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Abstract—Generative adversarial networks (GANs) have
demonstrated significant progress in unpaired image-to-image
translation in recent years for several applications. CycleGAN
was the first to lead the way, although it was restricted to a pair
of domains. StarGAN overcame this constraint by tackling image-
to-image translation across various domains, although it was not
able to map in-depth low-level style changes for these domains.
Style mapping via reference-guided image synthesis has been
made possible by the innovations of StarGANv2 and StyleGAN.
However, these models do not maintain individuality and need an
extra reference image in addition to the input. Our study aims to
translate racial traits by means of multi-domain image-to-image
translation. We present RaceGAN, a novel framework capable
of mapping style codes over several domains during racial
attribute translation while maintaining individuality and high
level semantics without relying on a reference image. RaceGAN
outperforms other models in translating racial features (i.e.,
Asian, White, and Black) when tested on Chicago Face Dataset.
We also give quantitative findings utilizing InceptionReNetv2-
based classification to demonstrate the effectiveness of our
racial translation. Moreover, we investigate how well the model
partitions the latent space into distinct clusters of faces for each
ethnic group.

Index Terms—GAN, image-to-image translation, face attribute
manipulation, race translation.

I. INTRODUCTION

Generative adversarial networks are a special type of arti-
ficial intelligence algorithm employed in generative machine
learning. Since their introduction by Ian Goodfellow et al.
in 2014, GANs have drawn a lot of interest because of
their capacity to produce realistic synthetic data for several
tasks, including image generation, image manipulation and
transformation, image-to-image translation, and even domain
conversion, such as image-to-text generation or vice-versa [1].
GANs consist of two basic components, i.e., the generator and
the discriminator. Both of these modules are neural networks,
where generator tries to generate artificial data by taking
inspiration from input data and discriminator seeks to dis-
tinguish between real inputs and generator’s production. The
discriminator acts as a binary classifier, identifying whether
the generated data is real or fake. This leads to a competitive
adversarial training process for both the counterparts, where
the generator learns to generate realistic data identical enough
to the real data to fool the discriminator, while the discrimi-
nator learns to enhance its ability to detect the fake generated

data. This adversarial training plays a vital role in achieving
stability.

By enabling users to provide conditional transformation,
Conditional GANs (cGANs) have increased the possibilities
of image-to-image translation [2]. This provides additional
flexibility in the translation process by enabling a more
regulated approach to image generation. The effectiveness of
this model lies in its ability to use conditional generation and
adversarial training to generate visually pleasing outcomes.
Pix2Pix, an improvised version of conditional GAN, [2] [3]
employs paired datasets for training in a supervised learning
approach where the generator tries to do image-to-image
translation from the source domain to the target domain.
One of the fundamental features of Pix2Pix is the use of
paired data for training, where each input image in the source
domain is matched with its counterpart image in the target
domain. By using supervised learning to map the source and
target domains directly, the quality of the generated images is
increased.

While the models previously discussed are capable of
handling image-to-image translation, their functionality varies
largely depending on the application. For instance, Pix2Pix
[3] needs paired data to be available; the training data must
comprise inputs in pairs from the source and target domains.
It may create a street view from satellite photos or generate a
scenic winter landscape from summer images by transforming
images. However, it is not feasible to have matched data for
both source and target domains of the same input image in all
circumstances, such as gender or race conversion. By using an
unpaired dataset, CycleGAN [4] solves this issue; nevertheless,
each pair of domains requires a different model to be trained.
To address this problem, StarGAN [5] uses a single model to
manage numerous domain conversions. However, if the style
of the input domain differs greatly from that of the target
domain, the model will encounter large domain gaps and will
have trouble understanding the intended mapping. To solve this
issue StarGAN-v2 [6] includes two more modules—the map-
ping network and the style encoder—to extract different style
codes utilizing input images and latent space. Nevertheless,
this modification becomes reference dependent and eliminates
the unique individuality of the input image by modifying the
source domain image with the reference style from the target



