; Salehi et al., 2022). Krawczyk et al. (2015) have

investigated what type of MCC problems might be most appropriate to
solve using EOCC; this includes problems suffering from imbalanced
ata, overlapping distributions, and high number of classes. We review

below some representative MC-EOCC approaches.
An MC-EOCC can be designed using several different strategies:

i) assign the same type of OCC to all the classes (i.e., homogeneous
OCC), (ii) assign different types of OCC to some of the classes (i.e., het-
rogeneous EOCC), (iii) assign a homogeneous or heterogeneous EOCC
o each class instead of a single OCC (i.e., this will be an ensemble
f ensembles which will be denoted as EEOCC), and (v) use different
ggregation rules to combine the outputs of the classifiers. The diversity
f classifiers in an ensemble can be controlled in different ways, for
xample, by choosing different features, training data, architectures,
odels, etc. It should be noted that in the case of heterogeneous

nsembles, it is imperative to normalize the classifier outputs before
ggregating them (e.g., by converting their outputs to pseudo posterior
robabilities using softmax normalization (Hadjadji et al., 2017)). In

general, the outputs of the classifiers in an ensemble can be aggre-
gated using static (i.e., same aggregation scheme for all test data),
dynamic (i.e., adapting the aggregation scheme on the fly based on
the test data), or trained rules (i.e., learn the aggregation rule by
training a meta-classifier) (Duin, 2022; Kittler, Hatef, Duin, & Matas,
1998). The ‘‘max’’ and ‘‘min’’ rules are commonly used static rules for
density/boundary-based and reconstruction-based EOCC respectively.

Ban and Abe (2006) investigated building an MC-EOCC using SVDD
and KPCA for one-class classification. A separate classifier was trained
for each class and a minimum-distance aggregation rule was used to
combine the responses of the OCCs to decide the correct class for MCC.
Their MC-EOCC approach resulted in comparable performance to a
𝑂 𝑛𝑒 − 𝑣𝑠 − 𝑂 𝑛𝑒 multi-class classification approach (i.e., using binary
SVMs) on several benchmark datasets (most of them from the UCI
repository), containing between two and four classes. The authors con-
cluded that MC-EOCC could lead to better generalization performance
provided appropriate parameters are chosen. In Lee and Lee (2007),
 similar MC-EOCC framework was proposed using SVDD classifiers,

however, the responses of the classifiers were aggregated using the
ayes rule by treating them as pseudo-posterior probabilities that were
omputed by converting the SVDD outputs to pseudo-density estimates.

Their results showed comparable performance to six traditional multi-
class classifiers on a high number of both small and large-scale datasets.
In Hao, Chiang, and Lin (2009), an ensemble of CSCs using SVDD
classifiers was proposed where each SVDD classifier was trained using
a ‘‘One-vs-All’’ approach to improve the bounding hypersphere of each
class. Although the authors reported some performance improvements
n various datasets (half of them from the UCI repository) compared to
raditional multi-class classifiers, their approach violates the first EC re-
uirement. Garcia, de Sá, Poel, Carvalho, Mendes-Moreira, Cardoso, de

Carvalho, and Kok (2021) proposed an MC-EOCC approach for human
activity recognition using accelerometer data. Each human activity was
assigned to a separate class which was represented by a reconstruction-
based OCC based on AEs (i.e., each AE effectively learns to recognize
that activity only using the minimum reconstruction error). The same

A. Novotny et al.

c

w
a

i
c
n

b
a
h
t
c
c
c
u
b
o
a
a
h
e

i
c
o

w
a
e
w
d
t

n
p
r
a
c
p

a

d
(

d

i
f

p
v
c
w
t

Machine Learning with Applications 19 (2025) 100621
AE architecture was used for all classes. To demonstrate the efficiency
of EOCC in the context of this problem, they experimented with online
learning where the system learns incrementally during testing (i.e., only
a subset of AEs needs to be updated in this case). Moreover, they
experimented with changing the class structure of the problem by
ombining similar activities into a ‘‘super’’ activity which only required

combining the corresponding OCCs. Extensive experiments and com-
parisons using several benchmark datasets showed that their approach

as competitive with conventional methods while being more modular
nd robust to data from different users.

Several studies have considered improving the performance of MC-
EOCC methods by using MC-EEOCC. Krawczyk and Woźniak (2014)
ntroduced a homogeneous MC-EEOCC approach for classifying breast
ytological (i.e., biopsy) images into three categories: benign, malig-
ant, and fibroadenoma. Each class was represented by an ensemble

of SVDD classifiers trained on different sets of features to ensure good
diversity. Pruning was performed to remove redundant classifiers. Their
fusion scheme was customized for this problem based on input from
physicians. The authors evaluated their method on a relatively small
dataset reporting higher performance when compared with an ensem-
le of OC-SVM classifiers and an RF multi-class classifier. In a related
pplication, Zhang, Zhang, Coenen, Xiao, and Lu (2014) proposed a
omogeneous MC-EEOCC using KPCA classifiers trained on shape and
exture features extracted by different methods. The confidence of each
lass was computed by aggregating the classifiers associated with the
lass using a variant of the product rule (Kittler et al., 1998) and
hoosing the class with the highest confidence. Tests were performed
sing three medical datasets (one from the UCI repository), containing
etween two and three classes. Their method demonstrated better
r similar performance when compared with classifiers trained on
 single type of feature; no comparisons were performed with MCC
pproaches. Juszczak and Duin (2004) illustrated how to leverage a
omogeneous MC-EEOCC to handle missing data. In their approach,
ach class was represented by multiple Parzen classifiers (Duda et al.,

2000) where each classifier was trained with a different feature. Dur-
ng classification, only the available features were classified and the
onfidence of each class was computed by aggregating the responses
f the classifiers associated with that class using a fixed rule; the class

with the highest confidence was then chosen for the final classification.
Their method was tested using several datasets from the UCI repository
and was found to outperform a single classifier trained on all features
using traditional techniques to replace the missing features.

Hadjadji et al. (2017) introduced a heterogeneous MC-EEOCC along
ith a more powerful aggregation rule based on dynamic weighted
veraging. In their approach, each class was represented by five het-
rogeneous OCCs. During classification, the confidence of each class
as computed by weighting the classifiers associated with the class
ynamically. This was performed by calculating the weight assigned
o each classifier for each test sample specifically according to the

classifier’s maximum output during training. The test sample was then
assigned to the class with the highest confidence. Their results on
ine benchmark datasets (containing 2–100 classes), showed improved
erformance when compared to a KNN MCC. Interestingly, the authors
eported that aggregating a subset of the five OCCs is sufficient for
chieving the best performance for some datasets. Kang et al. (2015)
onsidered a heterogeneous MC-EEOCC approach, however, they em-
loyed a trained meta-classifier for aggregating the classifiers’ outputs

which violates the second EC requirement. Their results were only
compared to other MC-EEOC methods. Fragoso, Cavalcanti, Pinheiro,
nd Oliveira (2021) proposed an MC-EEOCC where the diversity of

each EOCC was controlled by dividing the feature space of each class
into different clusters and associating a separate OCC with each cluster.
Given an unknown instance, the confidence of each class was computed
by selecting a subset of the OCCs associated with that class using a
ynamic selection scheme. Each class was represented by four OCCs

two density-based, one distance-based, and one boundary-based).

4
Table 1
Properties of the datasets used for training and testing.

Size (px) Classes

Alzheimer’s 176 × 208 4

Corn

255 × 255

4
Strawberry 2
Potato 3
Apple 4
Tomato 10

Extensive experiments using 25 datasets showed improved performance
compared to other MC-EEOCC approaches; however, no comparisons
were performed with traditional MCC methods. A similar approach but
with different aggregation strategies has been reported in Krawczyk,
Wozniak, and Cyganek (2014) and Krawczyk, Galar, Woźniak, Bustince,
and Herrera (2018).

3. Datasets

This section reviews the image datasets used in our experiments. An
overview of the different datasets is presented in 1.

3.1. Plant village dataset

A subset of the Plant Village dataset (Hughes, Salathé, et al., 2015)
was selected in this study. The dataset consists of images of plant leaves
from 14 different plants, each with multiple different diseases, with
a total of 38 different classes. It comes in color, monochrome, and
segmented versions. We used the segmented version, as there were
some flaws in the non-segmented color version, which led to obvious
dependencies between the backgrounds and plant/disease types. In this
study, we chose the following five plant types which contain a total of
27 classes: Corn, Strawberry, Potato, Apple, and Tomato. Examples of
the different plants examined in this study can be seen in Fig. 1, and
examples of the different diseases for the Tomato plant can be seen in
Fig. 2.

