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Abstract: Mammography images are the most commonly used tool for breast cancer screening.
The presence of pectoral muscle in images for the mediolateral oblique view makes designing a
robust automated breast cancer detection system more challenging. Most of the current methods for
removing the pectoral muscle are based on traditional machine learning approaches. This is partly
due to the lack of segmentation masks of pectoral muscle in available datasets. In this paper, we
provide the segmentation masks of the pectoral muscle for the INbreast, MIAS, and CBIS-DDSM
datasets, which will enable the development of supervised methods and the utilization of deep
learning. Training deep learning-based models using segmentation masks will also be a powerful
tool for removing pectoral muscle for unseen data. To test the validity of this idea, we trained AU-Net
separately on the INbreast and CBIS-DDSM for the segmentation of the pectoral muscle. We used
cross-dataset testing to evaluate the performance of the models on an unseen dataset. In addition,
the models were tested on all of the images in the MIAS dataset. The experimental results show that
cross-dataset testing achieves a comparable performance to the same-dataset experiments.

Keywords: breast cancer mammography; pectoral muscle; INbreast; CBIS-DDSM; MIAS; deep
learning; supervised training

1. Introduction

Breast cancer is one of the main cancer types in the female population, with a high
mortality rate. Mammograms are images taken from two views of a compressed breast
region. These views are craniocaudal (CC) and mediolateral oblique (MLO) views. CC
is the view in which the breast is compressed horizontally, and in the MLO view, the
compression is diagonal. Mammography images are the most commonly used tool for
breast cancer screening due to their availability and lower cost. Therefore, the development
of automated cancer detection methods for these images is of high importance due to the
benefits they bring to patients by increasing survival chances by detecting the abnormalities
accurately in the early stages [1].

While current methods have improved the performance considerably, several chal-
lenges hinder the performance of these methods for mammography images. For instance,
in the MLO view, a portion of the pectoral muscle is usually visible in the final image.
Pectoral muscles, fibroglandular tissue, and abnormalities all appear as brighter regions
compared to the fatty tissues in the images. Therefore, detecting abnormalities becomes
more challenging in cases with high breast tissue density or in the presence of the pectoral
muscle. This emphasizes the need for approaches to address the challenges of abnormality
detection in high-density cases and removal of the pectoral muscle in the images.

This paper targets the latter problem, which is also highly important for automated
density estimation. Due to the fact that the segmentation mask of the pectoral muscle is
not normally available in the publicly available datasets or in the examinations for breast
cancer screening in current practice in clinical settings, most of the current pectoral muscle
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removal approaches are based on traditional machine learning approaches. As the muscle’s
location, shape, density, and position vary between the images, the performance of these
methods is limited. Ideally, utilizing deep learning-based approaches would help mitigate
these hurdles to a great extent if annotations for the pectoral muscle were available.

We argue that providing annotations even for several datasets will enable researchers
to train supervised pectoral muscle removal and utilize them for new unseen datasets.
Hence, following the work of Aliniya et al. [2], we provide pectoral muscle segmentation
for three benchmark datasets, INbreast [3], MIAS [4] and CBIS-DDSM [5]. The segmen-
tation masks are available at https://github.com/Parvaneh-Aliniya/pectoral_muscle_
groundtruth_segmentation, accessed on 1 December 2024. We separately trained AU-Net
[6], a widely used segmentation method for mammography images, on the datasets. Same-
dataset and cross-dataset tests were used to validate the proposed method. In same-dataset
tests, train and test sets belong to one of the datasets; in the cross-dataset experiments, the
train and test sets are from two different datasets. The models achieve high accuracy for
both same-dataset and cross-dataset experiments.

Pectoral muscle removal methods are beneficial for tasks such as density estimation in
which the presence of pectoral muscle decreases the accuracy of the estimation when the
muscle is wrongly detected as dense tissue. Moreover, they could be used as a preprocessing
step in segmentation and classification tasks. In addition, the pectoral muscle removal
methods could also improve the performance of multi-view approaches that use both MLO-
and CC-view images as input.

The contributions of this paper are three-fold:

• Generating the segmentation masks of pectoral muscle for INbreast, MIAS, and CBIS-
DDSM datasets.

• Training pectoral muscle removal models using the AU-Net architecture separately
for INbreast and CBIS-DDSM datasets.

• Evaluating the models by same-dataset and cross-dataset testing to measure the
generalizability of the supervised trained models on the same and new datasets.

