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Abstract With the development of easy-to-use and

sophisticated image editing software, the alteration of

the contents of digital images has become very easy

to do and hard to detect. A digital image is a very

rich source of information and can capture any event

perfectly, but because of this reason, its authenticity

is questionable. In this paper, a novel passive image

forgery detection method is proposed based on Local

Binary Pattern (LBP) and Discrete Cosine Transform

(DCT) to detect copy-move and splicing forgeries. First,

from the chrominance component of the input image,

discriminative localized features are extracted by ap-

plying 2D DCT in LBP space. Then, support vector

machine (SVM) is used for detection. Experiments car-

ried out on three image forgery benchmark datasets

demonstrate the superiority of the method over recent
methods in terms of detection accuracy.

Keywords Copy-move forgery, Image splicing,

Forgery detection, Image forensics, LBP, DCT, SVM

1 Introduction

In today’s visual world, digital images have become an

integral part of our everyday life due to their ability to

convey a wide range of information in a compact way

and the availability of digital image acquisition tools.

On the other hand, one needs not to be skillful to alter

the contents of a digital image without leaving obvi-

ous traces of changes because of the development of

user-friendly image editing tools. It has become easy
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to use digital images for nefarious designs and nega-

tive propaganda on social and electronic media, and

hiding the facts, which can be crucial for criminal in-

vestigation, medical imaging, scientific discoveries, etc.

As such, the authenticity of digital images cannot be

taken for granted.

Image splicing and copy-move are two very harmful

and commonly used types of forgery. Some techniques

have already been proposed to detect such forgeries [1].

These techniques are either intrusive (active) or non-

intrusive (passive, blind) [2]. An active technique de-

tects tampering by verifying the integrity of a signature

(embedded by a digital camera) such as watermark; it

has a restricted scope due to the limitations of most of

the cameras to embed such signatures [1]. On the other

hand, a non-intrusive technique has a widespread scope

since it depends only on analyzing the characteristics of

a digital image[3].

Passive techniques can be broadly classified into learn-

ing based [4] and block-matching based methods [5][6].

The latter category of methods detects forgery by local-

izing the regions, which have been tampered by copy-

paste. It is useful for sensitive applications like evidence

in court rooms, insurance claims, etc., but it is time-

consuming and unsuitable for applications like social

media, where a bulk of images is being shared every day,

and it is enough to verify whether an image is forged or

not. In this paper, we propose a learning based passive

technique that detects copy-move and image splicing

forgeries. The challenge in a learning based method is

how to model the change incurred by tampering. The

key idea of the proposed method was inspired from an-

alyzing the tampering procedure. When tampering is

done, it disturbs the local distribution of micro-edge

patterns by introducing new micro-patterns in the in-

terior of the pasted region and sharp edges along its
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boundary, and thus it changes its regularity and local

frequency distributions [7][8]. Keeping in view this fact,

we propose a novel way of modeling these changes us-

ing LBP (which encodes the micro-edge patterns) and

DCT (which encodes the frequency content). We focus

on the chromatic channel, which is insensitive to hu-

man vision and captures the tampering artifacts better

than other color channels [9][10]. Discriminative local-

ized features are extracted by applying 2D DCT in LBP

space. Support Vector Machine (SVM) is used for classi-

fication. This idea was initially presented in [11], where

the focus was only on splicing detection, this paper in-

cludes copy-move detection as well. In addition, results

of intensive experiments are reported, which were per-

formed to analyze the robustness of the method against

post-processing operations, tampered region shape and

forgery type. Moreover, the effectiveness of our way of

integrating LBP and DCT is validated. To demonstrate

the effectiveness of the method, extensive results are re-

ported for three benchmark datasets and comparison is

made with existing methods.

The rest of the paper is organized as follows. Section

2 reviews related works, Section 3 introduces the pro-

posed method. The experimental and evaluation details

are discussed in Section 4 and the results are presented

and discussed in Section 5. Comparison with state-of-

the-art works is given in Section 6. Finally, Section 7

provides conclusion and future work.