Due to the hierarchical nature of this dataset, many different types
of classification experiments can be performed, such as classifying the
ifferent types of plants, the diseases of a specific plant, or between

diseases of different plants. This is an ideal example of a dataset for
which someone may want to change the class set structure under
examination — such as by adding or removing relevant plants and
diseases as the seasons change, or when there is a new outbreak. Also,
some prior benchmarks for this dataset lack rigorous results by way
of cross-validation, which provides us an opportunity to improve these
benchmarks (Atila, Uçar, Akyol, & Uçar, 2021). It should be noted that
nside a particular plant’s dataset, many of the classes share coarse
eatures — such as the shape and overall colors of the leaf. Where these

classes differ is in the fine features, such as small spots on the leaf,
which are more difficult to classify in general.

A list of all of the classes examined in this study and their sizes
can be found in Table 2. Note that the Potato and Tomato contain the
largest outliers in terms of sample size with the Healthy and Yellow Leaf
classes, respectively. Since these datasets contain such outliers, we will
focus on them when analyzing the effect of class imbalance on model
performance.

3.2. Alzheimer’s disease dataset

The Alzheimer’s dataset was selected in this study to evaluate the
erformance of the proposed models on complex medical images with
ery little training data (Dubey, 2019; Yakkundi, 2023). The dataset
onsists of single monochrome slices of a brain scan in patients with or
ithout Alzheimer’s. Examples of images from the different classes of

his dataset can be seen in Fig. 3, and a breakdown of sample size by
class can be found in Table 3. All images are resized to 256 × 256 using

A. Novotny et al. Machine Learning with Applications 19 (2025) 100621
Table 2
Class breakdown of all of the PlantVillage datasets examined in this study by sample size.

Dataset Classes & No. samples

Corn Cercospora Common Rust Healthy Northern Leaf Blight
513 1192 1162 985

Strawberry Healthy Leaf Scorch
456 1109

Potato Early Blight Healthy Late Blight
1000 152 1000

Apple Apple Scab Black Rot Cedar Apple Rust Healthy
630 621 275 1645

Tomato
Bacterial Spot Early Blight Healthy Late Blight Leaf Mold

2127 1000 1591 1909 952
Septoria Spot Spider Mites Target Spot Mosaic Virus Yellow Leaf Curl

1771 1676 1404 373 5357
Fig. 1. Examples of some of the different types of plants included in PlantVillage.
Fig. 2. Samples from each of the different classes in the Tomato subset of PlantVillage.
Table 3
Class breakdown of the Alzheimer’s dataset by sample size.

Class No. samples

Healthy 2560
Moderate 52
Mild 717
Very Mild 1792

bicubic interpolation for model compatibility. Note that the images of
this dataset are relatively more complex than the PlantVillage dataset
while having fewer samples outside the Healthy class. Similarly to the
single-plant datasets, the differences between classes here lie in the fine
features, rather than coarse ones.

4. Ensembles of one-class classifiers

Our work falls into the MC-EOCC category where each class is
represented by a single OCC. Each OCC accepts a sample (in our case,
5
an image) as input, and produces a ‘‘confidence score’’ which can be
used to determine how close (or how different) is the sample to the class
the model was trained on. To construct an ensemble of OCCs, we take
an input sample, pass it to all of the OCCs, record the scores, and use
a meta-classifier to determine the class from these scores. An overview
of this architecture is shown in Fig. 4. In this study, we use a simple
meta-classifier, satisfying the second EC requirement, which picks the
class associated with the classifier that produced the smallest score (or
largest, depending on the method). Some care must be taken, though, as
scores produced by some methods may have a different scale depending
on the class. For instance, more detailed classes will have more inherent
reconstruction errors associated with them than other classes. In this
case, the ensemble will be biased away from picking that class. Some
attempts were made to account for this, such as by using a meta-
classifier which standardizes all scores with their observed mean and
standard deviation on a validation set (e.g., subtracting the mean and
dividing by the standard deviation), however, we were not able to find
a simple method which consistently produced better results than simply

A. Novotny et al. Machine Learning with Applications 19 (2025) 100621
Fig. 3. Samples from each of the different classes in the Alzheimer’s dataset.
Fig. 4. An overview of the proposed MC-EOCC approach.
picking the lowest/highest score. However, more sophisticated methods
are possible at this stage (e.g., adaptive weighting) as described in the
previous section. Next, we review the PCA and AE OCCs; then, we
introduce the new OCCs based on GANs.

4.1. PCA OCC

PCA was used as an OCC in the seminal work of Turk and Pentland
(1991) in the context of face detection (i.e., decide whether an image
is a face or not). This is a binary classification problem which can
also be solved using an OCC by only modeling the face class. Using
PCA, all images in the face class are converted to feature vectors, and
their covariance matrix is computed. The eigenvectors of this matrix
are then sorted by decreasing eigenvalues, and only the ones corre-
sponding to the largest eigenvectors are kept (referred to as "principal
components"). Each of the principal components is associated with
a certain amount of information captured by that component which
is characterized by its corresponding eigenvalue. Therefore, the first
several principal components retain the largest amount of information
in the dataset and therefore have high reconstructive power. From a
geometric point of view, the principal components define a manifold
of lower dimensionality, called PCA space, which is embedded within
the original higher dimensional space. We refer to the dimensionality
of this manifold, which is determined by the number of principal
components, as the latent dimension.

An unknown image can be projected onto the PCA space and then
reconstructed back in the original space, which is used to calculate a
reconstruction error by taking the magnitude of the difference between
the original image and the reconstructed image (see Fig. 5). The further
an image is from the span of the principal components (referred to as
‘‘distance from face space’’ in Turk and Pentland (1991)), the larger
the reconstruction error. Therefore, the reconstruction error is a good
way to determine whether a given image is a face or not which can
6
Fig. 5. An illustration of the ‘‘face space’’ constructed by PCA, and where the
reconstruction error is obtained from. Principal Components labeled as ‘‘PC#’’.

be used for one-class face detection. The optimum number of principal
components to keep is usually determined by experimentation (e.g., us-
ing a validation set) and there is not necessarily a direct correlation
between overall reconstructive power and discriminative power, since
we cannot determine which principal components encode information
common among other classes without training on those classes.

4.2. AE OCC

An AE is a neural network which is designed to encode an input
into a compressed representation, and then decode it back such that
the reconstructed input is as close as possible to the original one. This
compressed representation is imposed by a bottleneck layer which in
essence defines the latent space where the data is projected; the number
of nodes in the bottleneck layer defines the latent dimension. The net-
work is trained in an unsupervised way to minimize the reconstruction
error. An AE can be thought of as a generalization of the PCA approach
which can find a non-linear manifold assuming non-linear activation
functions. Many different types of AEs have been proposed including
sparse auto-encoders (SAE), denoising auto-encoders (DAE), variational

A. Novotny et al. Machine Learning with Applications 19 (2025) 100621
Fig. 6. A visual representation of the proposed AE architecture.
auto-encoders (VAE), and adversarial auto-encoders (AAE) (Goodfellow
et al., 2016) with important applications in many different areas in-
cluding one-class classification and anomaly detection. In this work,
we have experimented with deep convolutional AEs.

A visual representation of the AE architecture we have adopted
in this study, after some experimentation which was by no means
exhaustive, is shown in Fig. 6. The encoder half of the AE architecture
is made up of 4 down-sampling blocks. Each down-sampling block
consists of a 5 × 5 convolutional layer with a stride of 2, an activation
layer of Leaky ReLU, and a batch normalization layer to improve
training (Ioffe & Szegedy, 2015; Maas, Hannun, Ng, et al., 2013). The
first down-sampling block has 16 convolution filters, and each block
doubles the number of filters, therefore reducing the number of features
after each block by half. Convolutional stride was chosen over pooling
by validation results. After the down-sampling blocks, the features are
flattened, and two dense layers with Leaky ReLU activation follow. The
last dense layer has an output the size of the latent dimension (512),
while the previous one has the average size between the output of the
down-sampling blocks and the latent dimension.