In the following, we first review the literature on pectoral muscle removal and segmen-
tation methods for mammography images and then present the proposed method. Finally,
the experimental results section provides the results of the experiments and comparisons
with state-of-the-art methods.

2. Related Work

In this section, we provide a review of the previous methods proposed to tackle the
pectoral muscle removal task [7–11] and a brief review of the segmentation method with a
focus on those proposed for mammography images. Some methods consider the task as
segmentation, and others use the phrase “pectoral muscle removal”. In the paper, we use
both phrases according to the context. As it is a trivial task for radiologists to exclude the
pectoral muscle visually while reading the mammograms, the segmentation of the pectoral
muscle is not available in images in most datasets; hence, to the best of our knowledge, all
of the proposed methods are traditional machine learning-based methods. These methods,
in general, aim to use the appearance of the muscle and its location (after prepossessing to
unify the alignment of the breast to be all left or right ) to detect and eliminate it.

2.1. Pectoral Muscle Removal Methods

According to a recent study [1], thresholding [12–15] and region growing [16–18] are
widely used approaches.

The general idea for thresholding is to use the observation that the brightness of the
pectoral muscle is generally higher than the neighboring regions; therefore, by eliminating
pixels lower than a certain threshold, the region for the pectoral muscle will be extracted.
This idea, coupled with the utilization of the orientation of the breast (whether the breast is
on the left or right side of the image) and the generic shape of the muscle, has been used in
the literature. In this category, Subashini et al. [13] used a thresholding-based approach for

https://github.com/Parvaneh-Aliniya/pectoral_muscle_groundtruth_segmentation
https://github.com/Parvaneh-Aliniya/pectoral_muscle_groundtruth_segmentation


J. Imaging 2024, 10, 331 3 of 13

pectoral muscle removal, in which they first extracted the rectangle in the image where the
pectoral muscle was assumed to be located and then used thresholding within the rectangle
to detect the muscle. The height of the rectangle was fixed relative to the image’s height,
and its width was selected according to the width of the breast area on top of the image.
Tayel et al. [14] proposed an approach that eliminates the need for a predefined region. To
this end, they employed the idea of retaining only a region corresponding to the location of
the muscle after thresholding. In the same category, Czaplicka et al. [15] proposed using
multi-level thresholding, and Shrivastava et al. [19] developed a method using a sliding
window for thresholding.

There are several drawbacks to these approaches. First, in many cases, the difference
between the brightness of the pectoral muscle and the surrounding pixels is not high
enough to lead to an accurate boundary for the pectoral muscle using thresholding. In
addition, there are certain artifacts that are overlaid on the pectoral muscle region (such as
tape or notes) in some images that introduce errors to the thresholding method. Moreover,
the region for the pectoral muscle is not always consistent, so thresholding may lead to
sub-optimal results in such cases. Finally, predefined regions for the selection are not
generalizable to all the cases, and the pectoral muscle may exceed the region.

The second category of methods for pectoral muscle removal consists of region-
growing-based methods. These methods generally start with initial seeds; then, according
to certain similarity metrics, they continue adding a new neighboring pixel to a region
until a termination criterion is met [16]. Chen et al. [20] proposed using a pixel near the
border between the pectoral muscle and the breast tissue (which was approximated) as
a starting seed. For the ending threshold value, they used growing thresholding, which
stops near the edges of the image. This approach relies on the border of the pectoral
muscle being well-defined, which does not apply to many samples, specifically for samples
with higher breast tissue density. Instead of approximating the location for the border,
Nagi et al. [21] used the approximate location for the pectoral muscle after determining the
orientation for the breast to place the initial seed. Then, the region-growing algorithm was
applied to the starting point. Maitra et al. [22] introduced several improvements to the
previous method by using a triangle that encapsulated the pectoral muscle after flipping
the images (to achieve left orientation for all images). For seed selection, they proposed to
use the diagonal of a defined rectangle encapsulating the pectoral muscle from top-left to
bottom-right. The points in the line that were located inside the triangle were selected as
the seeds. In addition, they used new selection criteria based on the minimum, maximum,
and average values for the pixels. Priyanka et al. [23] proposed a region-growing method
by optimizing the initial seed selection stage. The flooding algorithm was used to grow
the region, and the process of adding a new point was conditioned on a predetermined
intensity standard.