domain.
Our goal is to change the domains of the input images

using domain-specific information while preserving the indi-
viduality of the subject. If domain conversion can be done
while manipulating low-level semantics, it could be really
helpful to mitigate bias in the datasets to be applied for
generative models. To accommodate this, we propose an
image-to-image translation model for racial feature conversion
using the architecture of StarGAN [5] as its backbone. To
facilitate domain-specific style extraction from latent space,
we develop a style extractor module, drawing inspiration
from the mapping network of StarGAN-v2 [6]. It enables the
model’s integration of the unique style of target domain while
maintaining the individuality from the input source domain.
The main contributions to this work are as follows:

• Our model comprises a style extractor network to extract
domain-specific styles and simultaneously trains for var-
ious domains with only a single generator/discriminator
pair.

• The proposed approach maps racial traits, e.g., demo-
graphic skin color, eye size and orientation, ratio of
upper to lower lips, etc., from one domain to many target
domains.

• The model maintains high-level semantics (e.g., hairstyle,
cosmetics) and posture expressions.

• Our model preserves the individuality of the input images.
• Finally, since the translation of a racial trait must in-

fluence the identity, we propose an InceptionResNetv2-
based classification approach to evaluate whether the
person’s individual features is retained rather than relying
on visual representations of the translated domain images
alone.

II. RELATED WORKS

In the field of computer vision and image processing,
Pix2Pix is a seminal work authored by Phillip Isola et al. [3],
despite the limitation that it is dependent on paired datasets.
Later on, a number of researchers investigated this concept
with multiscale GAN architecture in a variety of applications,
including semantic segmentation, edge guiding, image im-
painting, and more. In order to address the limitation, Jun-Yan
Zhu et al. introduce the idea of cycle consistency [4]. The term
cycle consistency represents the concept that an image should
return to its original form if it is translated from one domain to
another and back again. Based on this idea of cycle consistency
loss, the model can be more optimized for reconstructing im-
ages from the source domain. This contributes to the accuracy
and realism of the translations. The study presents that the
CycleGAN [4] architecture is comprised of two jointly trained
Pix2Pix GANs [3]. The model is a cycle-consistent adversarial
network made up of two discriminators and two generators.
Cycle consistency loss provides extra oversight during training
by guaranteeing that an image translated from one domain
to another and back reconstructs the original image. Both
of the models, CycleGAN [4] and DiscoGAN [7], preserve
significant features between the translated image and the input.

Nevertheless, these frameworks are limited to simultaneously
learning the relationships between two distinct domains. Their
methods are not very flexible when handling several domains
because each pair of domains requires training a distinct
model. In the paper UNIT [8], the use of unpaired data has
also been investigated. They present a shared latent space,
which is modeled after the CoGAN architecture [9]. Images
are encoded into a latent code for both domains without ne-
cessitating a direct mapping between the domain images. The
paper StyleGAN [10] examines more into the idea of latent
space. StyleGAN uses the concept of neural style transfer to
create incredibly realistic images by adjusting both high-level
and low-level semantics. The model specifies a beginning point
for image generation using latent space. In order to get an ap-
pearance or alter hair color, StyleGAN then blends many looks
at different phases. In line with Progressive GAN [11], the
model improves the picture quality by progressively increasing
the resolution during training. However, as its generator isn’t
made to take images as input, using this method to alter an
actual image takes some effort. In contrast, StarGAN [5], uses
a single generator and discriminator to do image-to-image
translation tasks for various domains using real images as
input. Through the utilization of mask vectors, the model was
able to learn mappings across numerous datasets and domains.
However, despite its remarkable effectiveness in multi-domain
translation, StarGAN [5] struggles to generate high-resolution
images because it lacks progressive growth architecture and
experiences mode collapse, which results in the production of
only a limited number of distinct images.Even though they
used the Wasserstein GAN with gradient penalty to enhance
training objectives [12], the mode collapse problem remained
unresolved. To overcome the restriction of diversity, the same
authors later modified the model and created StarGAN-v2 [6].
They included a mapping network and a style encoder as
two additional modules to help the generator with reference-
guided image synthesis. It also introduces a progressive growth
based training process that allows better quality pictures to be
produced. Even with these improvements, mode collapse and
scalability problems may still arise, especially when dealing
with large-scale datasets. Even so, it’s a big step forward from
its predecessor, providing image-to-image translation approach
with more powerful and adaptable features.