The decoder half of the AE architecture is much the same but in
reverse. It begins with 2 dense layers with an output of the same
number of features as the down-sampling blocks, which are followed
by 4 up-sampling blocks. Each up-sampling block consists of a 5 × 5
transpose convolution layer with a stride of 2, an activation layer of
Leaky ReLU, and a batch normalization layer (Long, Shelhamer, &
Darrell, 2015). The first up-sampling block has as many convolutional
filters as the last down-sampling blocks, and each up-sampling block
halves this, doubling the number of features after each block. There
are two more convolutional layers with no stride, Leaky ReLU, and the
same number of convolution filters after the up-sampling blocks, and a
final convolutional layer with no stride, no activation function, and 3
filters to produce the final resulting image.

An image can be fed into the encoder half of the AE, which will
learn to eliminate dependencies between features in the original image
and produce a compressed latent representation of the image. This
latent representation can then be fed to the decoder half of the AE,
which will learn to re-introduce these dependencies and reproduce the
original image. Then, the magnitude of the difference between these
two images can be construed as a reconstruction error, similar to PCA,
and can be used as a confidence score for one-class classification. The
smaller the latent dimension, the more dependencies these pieces will
have to learn to remove and re-introduce, and the worse the overall
reconstruction. A latent dimension which is too large will train into an
identity function, reconstructing images from outside the class perfectly
and losing its discriminatory ability, while a latent dimension which is
too small will fail to capture fine details, where much of the differences
between classes lie. Unlike PCA, there is no ordering of latent variables
by ‘‘importance’’ - it is unclear which latent variables contribute more
significantly to reconstruction than others, and with current losses used
to train AE, there is no way to specify such an ordering. Moreover, the
loss functions used to train AE typically employ a global reconstruction

error (such as in Mean Absolute Error (MAE) or Root Mean Squared

7
Error (RMSE)), which encourages the picked latent variables to encode
information about coarse features, since they contribute to more pixels.
However, classes with similar coarse features that differ only in fine
features (such as with the datasets examined in this study) are more
difficult to classify. Similarly to PCA, there is no way to tell which
latent variables encode information that is common between classes,
and no way to train such a model without having access to other classes’
training data.

Attempts to increase the depth of the AE to improve performance,
either by increasing the number of up/down sampling blocks or by
including more convolutional layers per block as in the U-Net archi-
tecture (Goodfellow et al., 2016), were met with difficulties in training
the model (Ronneberger, Fischer, & Brox, 2015). It seems like this
was due to the very problem that U-Net sought to solve — vanishing
gradients. The way U-Net and many other deep networks solve this
problem (skip connections) does not necessarily fit our use case — the
variables ‘‘skipping’’ across the bottleneck of the AE are actually part
of the latent dimension, and therefore we must either greatly enlarge
the latent dimension or reduce the capacity of each skip connection.

4.3. GAN inversion OCC

To address the shortcomings of deep AEs, we considered a GAN-
based approach (Goodfellow et al., 2016). A GAN is a generative deep
neural network that learns how to generate new data that resemble the
training data by drawing samples from the distribution of the training
data without explicitly modeling it. GANs consist of two separate neural
networks, the generator, and the discriminator, which are trained to
compete against each other. The generator tries to produce fake data
to trick the discriminator, while the discriminator tries to distinguish
fake data from real data, forcing the generator to produce more re-
alistic data. From an implementation point of view, the generator is
implemented as a decoder since it learns to generate images by drawing
samples from a latent space while the discriminator is implemented as
a binary classifier.

The main idea of our approach is to design deep AEs using GANs
since several techniques are available to train GANs at significant
depth, such as progressive growing (Karras, Aila, Laine, & Lehtinen,
2017). Specifically, we first train the decoder part of the AE as the
generator of the GAN; then, we train the encoder part of the AE
separately using a GAN inversion approach to map images to the latent
space variables used to generate them (Creswell & Bharath, 2019; Xia
et al., 2022; Zhu, Krähenbühl, Shechtman, & Efros, 2016). Among the
different GAN architectures available, we opted for StyleGAN since it
uses skip connections from the latent variables to each up-sampling
block, rather than skip connections that go across the bottleneck layer
like in U-Net (Karras, Laine, & Aila, 2019). These skip connections
help training stability as well as enforcing relationships between cer-
tain ‘‘styles’’ (as the latent variables are referred to) and coarse/fine
features of the resulting images. In this way, some amount of control
over specifically coarse or specifically fine features can be exerted
by altering the styles differently for the different skip connections.

A. Novotny et al. Machine Learning with Applications 19 (2025) 100621
Fig. 7. A visual representation of the proposed inversion network.
The StyleGAN 2 architecture was chosen due to these benefits, and
in addition, the increase in inversion performance afforded by the
second version, while the texture sticking issue fixed by version 3 of
the architecture is unneeded (Karras et al., 2020). We refer to this
technique as StyleGAN-I.

To implement the inversion network approach, we used the feature
extractor part of the StyleGAN classifier, as suggested by Epstein, Park,
Zhang, Shechtman, and Efros (2022). The feature extractor consists
of several discriminator blocks, which are composed of two 3 × 3
convolution layers followed by a 2× bilinear down-sampling layer. A
residual skip connection is added from the beginning of the block to the
end, which consists of a single down-sampling operation and a 1 × 1
convolution. Like the encoder part of the AE architecture described in
Section 4.2, the resolution is halved in each block, while the number
of convolution filters doubles. Due to the inclusion of residual skip
connections, there are enough of these blocks to reduce the resolution
of the feature maps to 4 × 4 (7 blocks for the 256 × 256 images
examined in this study) before a flattening and dense layer is used to
map the feature maps to the latent variables (512). The dimensionality
of the latent space (512) was kept the same as in the AE model for a fair
comparison. The training process of StyleGAN-I includes the following
steps:

1. For each class, train a generator which produces synthetic data
from a latent representation (noise).

2. For each generator, train an inversion network to ‘‘invert’’ an
image back to its latent representation,

3. Use the inversion network as an encoder and the generator as a
decoder, and continue as in the AE approach (see Fig. 7).

To improve classification results using the inverted StyleGAN, a
‘‘jitter’’ technique was used to emphasize differences in fine features
between classes; we refer to this technique as StyleGAN-IJ. Inspired by
the sampling process of VAEs (Goodfellow et al., 2016), we introduce
some Gaussian noise to the latent variables produced by the inversion
network before reconstructing with the StyleGAN generator (Kingma
& Welling, 2013). The Gaussian noise is typically introduced to the
latent variables at certain resolutions in the up-sampling process of the
generator, to emphasize features at specific granularities. Since we have
had problems with mean reconstruction error losses over-emphasizing
coarse features, the Gaussian noise is only introduced in the final two
up-sampling blocks, where fine features are constructed. We sample
the noise and reconstruct it multiple times, performing classification
with reconstruction loss each time, and then use these as votes. The
final classifier picks the class with the most votes over this resampling
process. The StyleGAN-IJ methodology is summarized below:

• Before decoding, introduce Gaussian noise to the latent represen-
tation.
8
• Use noisy latent representation for only the fine features (last
layers in the generator).

• Using noise resampling, re-evaluate the output of the network
several times, and cast a vote each time.

4.4. GAN discriminator OCC

While training a GAN, a fair amount of work is put into training both
the generator and discriminator; however, after training, the discrim-
inator is typically discarded and only the generator is used, as in the
inversion network approach described above. Here, we are interested
in investigating the possibility of directly using the discriminator for
one-class classification. The motivation comes from the fact that since
the discriminator is trained to differentiate between real and fake
images associated with the input distribution, it might be possible that
images from another class will be classified as fake by the discriminator.
Therefore, we can perform one-class classification by feeding images
to the discriminator obtained at the end of the training process and
thresholding the output scores. However, as can be seen in Fig. 8, a
reasonable discriminator can eventually outpace the generator in the
adversarial game. It does this by paying attention to minute differences
in real and generated images introduced by the generator which might
not even be visible to the human eye and are unlikely to be present
in images from other classes. Therefore, real images from other classes
might have similar scores to real images from the target class which
can also be observed in Fig. 9. We have investigated two variants to
address this issue.