Aside from the previous methods that aim to use region growing and thresholding,
graph-cut [24], Hough Transform [25], line estimation, polynomial fitting, curve estima-
tion [26], k-means [27], active contours [28], and contour growing [29] are also used in
several methods. For instance, Dhimann et al. [30] proposed to first blur the image and then
apply the Canny edge detector on the image. Finally, the Hough lines were detected from
the detected edges, which were further processed to select the best line. This method has a
few limitations. First, selecting the degree of blurring as a hyperparameter is challenging,
specifically in mammograms where the grayscale range may change from one image to
another. In addition, selecting a line as the border of the muscle decreases the detection
accuracy. Mahaveera et al. [31] proposed a cluster-based method that used intensity as the
value for clustering. Then, the connected-components-labeling algorithm was utilized to
differentiate between the muscle and breast regions (the assumption about the location
of the masses was used in this stage). Finally, they refined the region to improve the
results. The main drawback of this method is that in more challenging cases in which the
boundary between the muscle and the breast region is unclear (or the diversity of the pixel
values is high in the breast region), a considerable number of pixels might be misplaced.
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Chen et al. [32] developed a method that relies on image binarization to help distinguish
between bright and darker regions (as the pectoral muscle is usually brighter than the
surrounding regions). A Canny edge detector was applied to the resulting image, and the
edges were improved with interpolation. This method is sensitive to noise in the images
and unclear borders between the muscle and the breast tissue.

2.2. Segmentation Methods

In recent years, many methods have been proposed for segmentation in mammogra-
phy images and other domains. In this section, we focus on reviewing the segmentation
methods, specifically for the segmentation of masses in mammography images. As masses
are one of the dominant abnormalities in the breast, most of the segmentation methods for
mammography images focus on this group.

The authors of [33,34] were among the first to design a segmentation method using
deep learning. U-Net [35] is a pioneering work in deep learning-based segmentation
methods for medical applications. The fully convolutional network (FCN) [33] introduced
a network with skip connections and end-to-end training for segmentation tasks. U-Net
extended the core idea of FCN by proposing a symmetric encoder–decoder network that
differed from FCN in that the skip connections were more present throughout a network
with a symmetric structure in the encoder and decoder parts. In addition, instead of
summation, U-Net utilized concatenation for the feature maps and further processed the
output of the concatenation.

The methods up to this point were generic segmentation methods, focusing on im-
provement of the performance. However, to achieve the best performance for specific tasks,
such as applications in mammography images, it is vital to take the specific characteristics
of the input and the desired output into consideration. Hence, following the success of U-
Net and FCN, in recent years, studies [36–45] in the medical imaging domain have exceeded
the performance limits of segmentation through the adaptation and advancement of these
approaches. These approaches have been proposed for a variety of medical images, such as
images for pelvic organs [36] and gland segmentation [44]. For instance, Drozdzal et al. [46]
explored the idea of creating a deeper FCN by adding a short skip connection to the decoder
and encoder paths in order to improve the performance of segmentation for biomedical
images. Zhou et al. [45] developed more sophisticated skip connections to create more
semantically compatible features before merging the feature maps from the contracting and
expanding paths. This method was tested on images of liver, colon polyp, and cell nuclei.

Hai et al. [47] improved the design on UNet while considering the challenging features
of the mammography data, such as the diversity of shapes and sizes. To this end, they
utilized an Atrous Spatial Pyramid Pooling (ASPP) module in the transition between the
encoder and decoder paths. The ASPP block consisted of 1 × 1 conv plus three atrous
convolutions [48] with sample rates of 6, 12, and 18; the outputs for these layers were
concatenated and fed into a 1 × 1 conv. FC-DenseNet [49] was selected as the backbone
of the method. Shuyi et al. [50] is another U-Net-based approach based on the idea of
utilizing densely connected blocks for mass segmentation in mammography images. In the
encoder, the path is constructed from densely connected CNNs [51]. In the decoder, gated
attention [39] modules are used when combining high- and low-level features, allowing
the model to focus more on the target. Another line of research within the scope of
multi-scale studies is [52], in which the generator is an improved version of U-Net for
mass segmentation. Multi-scale segmentation results were created for three critics with
identical structures and different scales in the discriminator. Ravitha et al. [53] developed
an approach to use the error of the outputs of intermediate layers (in both encoder and
decoder paths) relative to the ground truth labels as a supervision signal to boost the
model’s performance. In every stage of the encoder and decoder, attention blocks with
upsampling were applied to the outputs of the block. The resulting features were linearly
combined with the output of the decoder and incorporated into the objective criterion of
the network to enhance the robustness of the method.
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Sun et al. [6] introduced an asymmetric encoder–decoder network (AU-Net). In the
encoder path, ResBlocks (three conv layers with a residual connection) were used; in the
decode path, basic blocks (including two conv layers) were utilized. The main contribution
of the paper was a new upsampling method. In the new Attention-guided Upsampling
(AU) Block, high-level features were upsampled through dense and bilinear upsampling.
Then, the low-level features were combined with the output of dense upsampling through
element-wise summation. The resulting feature maps from the previous step were concate-
nated with the output of bilinear upsampling and were fed into a channel-wise attention
module. Finally, the input of the channel-wise attention module was combined with its
output by channel-wise multiplication. AU-Net [6] was the baseline method in this study.