2 Related Works

Recently, many passive methods for the detection of

copy-move and image splicing forgeries have been pro-

posed. In the following paragraphs, we give an overview

of the representative methods. We focus only on state-

of-the-art learning based methods. The main differen-

tiating factor among these techniques is the way the

structural changes introduced by tampering are mod-

eled.

Some researchers used DCT to model tampering

changes. The splicing detection method by Shi et al.

[7] models tampering changes using statistical features

extracted from 2-D arrays generated by applying multi-

size block discrete cosine transform (MBDCT). It gives

an accuracy of 91.40 ± 1.87 on Columbia Image Splic-

ing Detection Evaluation Dataset (Columbia) [12] with

SVM. The method by Zhen et al. [13] represents the

tampering changes using moment features extracted from

2D-arrays generated by applying MBDCT and image

quality metrics (IQMs) and uses SVM for classification.

It achieves an accuracy of 87.10% on Columbia. Zhang

et al. [8] use LBP to extract features from 2-D arrays

generated by MBDCT, PCA for dimensionality reduc-

tion and SVM for classification. This method results in

an accuracy of 89.93±1.50 on Columbia.

Wei et al. [14] model the tampering changes us-

ing stationary distribution of the edge image extracted

from the chroma component using a finite-state Markov

chain and use SVM as a classifier. This method achieves

an accuracy of 95.6% on CASIA TIDE v2.0 [15]. He et

al. [16] extended this method by including Markov fea-

tures generated from the transition probability matrices

in DCT and DWT domains. Using SVM-RFE classifier

with recursive feature elimination, this method gives an

accuracy of 89.76 on CASIA TIDE v2.0.

Dong et al. [17] model the discontinuity of image

pixel correlation and coherency caused by splicing using

statistical features extracted from run-length represen-

tation and edge statistics of the image and use SVM as

a classifier. The accuracy of this method is 84.36% on

Columbia. Zhao et al. [10] explored the effect of differ-

ent color spaces on splicing forgery detection using four

gray level run-length run-number (RLRN) vectors. This

research revealed that chroma channels are more effec-

tive in forgery detection. Their technique gives the best

accuracies of 94.7% and 85.0%, respectively, on CASIA

TIDE v1.0 [15] and Columbia Color Image Splicing De-

tection Evaluation Dataset (Columbia-color)[18].

Texture descriptors like LBP and Webre’s local de-

scriptor (WLD) have also been used for modeling tam-

pering traces. Hussain et al. [19] employ multiscale WLD

to represent the tampering traces and SVM for classi-

fication, and compare it with LBP. WLD achieves an

accuracy of 94.29% whereas LBP results in 90.48% ac-

curacy on CASIA TIDE v1.0. Muhammad et al. [20]

model tampering changes using steerable pyramids and

LBP (SPT-LBP) and use SVM as classifier. This method

achieves an accuracy of 94.89% on CASIA TIDE v1.0.

All the methods discussed above differ only in the

way they model the structural changes caused by forgery.

The success of a method depends on how accurately it

represents these changes. We propose a method that

exploits LBP and DCT in a novel way to model tam-

pering changes.

3 Image Forgery Detection Method

Image tampering (copy-move or splicing) is done simply

by copying and pasting. The pasting operation intro-

duces structural changes in the host image. The micro

texture patterns inside and along the boundary of the

pasted region become different and discontinuity is in-

troduced along its edges. In this way, local frequency

distribution is changed and there is no more correla-
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tion between image pixels is the region [7][8]. Captur-

ing these structural changes is a key step to successful

detection of tampering. Since the core idea behind LBP

is to capture the occurrences of different micro patterns

such as edges [21], LBP operator is suitable for high-

lighting the tampering artifacts and making them more

pronounced in the host image. The next step is to trace

the changes in the local frequency distribution of the

LBP image. This is done by first transforming LBP im-

age into frequency domain using block-based DCT and

then computing the statistical measures of individual

DCT coefficients across all blocks.

The system design of the proposed technique is shown

in Figure 1. The main components of the system are:

preprocessing, feature extraction (modeling the tam-

pering traces) and classification. The detail of each com-

ponent is given below.