The first variant considers discriminators from across the training
process instead of the final discriminator. The motivation is that if an
image from another class is evaluated by discriminators from across the
training process, its scores will vary wildly until becoming more consis-
tent as the training process goes on; this as can be seen in Fig. 10. Under
this scenario, we can compute the variance of the discriminator score
across all discriminators saved from training to estimate the confidence
score for each class. We refer to this variant as ‘‘discriminator history’’
(StyleGAN-DH). The StyleGAN-DH methodology is summarized below:

• Save discriminators with some periodicity while training Style-
GAN.

• Evaluate a test image on all of these discriminators and calculate
the variance of the scores obtained.

• Use the variance as a confidence score.
Another way to avoid the above issue is to ensure that all images

seen by the discriminator are fake. This can be done by using the
inversion network described in Section 4.3 to reconstruct all images
before showing them to the discriminator. In this way, all images will
have the defects introduced by the generator that the discriminator has
learned, and the only difference in scores will be from the difference in

A. Novotny et al. Machine Learning with Applications 19 (2025) 100621
Fig. 8. StyleGAN discriminator scores of real and fake images over training time for the ‘‘Tomato healthy’’ class. Scores are captured as a moving average, with standard deviation
shown in shaded regions.
Fig. 9. Histogram of discriminator scores of images from a variety of classes. The discriminator was trained on the ‘‘Tomato’’ plant.
Fig. 10. Mean discriminator scores of Corn plant images evaluated on all discriminators trained on Tomato plant images. Standard deviation is shown in shaded regions.
classes. The discriminator score can be used as a class confidence score
although inverted (i.e., the meta-classifier needs to choose the maxi-
mum score). We refer to this variant as StyleGAN-ID. The StyleGAN-ID
methodology is summarized below:

• Apply inversion network to a test image.
• Reconstruct image with generator.

• Apply discriminator, use discriminator score as confidence score. a

9
5. Results and discussion

5.1. Training

To obtain more rigorous results than previous works with the
PlantVillage dataset, a 68%-17%–15% training–validation-test split was
used across all datasets. First, the test set was split off of every dataset
nd kept separate. Then the remaining data was split into 5 equal

A. Novotny et al.

o

S
f
b

t

c
a
o
&

B
a
R

r
i
t
t
o
o

S
𝛽
w
a

2
t
t
i
o
𝜀
n
u
a
n
t
o
𝜀
w
e
𝜎

t
o
e
a
o
t
t
w
e
t
j
i
t
w
d

c
i

Machine Learning with Applications 19 (2025) 100621
Table 4
Mean total training time (i.e., average over 5-fold cross validation) of traditional MCCs
n the tomato subset in hours.
VGG-19 Resnet-50 EfficientNet B3 EfficientNet B5

11.38 6.27 10.15 10.47

17% parts for 5-fold cross-validation, with each 17% part being the
validation set in one fold, with the rest of the data left for training. The
tyleGAN models were developed and trained using the Pytorch Python
ramework due to the original work being done using that framework,
ut the rest of the models were trained using the Tensorflow Python

framework (Abadi et al., 2015; Paszke et al., 2019). All models were
rained on an Nvidia RTX 3090 GPU with 24 GB of VRAM.

For the PlantVillage datasets, an augmentation layer was applied to
all models before input, which included random horizontal and vertical
flips, random 90-degree interval rotations, random translations up to
5% of image size, and random zoom up to ±5% of image size. These
augmentations were not used for the Alzheimer’s dataset, due to non-
symmetry and registration of images. All images were standardized to
[−1, 1] for training stability.

For benchmarking, several traditional classifier architectures were
hosen for comparison. These architectures were VGG-19, Resnet-50,
nd EfficientNet, which are all well-known architectures in the field
f multi-class classification (He, Zhang, Ren, & Sun, 2016; Simonyan
 Zisserman, 2014; Tan & Le, 2019). EfficientNet has also some prior

work in the PlantVillage dataset (Atila et al., 2021). EfficientNet B3 and
5 were chosen to demonstrate the differences between EfficientNet
rchitectures and because of the similar number of parameters to
esnet-50. Each traditional classifier was trained on each fold for 120

epochs with categorical cross-entropy loss and an Adam optimizer with
initial parameters of 𝛼 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜀 = 1 ×
10−7 (Kingma & Ba, 2014). Training data was batched with a batch
size of 20. After each training epoch, model accuracy evaluated on the
validation set for the fold was recorded. This validation accuracy was
used for reducing the learning rate after plateauing: if the validation
accuracy does not improve after 10 epochs, then the Adam learning
ate is multiplied by 0.1 until a minimum learning rate of 1 × 10−8
s achieved (You, Long, Wang, & Jordan, 2019). After 120 epochs,
he epoch with the highest validation accuracy is selected as the final
rained model for the fold. Training times for traditional classifiers
n the tomato dataset are shown in Table 4. Note that the number
f parameters and depth of these models are largely unrelated to the

number of classes, and training is done in number of epochs, so the
total training time is linear in the amount of training data.

PCA models were trained by extracting the principal components
from the training data and retaining only a certain number of them
(referred to as the latent dimension). Through testing, it was found
that this latent dimension could bias the EOCC toward classes with a
higher latent dimension. In particular, it was found that discriminative
performance suffered if different classes were represented by a different
number of principal components or if the chosen principal components
differed too much in the amount of information they captured. There-
fore, the latent dimension was kept the same between classes. The
validation set was used to perform an exhaustive search for the best
latent dimension.

The AE models were trained on each class for 120 epochs with MAE
loss and an Adam optimizer with initial parameters of 𝛼 = 0.001, 𝛽1 =
0.9, 𝛽2 = 0.999, and 𝜀 = 1 × 10−7 (Willmott & Matsuura, 2005). Training
data was batched with a batch size of 20. Learning rate plateauing was
used as described above.

A StyleGAN was trained on each class for 800 kimgs with 𝛾 = 1 and
tyleGAN 2 loss, with an Adam optimizer with parameters of 𝛼 = 0.001,
1 = 0, 𝛽2 = 0.99, and 𝜀 = 1 × 10−8. Training data was batched
ith a batch size of 32, which did not fit in the 24 GB of VRAM
vailable, so gradient accumulation was used with individual batches
10
Table 5
Mean total training time (i.e., average over 5-fold cross validation) of OCCs on the
tomato subset in hours.

AE StyleGAN Inversion network

2.25 8.79 2.39

of size 8. Progressive growing is used to avoid mode collapse and
segment ‘‘styles’’ (latent variables) among coarse and fine features - a
key advantage of StyleGAN. After each StyleGAN has finished training,
the final generator and discriminators from across training after every
0 kimgs were kept for use in models. Then, this generator was used
o generate 1200 synthetic images, which were used together with
he saved latent variables (styles) used to generate them to train an
nversion network with MAE loss against the latent variables; an Adam
ptimizer with initial parameters of 𝛼 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, and
= 1 × 10−7; and learning rate plateauing. In this way, the inversion

etwork learns to ‘‘invert’’ synthetic images back to the latent variables
sed to produce them. This training step was continued for 20 epochs,
fter which an AE was constructed with the output from the inversion
etwork fed into the inputs for the generator. This AE is trained on real
raining images from each fold for 100 epochs with MAE loss; an Adam
ptimizer with initial parameters of 𝛼 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, and
= 1 × 10−7; and learning rate plateauing. After the inversion network
as trained, then the validation set was used for model fine-tuning. An
xhaustive search was used for jitter parameters — choosing 𝜇 = 0 and
∈ {0.01, 0.1, 0.5, 1, 5}.

Training times for the AEs and StyleGANs on the Tomato dataset
can be found in Table 5. Note that inversion network training time is in
addition to the StyleGAN training time. Due to the way the StyleGAN is
trained (in # of kimgs rather than epochs), the training time is invariant
to the size of the dataset, but a separate StyleGAN must be trained for
each class, so total training time is linear in the number of classes in the
dataset. For the AE and inversion network, however, training is done
in epochs, so training time is linear in the amount of training data in
the dataset.