3. Materials and Methods

This section presents the process for segmenting pectoral muscles, followed by the
proposed training scheme for pectoral muscle removal in mammography images.

3.1. Ground Truth Generation for Pectoral Muscle

LabelMe [54] was used to segment the pectoral muscle, in which polygons were
fitted to the pectoral muscle for the MLO images in INbreast, CBIS-DDSM, and MIAS
datasets. For images with higher density or lower visibility of the boundaries of the
pectoral muscle, the portion of the muscle that was clearly distinguishable from the breast
tissues was selected. The segmentation masks were generated in JSON and image formats
with two classes, the pectoral muscle and background (the remaining breast tissues and
image background).

3.2. Datasets and Preprocessing

INbreast contains a group of 150 cases with 410 high-resolution CC- and MLO-view
images. The pectoral muscle masks for all of the MLO-view images in the INbreast dataset
(except for several images in which the pectoral muscle was not presented or distinguish-
able) were provided in this study and used for the experiments. For the validation, due to
limited samples, 5-fold cross-validation was used with the random division of 80%, 10%,
and 10% for train, validation, and test sets, respectively. It should be noted that while the
pectoral muscle masks were presented in the original INbreast dataset for consistency with
two other datasets in the labeling process, we provided the labeling for INbreast as well.

CBIS-DDSM is an enhanced subset of the DDSM dataset. It consists of 1231 training
images and 360 test images. CBIS-DDSM is commonly used for the segmentation task in the
literature [6], and we provided the pectoral muscle segmentation masks for all of the MLO-
view images in the CBIS-DDSM dataset. The standard split for the train and test sets was
used in this study. For the validation set, 10% of the training set was randomly sampled.

The MIAS dataset contains only MLO-view images; therefore, it is widely used in
proposed methods for the pectoral muscle removal task. MIAS has a total of 322 images.
Providing the pectoral muscle segmentation masks is important for research in this domain,
so we also included the segmentation masks for all the images in the MIAS dataset (unless
the muscle was not visible in the images). We used MIAS for cross-dataset testing using
models trained on INbreast and CBIS-DDSM datasets.

For all of the datasets, cropping, padding, resizing, and artefact removal were per-
formed as needed.

3.3. Pectoral Muscle Segmentation

The main motivation for this study is to provide the segmentation of the pectoral
muscle for several datasets, which enables the training of pectoral muscle removal methods
that could also be applied to new unseen datasets. The main use-case of these segmentation
masks will be in the removal of pectoral muscle in the preprocessing step for tasks such as
the classification of images (for instance, benign/malignant), segmentation of the masses
and other abnormalities, and density estimation. To use the segmentation masks for a
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new dataset, first, a segmentation model should be trained using the provided muscle
segmentation masks, and then, the model can be used for the segmentation of the pectoral
muscles in a new dataset.

Given the segmentation masks of the pectoral muscles, we proposed to use deep
learning-based methods for pectoral muscle segmentation. To this end, we selected AU-
Net, a method for segmenting mammography images. AU-Net [6] is an improved version
of the U-Net [35] in which the encoding and decoding paths are not symmetrical. ResUnit
and the basic decoder proposed in the AU-Net were used for the encoder and the decoder.
The details of the novel idea of AU-Net, the AU Block, were presented in the AU-Net
approach [6]. A binary cross-entropy loss function was used in the proposed method.

For the training stage, we used early stopping, with a learning rate of 0.00001, and
Adam optimizer. The models were trained on an RTX 4090 GPU. Cross-validation was
utilized for the INbreast dataset. We implemented the method using TensorFlow. After
training on the INbreast, CBIS-DDSM, and a combination of both datasets, the models were
used for the same- and cross-dataset tests to evaluate their performance.