III. RACEGAN

The primary goal of this research is to create a model
capable of translating images between different racial domains.
Inspired by StarGAN [5], we create a GAN architecture for
multi-domain translation that consists of just one generator
and one discriminator. We must extract race style from several
race domains in order to translate racial traits. Inspired by
the mapping network of StarGAN-v2 [6], we propose a style
extractor module to add style information relevant to racial do-
mains from the latent space of several domains. This network
extracts racial style codes, which help the generator convert
the input image into a racially translated image of the target
domain. In this section, we describe the overall architecture of



Fig. 1: Overview of the proposed framework of RaceGAN, consisting of 3 modules: generator, style extractor, and discriminator.
The style extractor generates target styles using latent code and the target domain label. Using real image and the depth-wise
concatenation of target style and target domain label, the generator generates a fake image, which is used both for original
input reconstruction and discrimination. The discriminator tries to discriminate between real and fake images and find the
respective domain.

the implemented network. Essential loss functions that have
been incorporated for training are also described.

A. Proposed Architecture

The input images of a human face can be assumed to consist
of content space and context space. The context space reflects
the ethnic traits, whereas the content space represents the
individual features and high-level semantics (such hair color,
accessories, etc.). Our goal is to translate context space’s racial
traits while maintaining the input images’ high-level semantics
and individual identities. Let X be the set of input images
and C be the racial domains of the input images (e.g., Asian,
Black, or White) for easier comprehension. The racial domain
C and race-specific style codes S would form the context
space of X , while the personal style, including high-level
semantics, would be the content space. Using domain-specific
styles, s ∈ S, retrieved by the style extractor network, we
train the generator to create pictures y that correspond to target
domains given an image x ∈ X and matching label c ∈ C.
All of the modules in the proposed architecture are shown in
Figure 1.

Generator: The generator network, G, is trained to pro-
duce images that are exclusive to a certain racial domain
by adjusting context space while maintaining the high-level
characteristics of the input images, such as hair color, cos-
metics, accessories, and style. To force certain kind of image
generation in the target domain via G(x, c, s) −→ y, the
network accepts as input images, x, target domain label, c,
and style information of target domain, s collected from style
extractor network.

Style Extractor: Our style extractor network, E, extracts
style patterns, s = Ec(z), where c indicates the target domain,
z ∈ Z is latent code randomly sampled from a Gaussian
normal distribution matching the real image size, and Ec()
represents the resultant style code for the corresponding target
domain, c. The network is built of several multi-layer percep-
trons consisting of multiple output branches dedicated to all
possible domains. The network employs the label information
to extract the desired style code for that specific domain only.

Discriminator: The discriminator network, D, consists of an
auxiliary classifier that not only can discriminate among real
and fake images generated from the generator but also can
classify real and fake images to their corresponding domains,
D(x) −→ [Dsrc(x), Dcls(x)]. The auxiliary classifier helps
the discriminator control domains instead of using multiple
discriminators for all domains individually.

B. Loss Functions

For the input image, x ∈ X , respective domain label, c′ ∈
C, target domain label, c ∈ C, and corresponding target style,
s ∈ S, the following objective functions help us to conduct
the training.