5.1.1. Modifying class structure
To compare the flexibility of EOCC to that of traditional classifiers,

we examined how these models perform when some amount of the
raining and test sets have been slightly modified — such as by adding
r removing a class from the set under consideration. How to train
nsembles in such a scenario is very straightforward — simply remove
ny OCC from the ensemble that corresponds to any removed classes,
r train any additional classifiers for additional classes and add them
o the ensemble, then leave the rest of the classifiers untouched. For
he class classifiers, however, there are many different approaches each
ith their own tradeoffs. The best option for performance would be to

ntirely retrain the model from scratch with the new set of classes, but
his would involve using little to no work already done and will take
ust as long to retrain as it took to train in the first place. Another option
s to freeze the feature extractor (where a bulk of the parameters of
hese models belong) and retrain just the classifying head of the model,
hich has shown to be an effective way of ‘‘transfer learning’’ from one
ataset to another (Zhu et al., 2011).

To observe the differences in these approaches, every traditional
lassifier model was retrained after its initial training described above
nto an additional model. The ‘‘feature extraction’’ blocks of the models

are frozen — not to be retrained, and the fully-connected classification
head was reset with randomized weights and retrained using the new
altered training and validation sets for the same number of epochs as
the original models, then the best-performing model on the validation
set was selected as the final, altered model.

A. Novotny et al. Machine Learning with Applications 19 (2025) 100621
Fig. 11. Some examples of synthetic Alzheimer’s images generated by StyleGAN for each class.
Fig. 12. Some examples of synthetic Tomato images generated by StyleGAN for each class.
5.1.2. Synthetic dataset augmentation
As an additional side effect to training GANs for each of the classes

as a single class classifier, these GANs can also produce synthetic data
that can be used to augment the original training data. It is well
known that doing so can greatly increase model performance, especially
in the cases of low or imbalanced data, as is common with medical
data (Bowles et al., 2018; Frid-Adar, Klang, Amitai, Goldberger, &
Greenspan, 2018; Wu, Wu, Cox, & Lotter, 2018). To take advantage
of this, each PCA and AE classifier was trained with synthetic data
generated by the trained StyleGANs. Synthetic data was incorporated
into the training set for these classes at 4 different ratios of the original
training set — 25%, 50%, 75%, and 100% to compare how the amount
of synthetic data v.s. original data affects the performance of the resul-
tant model depending on the dataset. Otherwise, the training of these
augmented models is identical to what is described above. Examples
of synthetic data can be seen in Figs. 11 and 12. It should be noted
that since the way GANs are typically trained involves incorporating
synthetic data generated by that very GAN (as ‘‘false’’ data that the
discriminator must classify), using GAN-generated synthetic images to
manually augment the training set of another GAN does not necessarily
make sense, and would degrade the performance of GANs trained this
way. Therefore, the only methods examined with synthetic dataset
augmentation were PCA and AEs.

5.2. Testing

All models were evaluated using classification accuracy and are re-
ported as the mean classification accuracy and standard deviation over
all 5 training folds. For comparison, results for traditional classifiers
can be found in Table 6 for all training sets. In general, EfficientNet B5
performs the best, in line with other prior works on the PlantVillage
dataset, while VGG-19 and Resnet-50 fail to pick any class other than
11
Table 6
Multi-class classification performance using traditional deep classifiers on several sets
of data. Mean test accuracy ± standard deviation across 5 folds. Best performing model
for each set is highlighted in bold.

VGG-19 Resnet-50 EfficientNet B3 EfficientNet B5

Alzheimer’s .5004 ± .0000 .5004 ± .0000 .5523 ± .0433 .𝟓𝟖𝟐𝟎 ± .𝟎𝟐𝟏𝟔
Corn .8730 ± .0249 .4880 ± .0890 .9200 ± .0154 .𝟗𝟑𝟎𝟎 ± .𝟎𝟏𝟗𝟓
Strawberry .7094 ± .0000 .7094 ± .0000 .𝟖𝟒𝟖𝟕 ± .𝟏𝟖𝟑𝟏 .5761 ± .3444
Potato .4658 ± .0000 .5006 ± .0706 .9540 ± .0117 .𝟗𝟓𝟒𝟕 ± .𝟎𝟏𝟔𝟎
Apple .8439 ± .0193 .𝟗𝟗𝟏𝟏 ± .𝟎𝟎𝟕𝟐 .9228 ± .0252 .9148 ± .0226
Tomato .9180 ± .0107 .9711 ± .0032 .9759 ± .0034 .𝟗𝟕𝟔𝟒 ± .𝟎𝟎𝟑𝟑

the most numerous on some of the sets (as evidenced by the 0.0000
standard deviation and can be seen in Fig. 13). Due to the way these
models are trained, this is practically the minimum accuracy for these
traditional classifiers.

Confusion matrices for test results with some select classifiers and
datasets can be found in Fig. 14. The chosen datasets (Alzheimers and
Potato) contain a class with very few samples compared to some other
classes (class 1 in both cases - 1% and 6% of the total samples), and
therefore the classifiers are biased toward not choosing those classes
due to prior probabilities. This can be observed as the relatively dark
second column in each of the confusion matrices.

Ensemble model results can be found in Table 7. StyleGAN-IJ per-
forms best overall, sometimes not outperforming the normal inverted
StyleGAN, which otherwise outperforms the other OCCs. StyleGAN-
DH is not able to outperform the standard AE, while the StyleGAN-ID
was able to outperform the standard AE, although never outperform-
ing the standard StyleGAN-I classifiers. None of the ensembles were
able to match the performance of either of the EfficientNet models
in any dataset, although several models were able to beat VGG-19
and Resnet-50 performance in some of the classes. It is worth noting

A. Novotny et al. Machine Learning with Applications 19 (2025) 100621
Fig. 13. Confusion matrices of test results of Resnet-50 on datasets where the model could only choose the most common class.
Fig. 14. Confusion matrices of test results of traditional classifiers on datasets containing classes with few training samples. The top row represents results from the Alzheimer’s
dataset, while the bottom is results from the Potato dataset. Classifiers are from left to right: Resnet-50, EfficientNet B3, and EfficientNet B5.
Table 7
Multi-class classification performance using ensembles of single-class classifiers. Mean test accuracy ± standard deviation across 5 folds. Best
performing model for each set is highlighted in bold.

PCA AE StyleGAN-I. StyleGAN-IJ SyleGAN-DH StyleGAN-ID

Alzheimer’s .4746 ± .0415 .4973 ± .0375 .𝟓𝟔𝟒𝟎 ± .𝟎𝟐𝟖𝟗 .5480 ± .0317 .4558 ± .0421 .5152 ± .0317
Corn .7565 ± .0368 .7270 ± .0271 .𝟖𝟔𝟗𝟔 ± .𝟎𝟑𝟏𝟐 .8409 ± .0304 .7704 ± .0217 .7948 ± .0275
Strawberry .6154 ± .1712 .6966 ± .0943 .7350 ± .1287 .𝟕𝟔𝟓𝟎 ± .𝟎𝟖𝟒𝟐 .5726 ± .1735 .6752 ± .1158
Potato .7671 ± .0315 .7547 ± .0214 .8230 ± .0301 .𝟖𝟔𝟑𝟒 ± .𝟎𝟐𝟕𝟔 .6801 ± .0223 .7578 ± .0251
Apple .7523 ± .0381 .7684 ± .0318 .8346 ± .0271 .𝟖𝟕𝟔𝟖 ± .𝟎𝟑𝟎𝟗 .7270 ± .0395 .8127 ± .0294
Tomato .7499 ± .0257 .7712 ± .0138 .8117 ± .0184 .𝟖𝟒𝟖𝟖 ± .𝟎𝟏𝟕𝟗 .7348 ± .0241 .8168 ± .0239
that some models perform worse than the minimum accuracy for
the traditional classifiers mentioned above (this can be seen in the
Alzheimer’s dataset), since the way these ensembles are trained does
not generally offer the ability to only pick a single class, regardless
of how numerous that class is. Therefore, for very imbalanced data, it
may be worth incorporating some measure of prior probability into the
ensemble decision process to increase the effective minimum accuracy
of such models.

Confusion matrices for test results with select ensembles and the
same datasets as above can be found in Fig. 15. Note that since prior
probabilities have less of an effect on these models as traditional
classifiers — their minimum performance suffers, but they are not
12
as biased as traditional classifiers when classifying classes with few
samples. This can be seen from the lighter second columns in these
confusion matrices.