3.4. Evaluation Metrics

Dice Similarity Coefficient, (DSC , Equation (1)), sensitivity (Equation (2)), and accu-
racy (Equation (3)) were selected as the evaluation metrics in all of the experiments due
to the complementary information they provided. As pectoral muscles occupy a small
portion of the images, using accuracy alone would not have been an informative means of
evaluating the method. Hence, using an additional metric, such as sensitivity, allowed us to
measure the false negative rate. DSC measures the ratio of the correctly predicted positive
pixels over the number of positive areas in both the ground truth and the prediction mask,
considering the false positive rate in the calculations alongside false negatives. Therefore,
we also included DSC in the evaluation metrics.

DSC =
2TP

2TP + FP + FN
(1)

Sensetivity =
TP

TP + FN
(2)

Accuracy =
TP + TN

TP + TN + FN + FP
(3)

Here, TP, TN, FP, and FN represent true positive, true negative, false positive, and
false negative rates, respectively.

4. Experimental Results

In this section, an evaluation of the results of the same- and cross-dataset experiments,
as well as a comparison with previous methods, is presented.

4.1. Results for INbreast and CBIS-DDSM

The results for the INbreast and CBIS-DDSM datasets are presented in Table 1. The
following format was used for the names of the experiments: “train dataset name—test
dataset name”. As shown in the first two rows of the table, the models trained with CBIS-
DDSM generally outperformed those trained with INbreast in same-dataset experiments.
The pectoral muscles generally have higher pixel intensities in the CBIS-DDSM (compared
to the rest of the breast regions) compared to the INbreast. In addition, more training images
are available in the CBIS-DDSM. These could be the reasons for the better performance of
the model on the CBIS-DDSM dataset. Some of the results for same-dataset experiments are
shown in Figure 1. For convenience, we used ‘CBIS’ instead of ‘CBIS-DDSM’ in the figures
and tables. As shown in the INbreast-INbreast and CBIS-CBIS columns from Figure 1, the
power of extracting the features from data automatically in a deep learning-based model
enabled our methods to overcome challenges that would impact traditional methods. For
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instance, the extra line in the pectoral muscle area (Figure 1d (INbreast) and Figure 1b
(CBIS)), the ambiguity of the boundary (Figure 1b,e (INbreast) and Figure 1f (CBIS)),
presence of a mass in the muscle area (Figure 1c (INbreast)) would have posed challenges
for the traditional method; however, the proposed method was able to perform well in
these cases.

Table 1. Results for pectoral muscle segmentation for same- and cross-dataset experiments. In the
name of the experiments, the first term is the training dataset, and the second is the test dataset.

Train–Test Pair DSC Sensitivity Accuracy

CBIS-CBIS 96.59 96.89 99.61

INbreast-INbreast 95.09 95.54 99.55

INbreast-CBIS 91.77 97.68 99.05

CBIS-INbreast 89.52 82.55 99.13

CBIS-MIAS 94.20 92.26 99.45

INbreast-MIAS 90.64 95.44 99.03

Combined-MIAS 95.39 93.73 99.56

Figure 1. Examples of the performance of the proposed method for the same- and cross-dataset tests
for INbreast and CBIS-DDSM datasets. Each row from (a–f) presents two examples from INbreast
and CBIS-DDSM datasets. The green and blue colors present boundaries for the ground truth and
predicted segmentation.
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4.2. Results for Cross-Dataset Tests

In order to measure the generalizability of the models, we conducted five cross-dataset
tests (presented in the last five rows in Table 1). One important aspect of the results
for cross-dataset experiments is that when trained or tested on INbreast, while being
highly accurate, the performance was generally lower than other cross-dataset experiments.
One reason could be the fact that images in these datasets were acquired separately in
different conditions; therefore, they may also visually differ. This could be observed in
the differences between samples from the INbreast dataset compared to the MIAS and
CBIS-DDSM datasets (which seem to be more similar, specifically the brightness of pectoral
muscle) in Figures 1 and 2. Therefore, the similarities in the setting in which images were
recorded also affect the cross-dataset experiments. With this observation, to make the
cross-dataset model more robust, we also trained the model using the combination of the
CBIS-DDSM and INbreast for the cross-dataset tests on the MIAS dataset (combined-MIAS
row in Table 1). As shown in the last row, the combined-MIAS experiment achieved the
best results in the cross-dataset setting. It should be noted that for experiments with the
MIAS dataset as the test set, the whole dataset was used.

Figure 2. Examples of the performance of the proposed method for cross-dataset tests for the MIAS
dataset as the test set. Each row (a–d) presents results for one sample in the MIAS dataset. The green
and blue colors present boundaries for the ground truth and predicted segmentation.