Adversarial loss: The primary objective of the adversarial
loss is the exact resemblance between the produced and orig-
inal images. In order to create an image, first a random latent
code z and a random target domain c are generated. These are
then passed into the style extractor to generate style code s
for a particular domain. G(x, c, s) generates images of various
domains conditioned by domain labels and the style codes.
Equation 1 represents the adversarial loss, which is built based
on the WGAN-GP objective function [12]. By employing
gradient penalties, it contributes to more stable training. The
primary advantage of the gradient penalty is that it penalizes
the model and resolves the vanishing gradient problem if the
gradient norm differs from the target norm value of 1 [12].
We must create an interpolated distribution x̂, evenly sampled
from a generated image y and a real image x, in order to put
this into action. The WGAN article states that λgp, the penalty
factor, is set to 10 [12]. Through the process of maximizing
the objective function, the discriminator D is able to identify
the class or domain of the input by providing Dcls(x), and
it also attempts to distinguish between real and fake images
by providing a probability, Dsrc(x). The generator G aims to
minimize this objective in order to generate fake images that
mimic real ones and trick the discriminator.

Ladv = Ex[Dsrc(x)]− Ex,c,s[Dsrc(G(x, c, s)]

− λgp Ex[(∥∇x̂Dsrc(x̂)∥2 − 1)2]
(1)



Fig. 2: Network Architectures

Domain classification loss: Since our goal is to generate
images across several domains, it is imperative that we distin-
guish between authentic and fake images. As the last layer of
the discriminator, D, a classifier module is linked to account
for it. Our goal is to generate fake images, y, using the input
image x, target domain label, c, and target domain style, s.
To be clear about the particular features of each domain, we
classify y into its right domain with the use of an auxiliary
classifier. Using domain classification loss, the discriminator,
D, and the generator, G, are both tuned to perform faultless
image classification of real and fake. The following Equation 2
is used to optimize D using domain classification loss. During
training, we are provided both the original domain label,
c′, and the input images, x. Using the estimated probability
distribution Dcls(c

′|x) and the help of real image classification
into its proper domain c′, D optimizes itself by minimizing
Lreal
cls .

Lreal
cls = Ex,c′ [−logDcls(c

′|x)] (2)

For optimizing G, we need to make it more efficient so that it
can generate more domain specific realistic images. G tries to

minimize the domain classification loss of its own generated
fake images. This objective can be defined as Equation 3.

Lfake
cls = Ex,c,s[−logDcls(c|G(x, c, s)] (3)

Style reconstruction loss: The generator is used twice to
ensure correct image-to-image translation: once to create a
fake image y of a target domain c from an actual image x
and a target domain style s. Subsequently, rebuild the input
image using the fake image y, c′, the input image’s original
domain, and s′, the original domain style code. In line with
earlier methods, we employ cycle consistency loss [4] as in
Equation 4 to achieve this.

Lrec = Ex,c,c′,s,s′ [∥x−G(G(x, c, s), c′, s′)∥1] (4)

To calculate reconstruction loss, we use L1 Distance. Previous
objectives helped G generate realistic and domain-specific im-
ages, but now, with the goal of minimizing reconstruction loss,
G can also preserve the maximum high-level features of real
images to maintain individuality and control diversity. Eventu-
ally, by considering all of these loss functions, the generator G
and the discriminator D are optimized by following Equations



5 and 6, where λcls and λrec are weighting factors to control
the effect of domain classification loss and style reconstruction
loss, respectively. Following the implementation of StarGAN
[5], λcls has been set to 1 and λrec has been set to 10.

LG = Ladv + λclsLfake
cls + λrecLrec (5)

LD = −Ladv + λclsLreal
cls (6)

IV. IMPLEMENTATION DETAILS

A. Dataset Description:

In this study, the University of Chicago’s Chicago Face
Database (CFD) was employed [13]. The dataset is solely
meant to be used for research purposes and is accessible
online upon request. It provides numerous usable extensions in
addition to the primary image set. The dataset contains high-
resolution images of men and women between the ages of 17
and 65 from various ethnic backgrounds. The primary collec-
tion, CFD, has 597 distinct images of self-identified male and
female people from the United States who are of various racial
backgrounds, including Asian, Black, White, and Latino. In
addition to a few joyful, depressed, and scared emotions, this
set mostly consists of neutral facial expressions. The CFD-MR
[14] and CFD-INDIA [15] extension sets have been developed
for multiracial faces and Indian faces, respectively. There are
88 unique people with distinct facial expressions in CFD-MR,
while for CFD-INDIA, the number is 142. We limited our first
experimentation to images of White, Black, and Asian males
with neutral facial expressions. We will also be including
more variants in subsequent studies. These three classes are
represented by the distribution of male and female faces:

Asian (male:52, female:57), Black (male:231, female:295),
and White (male:288, female: 236). This distribution makes
it easy to identify the issue of class imbalance, which has a
negative impact on the outcome overall.

B. Network Architecture:

The model architecture is inspired from the implementation
of both StarGAN [5] and StarGAN-v2 [6] adopting baseline
from DIAT [16], CycleGAN [4], and ICGAN [17]. We also
try to do experimentation with StyleGAN2 [10].

Generator: Three layers make up the generator network:
downsampling, bottleneck, and upsampling. The first convo-
lutional layer with a stride of 1 and a kernel size of 7×7 pro-
cesses the three-channel input images. In the generator portion
of Figure 2, the notation IN denotes instance normalization.
Downsampling is accomplished by two more convolutional
layers with a kernel of 4 × 4 and a stride of 2. A bottleneck
made up of nine residual blocks with a kernel of 3 × 3 and
a stride of 1 follows the downsampling layer. Two transposed
convolutional layers of the 4× 4 kernel and stride 2 make up
the upsampling module. Instance normalization and the ReLU
activation function were employed in each of the preceding
hidden layers. After the upsampling layer, the feature maps
are converted from the depth of 64 to the depth of 3 for
the purpose of creating RGB fake images using an output
convolutional layer consisting of kernel 7 × 7, stride 1, and
hyperbolic tangent activation function.

Style Extractor: The input for the style extractor network
is the target label c and the latent code z. The latent code
represents a Gaussian distribution sample. The extracted style
code, s, is intended to be 256 (depending on the real image

Fig. 3: Issues StarGANv2 and StyleGAN2 face for reference-guided image translation using the CFD dataset: (a) High-level
attributes (hair style, skin color) are transferred without preserving source individuality for the highlighted face in red. (b)
The highlighted column in red share a single individuality from source with most low-level attributes (expression, pose, eye
orientation) preserved and carrying style from reference but the row-wise synthesis (highlighted in blue) results in changing
the person’s individuality, (c) Some high-level attributes are transferred randomly for highlighted faces but the race conversions
are incorrect.



(a) White to target domains (b) Asian to target domains (c) Black to target domains

Fig. 4: Domain-style guided image synthesis with RaceGAN using the CFD dataset: (a) White to Asian, Black, and White,
(b) Asian to Asian, Black, and White, and (c) Black to Asian, Black, and White.

size), whereas the latent code’s dimension is set to 16. With
specific branches for every domain, the network primarily
consists of a multilayer perceptron [18]. Both shared and
unshared layers are part of the network’s architecture. All
domains have four completely linked shared layers, and each
domain also has three fully connected unshared layers of
its own. These layers have a set hidden dimension of 512.
For each layer, the rectified linear unit (ReLU) is utilized
as the activation function. An intermediate representation,
h, is provided by the shared layers and is used to build
domain-specific style code, s, by passing it via domain-specific
unshared layers based on c. Custom mappings of unshared
layers enable the style code to be more domain-specific. A
thorough overview of this network is shown in Figure 2.

Discriminator: The discriminator network is composed of
three layers, as shown in Figure 2: input, hidden, and output.
For discriminator, no normalization is used. Before entering
the hidden layer, the input images are convoluted by a 4× 4
kernel of stride 2. Leaky ReLU [19] activation and five more
layers of comparable utilities from the input layer make up
the Hidden layer. The two layers that define the subsequent
convolutional output layers are the classification layer, Dcls,
which predicts the input domain, and the discriminating layer,
Dsrc, which generates the probability distribution for the real
or fake decision-making.