5.2.1. Modifying class structure
Table 8 shows the change in model accuracy after some number of

classes have been removed from the test set, and none of the models
have been retrained. Instead, the output nodes corresponding to the
removed classes in the traditional classifiers have simply been dropped
before the last softplus activation — meaning if the classifier would
have previously classified a given image as a removed class, it would
instead choose the next most likely class. This means no additional

A. Novotny et al. Machine Learning with Applications 19 (2025) 100621
Fig. 15. Confusion matrices of test results of single-class ensembles on datasets containing classes with few training samples. The top row represents results from the Alzheimer’s
dataset, while the bottom is results from the Potato dataset. Classifiers are from left to right: AE and StyleGAN-IJ.
Table 8
Change in mean model performance over 5 folds when some number of classes have been removed from each set, and the traditional classifiers
have not been retrained. In parentheses is the amount the removed classes contributed to the training set. Most improved model is highlighted
in bold.

Traditional Ensembles

classes (% VGG-19 Resnet Efficient- Efficient- PCA AE StyleGAN-IJ
data) removed −50 Net B3 Net B5

Alzheimer’s 1 (13.99%) +.0814 +.0814 +.0657 +.0482 +.0738 +.𝟎𝟗𝟕𝟎 +.0837
Corn 1 (25.56%) −.0561 +.0513 −.0529 −.0478 +.0412 +.0574 +.𝟎𝟔𝟎𝟑
Tomato 4 (40.75%) −.0863 −.0951 −.0835 −.0717 +.0583 +.0690 +.𝟎𝟕𝟐𝟓
Table 9
Change in mean model performance over 5 folds when some number of classes have been removed from each set, and only the classifying
heads of the traditional classifiers have been retrained. The most improved model is highlighted in bold.

Traditional Ensembles

classes (% VGG-19 Resnet Efficient- Efficient- PCA AE StyleGAN-IJ
data) removed −50 Net B3 Net B5

Alzheimer’s 1 (13.99%) +.0814 +.0814 +.0752 +.0614 +.0738 +.𝟎𝟗𝟕𝟎 +.0837
Corn 1 (25.56%) −.0218 −.0172 +.0147 +.0219 +.0412 +.0574 +.𝟎𝟔𝟎𝟑
Tomato 4 (40.75%) −.0106 −.0274 −.0302 −.0253 +.0583 +.0690 +.𝟎𝟕𝟐𝟓
time has been spent modifying any of the models after initial training.
Due to results found in Table 7 above, a few representative models
and datasets have been chosen to be tested. As can be seen, traditional
classifiers generally suffer performance from taking this action, while
the ensembles improve their performance. The improved performance
from StyleGAN-IJ allows it to perform better than all other models
in some classes, which demonstrates the flexibility of the ensemble
methods.

Similar changes in model accuracy can be found in Table 9, where
the traditional classifiers have had their classifying heads retrained, as
detailed in Section 5.1.

5.2.2. Synthetic dataset augmentation
Improvements in performance to EOCC due to synthetic dataset

augmentation can be found in Table 10. Note that no StyleGAN-
based models are included, due to the way GANs are trained already
including synthetic data. In general, including 75% of real training data
as additional synthetic training data performs the best, except in the
13
Alzheimer’s dataset. This is likely due to the relative complexity of this
dataset compared to the PlantVillage dataset and the lack of training
data in some of the classes.

6. Conclusions and future work

This study addressed the problem of implementing MCC using
EOCC. In this context, we introduced several new OCCs and demon-
strated several benefits of EOCC besides classification accuracy. Tradi-
tional classifiers, including VGG-19, ResNet-50, and EfficientNet, were
trained and compared with EOCC using PCA and AE OCCs, as described
in previous research. Additionally, we introduced several GAN-based
OCCs utilizing StyleGAN. Following the training of the StyleGAN gen-
erator, high-quality synthetic images of a class were generated. An
inversion network was then trained to invert these images into their
latent representations, which were subsequently used for image gen-
eration. This process enabled the training of deeper AEs, facilitating
the development of more sophisticated networks. Using reconstruction

A. Novotny et al.

i
f
c

m
d
w
t

t
c

c
a

o
w

s
i
t
t
o
F
s

i

s

f
e
h

Machine Learning with Applications 19 (2025) 100621
Table 10
Change in mean ensemble model performance over 5 folds when trained on different amounts of extra synthetic data generated by StyleGAN.
Most improvement is highlighted in bold.

PCA AE

25% 50% 75% 100% 25% 50% 75% 100%

Alzheimer’s +.0111 +.𝟎𝟏𝟓𝟔 −.0083 −.0214 +.0119 +.𝟎𝟑𝟕𝟓 +.0139 −.0161
Corn +.0292 +.0435 +.𝟎𝟓𝟎𝟖 +.0358 +.0399 +.0497 +.𝟎𝟔𝟎𝟗 +.0372
Strawberry +.0282 +.0316 +.𝟎𝟑𝟓𝟎 +.0128 +.0265 +.0308 +.𝟎𝟒𝟏𝟎 +.0214
Potato +.0143 +.0317 +.𝟎𝟒𝟐𝟗 +.0230 +.0335 +.0422 +.𝟎𝟒𝟕𝟐 +.0360
Apple +.0283 +.0350 +.𝟎𝟒𝟏𝟎 +.0156 +.0376 +.0367 +.𝟎𝟒𝟑𝟗 +.0190
Tomato +.0238 +.0258 +.0279 +.𝟎𝟒𝟕𝟖 +.0277 +.0320 +.0310 +.𝟎𝟓𝟐𝟎
W
D
C
N
b

A

error as a metric for class confidence in this way improves upon the
accuracy in previous models. Furthermore, introducing Gaussian noise
nto the latent representations during the generation stage, where fine
eatures are created and noise is resampled multiple times to form a
onsensus vote, further enhanced classification accuracy.

We demonstrated that the discriminator network of GANs could
also serve as an OCC. In one approach, discriminators were saved at
set intervals during training, and an image was evaluated using all
of them. The standard deviation of the scores obtained provided a

etric for class confidence. However, an EOCC employing this method
id not outperform earlier approaches. In another approach, images
ere passed through the inversion network before being evaluated by

he discriminator. The discriminator’s output score served as a class
confidence metric. While this EOCC variant outperformed previous
methods, it did not surpass the performance achieved using inversion
networks with reconstruction loss alone.

Our study also showcased the flexibility of EOCC compared to tradi-
ional classifiers, particularly in scenarios involving minimally altered
lass sets, such as adding or removing classes. Furthermore, we demon-

strated that StyleGAN-based approaches could enhance the classifica-
tion performance of other models through synthetic data augmentation.
Finally, we improved the rigor of benchmarks on the PlantVillage
dataset by introducing 5-fold cross-validation, ensuring more robust
evaluation metrics. While many of the methods discussed in this study
urrently fall short of traditional classification techniques in terms of
ccuracy, the gap is steadily narrowing. With the development of more

sophisticated approaches, it is becoming increasingly feasible to match
r even surpass the performance of traditional classification methods,
hile also offering greater model flexibility. This progress opens several

promising avenues for future research.
First, the potential of diffusion models to function as single-class

classifiers, similar to the role GANs have played, warrants explo-
ration (Ho, Jain, & Abbeel, 2020). Recent advancements in diffu-
sion models have made them more robust, leading to their adoption
in image generation and anomaly detection tasks (Wolleb, Bieder,
Sandkühler, & Cattin, 2022). Incorporating diffusion models could
ignificantly enhance the accuracy of the GAN-based models discussed
n this study. Their inherent noise-adding mechanism, which is central
o their architecture, aligns well with techniques previously employed
o improve GAN classification performance. Beyond diffusion models,
ptimizing the latent space of OCCs is another promising direction.
or example, combining AE with discriminator networks has been
hown to produce more compact and informative latent spaces (Akcay,

Atapour-Abarghouei, & Breckon, 2018; Sabokrou, Khalooei, Fathy, &
Adeli, 2018). Exploring these methods further could yield significant
mprovements.

Second, alternative loss functions and reconstruction error metrics
could be investigated. Metrics like MAE and RMSE tend to empha-
ize coarse image features over fine details, as larger pixel varia-

tions dominate the overall error calculation. However, fine-grained
features often hold critical classification power, especially in many
datasets. Using localized reconstruction error metrics to prioritize fine
eatures could substantially enhance classification performance. Third,
mploying an MC-EEOCC approach with ensembles of homogeneous or
eterogeneous OCCs could potentially achieve superior results. Lastly,
14
methods for normalizing confidence scores across classes deserve atten-
tion. Without such normalization, classifiers may exhibit biases toward
classes with inherently higher confidence scores, leading to skewed
predictions. Addressing this issue could further improve the fairness
and accuracy of classification models.