3.1 Preprocessing

Chroma channels encode tampering traces batter than

any other channel [11]. As such, first, RGB image is

transformed to YCbCr image, where Cb and Cr are

chroma channels. Human vision perceives the luminance

component much better than the chroma components

[22]. Therefore, most of the tampering traces, which

cannot be detected by naked eyes, are hidden in the

chroma channels.

3.2 Modeling the Tampering Traces

According to our idea, we model the tampering traces

using LBP and 2D DCT. A systematic diagram of our

approach is shown in Figure 2. First, for localization,

a chroma component is divided into overlapping blocks

with 50% overlap. Next, due to the ability of LBP to

capture the occurrences of different micro patterns [21],

LBP operator is applied on each block to highlight the

introduced tampering artifacts (i.e. micro-edges inside

the pasted region and the sharp edges along its bound-

ary) and to make them more pronounced in the host

image. Finally to capture the changes in the local fre-

quency distribution, each block of LBP codes is trans-

formed into frequency domain using 2D DCT, the stan-

dard deviations of the corresponding DCT coefficients

are computed and arranged as a feature vector.

LBP is a local binary operator that discriminates

different texture micro-patterns. The LBP operator is

denoted by LBPP,R and is defined as follows [23]:

LBPP,R =

P−1∑
i=1

S(Pi − Pc)2
i (1)

where P is the number of points Pi on the circular

neighborhood (of radius R) of the current pixel Pc, and

the threshold function S(x) is defined as:

S(Pi − Pc) =

{
1 Pi − Pc ≥ 0

0 Pi − Pc < 0
(2)

3.3 Classification

Image forgery detection is a two-class problem (i.e. au-

thentic vs. tampered). As Support Vector Machine (SVM)

has given excellent performance in many two-class prob-

lems, so in the proposed technique, SVM with Radial

Basis Function (RBF) is employed for classification.

SVM classifier defines an optimal hyper-plane that sep-

arates the data into two different classes. The optimal

hyper-plane that enhance the generalization of the clas-

sifier is the one with maximum margin (i.e. maximum

distance between the hyper-plane and the closest sam-

ples known as support vectors) [24]. SVM uses kernel

functions to map the samples to a higher dimension

space where the classes become linearly separable [25].

4 Experimental Setup

In this section, we provide an overview of the datasets

and the evaluation policy.

4.1 Description of Datasets

The proposed system is evaluated using three bench-
mark datasets: CASIA Tampered Image Detection Eval-

uation Database Version 1.0 (CASIA TIDE v1.0) and

Version 2.0 (CASIA TIDE v2.0) or (CASIA 2010) and

Columbia Image Splicing Detection Evaluation Dataset

(Columbia) [12]. Table 1 provides a description of these

datasets.

4.2 Evaluation Policy

For classification, we employed SVM with radial basis

funtion (RBF) as kernel, because it has shown promis-

ing performance results in many applications. SVM with

RBF kernel involves two parameters: C and γ; to find

their best values, we used a loose and fine grid-search

method [26], the best values of C and γ were found

to be 25 and 2−5.The performance was evaluated using

10-fold cross validation and commonly adopted perfor-

mance measures: accuracy, true positive rate (TPR),

true negative rate (TNR) and area under ROC curve
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Fig. 1: The system design of the proposed method.

Fig. 2: The detail of the process of modeling the tampering traces.

Table 1: Description of the Datasets.

Dataset No. of Images Image Type Image Size
Authentic Tampered Total

CASIA 1 800 921 1,721 Jpg 384×256, 256×384
CASIA 2 7,491 5,123 12,614 Jpg, tif, bmp 240×160 to 900×600
Columbia 183 180 363 tif, bmp 757×568 to 1152×768

(AUC), which are defined as follows: Accuracy = (TP

+ TN) / (TP + TN + FN + FP), TPR = TP / (TP

+ FN), TNR = TN / (TN + FP), where TP (True

Positive) is the number of tampered images, which are

classified as tampered; FN (False Negative) is the num-

ber of tampered images, which are classified as authen-

tic; TN (True Negative) is the number of authentic im-

ages, which are classified as authentic, and FP (False

Positive) is the number of authentic images, which are

classified as tampered ones.