Some examples of the cross-dataset experiments are shown in Figure 1 (CBIS-INbreast
and INbreast-CBIS columns) and Figure 2. The examples of cross-dataset models show
comparable performance to the same-dataset models. This confirms the validity of our
idea regarding the generalizability of the pectoral muscle removal method proposed in
the study. Regarding the MIAS dataset results in Figure 2 and Table 1, the performance
of the Combined-MIAS model is better than that of training on each of the INbreast and
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CBIS-DDSM dataset separately. In Figure 2, all the CBIS-MIAS samples have better results
than the INbreast-MIAS.

4.3. Comparison with State-of-the-Art Methods

Table 2 compares the proposed method with previous approaches for pectoral muscle
segmentation. The proposed method had a superior performance for both same- and
cross-dataset experiments compared to the previous methods in terms of accuracy. The
values in the second row in the table indicate the number of images used for testing each
method. Compared to the best-performing approach among the methods that used all
322 images for testing, the proposed method improved the accuracy by 1.27% on average
between three variations. Training a deep learning model enables the method to be more
robust for samples that might not align well with the assumptions of traditional methods. It
should be noted that accuracy was the shared metric used in the previous methods; hence,
we used it as the comparison metric and were not able to include DSC and sensitivity, as
they were not available in most of the previous works.

Regarding the visual comparison, as neither the implementation nor the full results
on the datasets were available, we compared our method with one of the previous works
that included visual results with the image ID [7] for the MIAS dataset. The results are
presented in Figure 3. Our method achieved better results in comparison with [7] with
smoother edges without any further postprocessing.

Figure 3. Examples of the performance of the proposed method compared to the method proposed
in [7] for the MIAS dataset. The names of the samples in the dataset are mentioned in (a–c).

5. Discussion

This study proposed a supervised segmentation method for the pectoral muscle in
mammography images. The goal is to use this segmentation in the preprocessing steps for
other tasks such as classification, segmentation of the abnormalities, and image registration
for multi-view approaches. In mammography images, in some cases, the tissue and pectoral
muscle are both visible as they are layered on top of each other. Therefore, in some cases,
removing the pectoral muscle might remove the portion of the tissue in the images, which
could be harmful for tasks such as density estimation. With this observation in mind,
the following approach was used instead of solely focusing on the segmentation of the
pectoral muscle in the annotation process. For cases with ambiguous boundaries for the
muscle or very low visibility of the muscle, the annotation covered the portion that was
mainly and more obviously part of the pectoral muscle to preserve more of the breast
tissue in the images. One additional challenge is the diversity of the appearance of the
pectoral muscle in the images. When there are limited data for complex appearances, the
model’s performances suffer, which could be addressed by utilizing more training data
or postprocessing. Moreover, the diversity in the images from the datasets affects the
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generalizability of the models for new unseen data. The results of cross-dataset tests in this
study confirm the need for more diverse datasets in the training process.

Table 2. Comparison between the proposed methods for pectoral muscle removal.

Method [29] [55] [56] [26] [15] [20] [18] (CBIS) (INbreast) (Combined)

Number of Images 322 322 161 322 300 321 322 322 322 322

Accuracy 98.1 92.2 93 96.81 98 97.8 95 99.45 99.03 99.56

6. Conclusions

In this study, we provided segmentation masks for INbreast, MIAS, and CBIS-DDSM
subset datasets. The segmentation masks provided in this paper will open the door to the
use of supervised deep learning-based methods in research on pectoral muscle removal
in mammography images. In addition, we trained AU-Net on the datasets separately and
achieved an accuracy of 99.55% and 99.61% for the pectoral removal task on INbreast and
CBIS-DDSM datasets, respectively. In order to examine the generalizability of these models
for new datasets, we also performed cross-dataset tests, which achieved high performance
as well. We also tested both models on the entire MIAS dataset, resulting in accuracies of
99.03% and 99.45% for models trained on the INbreast and CBIS-DDSM, respectively. To
improve the diversity of the appearance of the samples, a third model was trained on the
combination of the INbreast and CBID-DDSM, resulting in an accuracy of 99.56% for the
MIAS dataset. The masks provided in this study could be employed for pectoral muscle
removal as a preprocessing step in a variety of tasks for mammography images, including
classification, segmentation, and density estimation. In addition, the models trained using
this information could be utilized for pectoral muscle removal in new unseen data.
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