CRediT authorship contribution statement

Alexander Novotny: Contributed to the main ideas, Validation,
riting – original draft. George Bebis: Conceptualization, Supervision,
esigned experiments, Writing – review & editing. Alireza Tavakkoli:
ontributed to the main ideas, Supervision, Provided feedback . Mircea
icolescu: Contributed to the main ideas, Supervision, Provided feed-
ack.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work was supported by the National Institute of Food and
griculture/USDA, USA, Award No. 2020-67021-30754.

Data availability

Data will be made available on request.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. URL: https:
//www.tensorflow.org/. Software available from tensorflow.org.

Akcay, S., Atapour-Abarghouei, A., & Breckon, T. P. (2018). GANomaly: Semi-
supervised anomaly detection via adversarial training. In LNCS: Vol. 11363, Asian
conference on computer vision.

Atila, Ü., Uçar, M., Akyol, K., & Uçar, E. (2021). Plant leaf disease classification using
EfficientNet deep learning model. Ecological Informatics, 61, Article 101182.

Baggenstoss, P. (2004). Class-specific classifier: Avoiding the curse of dimensionality.
IEEE Aerospace and Electronic Systems Magazine, 19(1), 37–52.

Ban, T., & Abe, S. (2006). Implementing multi-class classifiers by one-class classification
methods. In IEEE international joint conference on neural network proceedings (pp.
327–332).

Blake, C., & Merz, C. (1998). UCI repository of machine learning databases. Irvine, CA
(Online): Dept Inform Comput Sci, Univ California, http://kdd.ics.uci.edu/.

Bowles, C., Chen, L., Guerrero, R., Bentley, P., Gunn, R., Hammers, A., et al.
(2018). GAN augmentation: Augmenting training data using generative adversarial
networks. arXiv:1810.10863.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying density-

based local outliers. In ACM SIGMOD international conference on management of data
(pp. 93–104).

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM
Computing Surveys, 41(3).

Creswell, A., & Bharath, A. A. (2019). Inverting the generator of a generative
adversarial network. IEEE Transactions on Neural Networks and Learning Systems,
30(7), 1967–1974.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb2
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb2
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb2
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb2
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb2
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb3
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb3
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb3
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb4
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb4
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb4
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb5
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb5
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb5
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb5
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb5
http://kdd.ics.uci.edu/
http://arxiv.org/abs/1810.10863
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb8
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb9
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb9
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb9
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb9
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb9
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb10
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb10
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb10
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb11
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb11
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb11
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb11
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb11

A. Novotny et al. Machine Learning with Applications 19 (2025) 100621
Dietterich, T. (2000). Ensemble methods in machine learning. In Multiple classifier
systems (pp. 1–15). Berlin, Heidelberg: Springer Berlin Heidelberg.

Dietterich, T., & Bakiri, G. (1995). Solving multiclass learning problems via
error-correcting output codes. Journal of Artificial Intelligence Research, 2, 263–286.

Dubey, S. (2019). Alzheimer’s dataset (4 class of Images): Technical report, Kaggle,
https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification. Wiley-Interscience.
Duin, R. P. (2022). The combining classifier: to train or not to train? In 16th

international conference on pattern recognition.
Epstein, D., Park, T., Zhang, R., Shechtman, E., & Efros, A. A. (2022). Blobgan: Spatially

disentangled scene representations. In European conference on computer vision (pp.
616–635). Springer.

Fernando, T., Gammulle, H., Denman, S., Sridharan, S., & Fookes, C. (2021). Deep
learning for medical anomaly detection – A survey. ACM Computing Surveys, 54(7).

Fragoso, R. C., Cavalcanti, G. D., Pinheiro, R. H., & Oliveira, L. S. (2021). Dynamic
selection and combination of one-class classifiers for multi-class classification.
Knowledge-Based Systems, 228, Article 107290.

Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018). Synthetic
data augmentation using GAN for improved liver lesion classification. In 2018 IEEE
15th international symposium on biomedical imaging ISBI 2018, (pp. 289–293).

Galar, M., Fernández, A., Barrenechea, E., Bustince, H., & Herrera, F. (2011). An
overview of ensemble methods for binary classifiers in multi-class problems:
Experimental study on one-vs-one and one-vs-all schemes. Pattern Recognition,
44(8), 1761–1776.

Garcia, K. D., de Sá, C. R., Poel, M., Carvalho, T., Mendes-Moreira, J., Cardoso, J.
M., et al. (2021). An ensemble of autonomous auto-encoders for human activity
recognition. Neurocomputing, 439, 271–280.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press, http:
//www.deeplearningbook.org.

Hadjadji, B., Chibani, Y., & Guerbai, Y. (2017). Combining diverse one-class classifiers
by means of dynamic weighted average for multi-class pattern classification.
Intelligent Data Analysis, 21(3), 515–535.

Hao, P., Chiang, J., & Lin, Y. (2009). A new maximal-margin spherical-structured
multi-class support vector machine. Applied Intelligence: The International Journal
of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies,
30, 98–111.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 770–778).

Hearst, M., Dumais, S., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector
machines. IEEE Intelligent Systems and their Applications, 13(4), 18–28.

Hempstalk, K., Frank, E., & Witten, I. H. (2008). One-class classification by combining
density and class probability estimation. In Lecture notes in computer science: Vol.
5211, Machine learning and knowledge discovery in databases. ECML PKDD 2008.

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33, 6840–6851.

Hughes, D., Salathé, M., et al. (2015). An open access repository of images on plant
health to enable the development of mobile disease diagnostics. arXiv preprint
arXiv:1511.08060.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning
(pp. 448–456). PMLR.

Juszczak, P., & Duin, R. P. W. (2004). Combining one-class classifiers to classify missing
data. In F. Roli, J. Kittler, & T. Windeatt (Eds.), Multiple classifier systems (pp.
92–101). Springer Berlin Heidelberg.

Kang, S. (2022). Using binary classifiers for one-class classification. Expert Systems with
Applications, 187.

Kang, S., Cho, S., & Kang, P. (2015). Multi-class classification via heterogeneous
ensemble of one-class classifiers. Engineering Applications of Artificial Intelligence, 43,
35–43.

Kardan, N., & Stanley, K. O. (2018). Fitted learning: Models with awareness of their
limits. arXiv:1609.02226 [cs.ai].

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.

Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 4401–4410).

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing
and improving the image quality of stylegan. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp. 8110–8119).

Khan, S., & Madden, M. (2014). One-class classification: taxonomy of study and review
of techniques. The Knowledge Engineering Review, 29(3), 345–374.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Kittler, J., Hatef, M., Duin, R. P., & Matas, J. (1998). On combining classifiers. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226–239.

Krawczyk, B., Galar, M., Woźniak, M., Bustince, H., & Herrera, F. (2018). Dynamic
ensemble selection for multi-class classification with one-class classifiers. Pattern
Recognition, 83, 34–51.
15
Krawczyk, B., & Woźniak, M. (2014). Cytological image analysis with firefly nuclei
detection and hybrid one-class classification decomposition. Engineering Applications
of Artificial Intelligence, 31, 126–135.

Krawczyk, B., Wozniak, M., & Cyganek, B. (2014). Clustering-based ensembles for
one-class classification. Information Sciences, 264, 182–195.

Krawczyk, B., Woźniak, M., & Herrera, F. (2015). On the usefulness of one-class
classifier ensembles for decomposition of multi-classproblems. PatternRecognition,
48, 3939–3982.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep
convolutional neural networks. Communications of the ACM, 60(6), 84–90.

Lee, H., & Cho, S. (2006). The novelty detection approach for different degrees of
class imbalance. In Lecture notes in computer science: Vol. 4233, Neural information
processing. Springer,BerlinHeidelberg.

Lee, D., & Lee, J. (2007). Domain described support vector classifier for
multi-classification problems. Pattern Recognition, 40(1), 41–51.

Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. In 8th IEEE international
conference on data mining (pp. 413–422).

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 3431–3440).

Maas, A. L., Hannun, A. Y., Ng, A. Y., et al. (2013). Rectifier nonlinearities improve
neural network acoustic models. vol. 30, In Proc. ICML (p. 3). Atlanta, GA.