C. Training:

We use data augmentation by employing random probability
horizontal flipping, 1◦ and 2◦ random rotation. Due to the high
resolution of the images, we isolate the most significant region
center cropping at 1200×1200limiting to the face. The images
are then resized to 256 × 256. Because there aren’t enough
images in the dataset, we utilize 95% of the data for training
and randomly choose 5% for testing. The number of batches
is sixteen. Both the generator and the discriminator use an
adaptable learning rate. For both, the starting learning rate is
set at 0.0001, and it progressively decreases with each 10th

iteration. ADAM is used as an optimizer with β1 = 0.5 and

β2 = 0.9. For improved performance, the model must train
through at least 400,000 iterations. Model checkpoints and
sample visuals are stored after every 1000 iterations.

V. EXPERIMENTS

A. Qualitative Evaluation:

Considering all the specifications, we analyze other image-
to-image translation models and compare the visual results
with our model for qualitative assessment. Below is a list of
the primary observations that are taken into account during the
racial feature translation experiment:

• Racial features (e.g., demographic skin color, eye size,
ratio of upper and lower lips) should be translated.

• Pose and expression should be preserved.
• High-level semantics (e.g., makeup) should be preserved.
• Individual identities should be preserved.
Some of the StarGANv2 [6] and StyleGAN2 [10] imple-

mentation’s findings are shown in Figure 3. StarGANv2 [6] is
incredibly efficient at translating images with high quality. The
generator, discriminator, mapping network, and style encoder
are the four components that make up the model. Domain-
specific style codes are retrieved from reference images us-
ing the style encoder. The generator uses these style codes
in conjunction with the original image to produce domain-
specific images that follow reference styles. Pairs of Asian
and Black faces are utilized as reference images, while some
multiracial faces are used as source, as Figure 3a illustrates. It
is evident from analyzing the findings that some of the low-
level semantics (like skin tone) and high-level semantics (like
hairstyle) of the reference images were modified. Reversing
the source and reference inputs in Figure 3b reveals a similar
behavior. However, the synthesized images cannot be regarded
as indicative of the source or the reference for any of the test
instances. Later, we also explored StyleGAN2 [10] which is
widely known for adopting progressive growth architecture
to produce the most realistic, high-resolution images. This
model does image synthesis guided by references. Figure 3c
illustrates the experiment’s visualization. It is clear from the



Fig. 5: t-SNE visualization of: (a) original distribution of training data; (b) latent code of training data generated from the
encoder module of the generator; (c) original distribution of test data; (d) latent code of test data generated from the encoder
module of the generator, where Class 0, Class 1, and Class 2 represent Asian, Black, and White classes, respectively.

illustration that the reference style has a significantly unpre-
dictable influence on the synthesized images. The produced
images’ first column (highlighted in red) appears to have an
incorrect style transfer. There has been no transfer of facial
features or skin tone. The last synthesized image uses a
Multiracial reference with a White source, but the resulting
image depicts a Black person, which is inappropriate.

Referring to Figures 4a, 4b, and 4c, we may assess how
well our RaceGAN performed to meet the objectives. All
these visuals, for comparison, comprise many source do-
main instances together with their corresponding cross-domain
translated images and self-domain reconstruction images. It
is evident from Figure 4a that White faces’ racial traits
are altered in order to translate them into the target cross-
domains. For example, the skin tone changes to a yellowish
tone when the target domain is Asian, making the eyelids
less noticeable and puffier. All of the photos for the Black
target domain feature a dark brown complexion, prominent
jawbones, a prominent forehead, and fuller lips. Above all,
each image retains its individuality and distinguishes itself
from other images of the same race. However, only high-level
characteristics and postures are preserved when manipulating
racial features. Additionally, the White-to-White self-domain
translation appears to be exact and suitable. Despite their lack
of sharpness and resolution, these synthetic images accomplish
the desired result. Figures 4b and 4c show similar phenomena.
However, it should be noted that while the model does rather
well when converting Black images to White, it has trouble
producing flawless Asian faces. One possible explanation is
that there is an imbalance in the dataset.