Oza, P., & Patel, V. M. (2019). One-class convolutional neural network. IEEE Signal
Processing Letters, 26(2).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
PyTorch: An imperative style, high-performance deep learning library. In Advances
in neural information processing systems 32 (pp. 8024–8035). Curran Associates, Inc..

Perera, P., Oza, P., & Patel, V. M. (2021). One-class classification: A survey. arXiv:
2101.03064v1 [cs.cv].

Pimentel, M., Clifton, D., Clifton, L., & Tarassenko, L. (2014). A review of novelty
detection. Signal Processing.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation. In Medical image computing and computer-assisted
intervention–mICCAI 2015: 18th international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18 (pp. 234–241). Springer.

Sabokrou, M., Khalooei, M., Fathy, M., & Adeli, E. (2018). Adversarially learned one-
class classifier for novelty detection. In IEEE/CVF conference on computer vision and
pattern recognition.

Salehi, M., Mirzaei, H., Hendrycks, D., Li, Y., Rohban, M. H., & Sabokrou, M. (2022).
A unified survey on anomaly, novelty, open-set, and out-of-distribution detection:
Solutions and future challenges. arXiv:2110.14051v4 [cs.cv].

Scheirer, W. J., de Rezende Rocha, A., Sapkota, A., & Boult, T. E. (2013). Toward open
set recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7).

Scholkopf, B., Smola, A., & Muller, K.-R. (1998). Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10, 1299–1319.

Scholkopf, B., Williamson, R., Smola, A., Taylor, J., & Platt, J. (1999). Support vector
method for novelty detection. In Neural information processing systems (pp. 582–588).

Seliya, N., Zadeh, A. A., & Khoshgoftaar, T. M. (2021). A literature review on one-class
classification and its potential applications in big data. Journal of Big Data, 8.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Tan, M., & Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional
neural networks. In International conference on machine learning (pp. 6105–6114).
PMLR.

Tax, D. M., & Duin, R. P. (2001). Combining one-class classifiers. In 2nd international
workshop on multiple classifier systems (pp. 299–308).

Tax, D. M., & Duin, R. P. (2004). Support vector data description. Machine Learning,
54, 45–66.

Tax, D. M., & Duin, R. P. (2008). Growing a multi-class classifier with a reject option.
Pattern Recognition Letters, 29(10), 1565–1570.

Turk, M., & Pentland, A. (1991). Face recognition using eigenfaces. In IEEE computer
society conference on computer vision and pattern recognition (pp. 586–591).

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE)
over the root mean square error (RMSE) in assessing average model performance.
Climate Research, 30(1), 79–82.

Wolleb, J., Bieder, F., Sandkühler, R., & Cattin, P. C. (2022). Diffusion models for
medical anomaly detection. In International conference on medical image computing
and computer-assisted intervention (pp. 35–45). Springer.

Wu, E., Wu, K., Cox, D., & Lotter, W. (2018). Conditional infilling GANs for data
augmentation in mammogram classification. In Image analysis for moving organ,
breast, and thoracic images: third international workshop, RAMBO 2018, fourth
international workshop, BIA 2018, and first international workshop, TIA 2018, held
in conjunction with MICCAI 2018, Granada, Spain, September 16 and 20, 2018,
proceedings 3 (pp. 98–106). Springer.

Xia, W., Zhang, Y., Yang, Y., Xue, J.-H., Zhou, B., & Yang, M.-H. (2022). GAN inversion:
A survey. arXiv:2101.05278.

Yakkundi, A. (2023). Alzheimer’s disease dataset. Mendeley Data, V1, http://dx.doi.
org/10.17632/Ch87yswbz4.1.

You, K., Long, M., Wang, J., & Jordan, M. I. (2019). How does learning rate decay
help modern neural networks? arXiv preprint arXiv:1908.01878.

http://refhub.elsevier.com/S2666-8270(25)00004-0/sb12
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb12
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb12
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb13
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb13
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb13
https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb15
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb16
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb16
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb16
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb17
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb17
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb17
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb17
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb17
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb18
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb18
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb18
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb19
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb19
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb19
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb19
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb19
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb20
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb20
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb20
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb20
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb20
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb21
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb21
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb21
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb21
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb21
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb21
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb21
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb22
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb22
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb22
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb22
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb22
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb24
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb24
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb24
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb24
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb24
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb25
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb25
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb25
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb25
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb25
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb25
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb25
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb26
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb26
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb26
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb26
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb26
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb27
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb27
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb27
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb28
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb28
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb28
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb28
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb28
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb29
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb29
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb29
http://arxiv.org/abs/1511.08060
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb31
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb31
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb31
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb31
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb31
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb32
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb32
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb32
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb32
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb32
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb33
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb33
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb33
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb34
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb34
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb34
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb34
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb34
http://arxiv.org/abs/1609.02226
http://arxiv.org/abs/1710.10196
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb37
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb37
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb37
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb37
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb37
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb38
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb38
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb38
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb38
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb38
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb39
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb39
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb39
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb42
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb42
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb42
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb43
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb43
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb43
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb43
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb43
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb44
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb44
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb44
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb44
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb44
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb45
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb45
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb45
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb46
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb46
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb46
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb46
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb46
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb47
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb47
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb47
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb48
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb48
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb48
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb48
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb48
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb49
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb49
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb49
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb50
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb50
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb50
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb51
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb51
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb51
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb51
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb51
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb52
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb52
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb52
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb53
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb53
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb53
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb54
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb54
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb54
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb54
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb54
http://arxiv.org/abs/2101.03064v1
http://arxiv.org/abs/2101.03064v1
http://arxiv.org/abs/2101.03064v1
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb56
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb56
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb56
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb57
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb57
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb57
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb57
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb57
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb57
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb57
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb58
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb58
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb58
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb58
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb58
http://arxiv.org/abs/2110.14051v4
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb60
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb60
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb60
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb61
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb61
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb61
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb62
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb62
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb62
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb63
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb63
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb63
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb65
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb65
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb65
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb65
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb65
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb66
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb66
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb66
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb67
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb67
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb67
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb68
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb68
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb68
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb69
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb69
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb69
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb70
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb70
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb70
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb70
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb70
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb71
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb71
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb71
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb71
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb71
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb72
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb72
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb72
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb72
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb72
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb72
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb72
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb72
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb72
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb72
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb72
http://arxiv.org/abs/2101.05278
http://dx.doi.org/10.17632/Ch87yswbz4.1
http://dx.doi.org/10.17632/Ch87yswbz4.1
http://dx.doi.org/10.17632/Ch87yswbz4.1
http://arxiv.org/abs/1908.01878

A. Novotny et al. Machine Learning with Applications 19 (2025) 100621
Zhang, Y., Zhang, B., Coenen, F., Xiao, J., & Lu, W. (2014). One-class kernel subspace
ensemble for medical image classification. EURASIP Journal on Advances in Signal
Processing.

Zhu, Y., Chen, Y., Lu, Z., Pan, S., Xue, G.-R., Yu, Y., et al. (2011). Heterogeneous
transfer learning for image classification. Proceedings of the AAAI Conference on
Artificial Intelligence, 25(1), 1304–1309.
16
Zhu, J.-Y., Krähenbühl, P., Shechtman, E., & Efros, A. A. (2016). Generative visual
manipulation on the natural image manifold. In Computer vision–ECCV 2016: 14th
European conference, amsterdam, the netherlands, October 11-14, 2016, proceedings,
part v 14 (pp. 597–613). Springer.

http://refhub.elsevier.com/S2666-8270(25)00004-0/sb76
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb76
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb76
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb76
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb76
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb77
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb77
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb77
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb77
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb77
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb78
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb78
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb78
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb78
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb78
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb78
http://refhub.elsevier.com/S2666-8270(25)00004-0/sb78

	Ensembles of deep one-class classifiers for multi-class image classification
	Introduction
	Background
	Datasets
	Plant Village Dataset
	Alzheimer's Disease Dataset

	Ensembles of One-Class Classifiers
	PCA OCC
	AE OCC
	GAN Inversion OCC
	GAN Discriminator OCC

	Results and Discussion
	Training
	Modifying class structure
	Synthetic dataset augmentation

	Testing
	Modifying class structure
	Synthetic dataset augmentation

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Data availability
	References