B. Latent Space Exploration

For a better understanding of the model’s performance, we
tried to get insights from the latent space of the generator.
We redesigned the model as an auto-encoder network and
extracted latent code generated from the encoder. This latent
code is used further by the decoder to reconstruct the con-
verted images. We used a non-linear dimensionality reduc-
tion approach called t-SNE (t-distributed Stochastic Neighbor

Embedding) [20] for visualizing the high-dimensional data in
2D space. From Figure 5, the original distribution and the
latent distribution for both the training and testing sets can be
visualized. Each point in the original distribution of Figures 5a,
5c represent training and testing images, whereas for the latent
distribution in Figures 5b, 5d, the points indicate the original
images and the other two race conversions representing one
single point from the original distribution. The difference is
easily noticeable in the latent distribution, where the model
has perfectly clustered the latent codes into three clusters
representing each class. Figure 6 shows the mapping of input
images from the original data distribution to the latent distribu-
tion of target classes. As it can be clearly seen, the translated
images are effectively clustered within their corresponding
racial region in the latent space.

C. Quantitative Evaluation:

In order to provide a quantitative assessment, we employ a
multi-class classifier that utilizes RaceGAN-generated images
and InceptionResNetv1 from facenet, which is specifically
designed for face recognition [21]. Three experimental cat-
egories are used to complete the total evaluation: (a) training
with self-domain translated images and testing with both
self-domain and cross-domain translated images; (b) training
with self-domain translated images and testing with cross-
domain translated images; (c) training and testing with cross-
domain translated images. Cross-domain translation is the
translation into other domains, such as Asian to White and
Black, whereas self-domain translation is the translation into
the input domain (i.e., Asian to Asian). We utilize self-
domain translated images of size 256 × 256 instead of the
high-resolution images from the dataset since it facilitates
the model’s comparison of features with test images of size
256× 256. As we can see from Table I, all of the evaluation
metrics are more than 92% when we train the model using
self-domain images and test it against images from both self-
domain and cross-domain. Furthermore, even when testing
against cross-domain translated images without the provision
of self-domain translated images, this value retains up to



Fig. 6: Visualization of original test data mapped in the trained
latent space (center) and their respective translation for target
domains. Note the clear clustering after translation.

TABLE I: Comparison of the performance of race classifica-
tion on translated images produced by RaceGAN.

Experiment Setting Accuracy Precision Recall F1-score
SSC 92.4% 92.9% 92.7% 92.4%
SC 88.9% 90.1% 88.9% 88.9%
CC 98.3% 98.5% 98.3% 98.3%

SSC = Self-domain training - Self & cross-domain testing, SC = Self-domain
training - Cross-domain testing, CC = Cross-domain training & testing

90%. This demonstrates that the characteristics of our domain-
translated images are similar to those of the actual images that
correspond to certain domains. Additionally, when we train
the model with only cross-domain translated images and test
it with cross-domain images, the accuracy and other metrics
climb to 98%, indicating that the model is able to identify
important features within cross-domain translated images.

VI. CONCLUSIONS

In this paper, we propose RaceGAN, a multi-domain image-
to-image translation model for racial attribute manipulation
of human face images. The model is scalable for several
target domains, requiring only a single generator and a single
discriminator. It employs a style extractor module to extract
domain-specific low-level style code from a target domain and
fuse it with the input image of the source domain to generate
racially translated images of the target domain, keeping high-
level styles invariable. The model is also capable of separating
racial domains in latent space, where each domain consists of
the same set of images, either in original or converted formats.
However during the experiment, male faces from just three
prominent races have been investigated. We’ll experiment with
different racial groups including male and female faces in the
future while trying to make the translation better.
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