ROC curve is used to visualize the performance of

a binary classifier. It plots TPR vs. FPR for different

thresholds of the classifier outcomes. AUC is a way to

quantify an expected performance of ROC which equals

the probability that a classifier can classify a random

positive instance higher than a negative one. A per-

fect performance is represented by AUC=1 [27]. More-

over, to assess whether the performance difference of

two methods is statistically significant, the paired t-

test with 95% confidence level is performed. Finally,

after the statistical test if we do not find significant dif-

ference between two methods, then we choose the one

that has less running time.

The proposed system involves different parameters

such as: color channel, block division type and size, and

LBP parameters. We performed extensive experiments

on CASIA v1.0 considering different combinations of

these parameters to figure out the set that results in

the best perform. We found that chrominance channels,

non-overlapping blocks of size 16×16, LBP parameters

R = 8, R = 1 give the best performance, see detail

in [12] and Figure 3. For the reported results, we used

these parameters.
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Fig. 3: The effect of different block types and sizes on
CASIA v1.0 dataset.

5 Results and Discussions

In this section, first we report and discuss the results of

extensive experiments, which we performed to examine

the robustness of the method against post-processing

operations, shape of copied and pasted region, and forgery

types using CASIA v1.0, and then we present the re-

sults on CASIA v2.0 and Columbia.

5.1 Effects of Post-processing Operations

In CASIA v1.0, three post-processing operations were

applied on the copied region(s) before pasting: resize,

deform and rotate. In some cases, either a combination

of two operations or none of these operations were ap-
plied. Figure 4 shows the results for each category. The

detection accuracy is the highest in case of rotation,

deform and resize+deform. One simple justification of

such results is that in these cases, there is a significant

change inside and along the boundary of the tampered

regions. In general, the method is robust against differ-

ent post-processing operations.

5.2 Effect of the Shape of Tampered Region

CASIA v1.0 used copied regions of four shapes: circular,

rectangular, triangular and arbitrary. Figure 5 shows

that the best result is achieved against arbitrary shape,

whereas it is poor in case of circular shape. The reason

is related to the type of micro-edge patterns that are

introduced by each region shape. Circular shape intro-

duces similar micro-edge patterns whereas the arbitrary

shape incorporates different micro-edge patterns mak-

ing the tempering traces more detectable.

Fig. 4: Effects of post-processing operations on the detection
accuracy (%) using CASIA v1.0.

Fig. 5: Effects of the shapes of regions on the detection
accuracy (%) using CASIA v1.0.

5.3 Effect of Forgery Type

Copy-move and splicing are similar from the tampering

procedure point of view but they are different because

they introduce different artifacts in the tampered im-

age; in case of copy-move, source and target image is the

same but in case of splicing, source and target are differ-

ent. CASIA v1.0 contains 461 copy-move forged images

and 460 spliced images. For the copy-move experiment,

all the spliced images were removed from the dataset;

the same thing was done for splicing experiment. Fig-

ures 6 and 7 show the ROC curves for copy-move and

splicing, respectively. It can be observed from Table 2

that the proposed method performs well in detecting

both types of forgery. However, the detection perfor-

mance of splicing forgery is slightly better than that

for copy-move. The reason is that splicing introduces



6 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

Fig. 6: ROC curves for Copy-move forgery detection using
Cr, Cb and both (Cr+Cb) and CASIA v1.0.

Fig. 7: ROC curves for splicing forgery detection using Cr,
Cb and both (Cr+Cb) and CASIA v1.0.

more artifacts than copy-move since the source and the

target are different images.

5.4 Experiments with CASIA v2.0 and Columbia

Datasets

To test the robustness and consistency of the method,

we performed experiments with CASIA v2.0 and Columbia

datasets. Table 3 lists the detection results using the

Cr, Cb channels and their fusion (Cr + Cb) on CA-

SIA v2.0 and Columbia. A comparison of the detection

accuracies on CASIA v1.0, CASIA v2.0 and Columbia

datasets is illustrated in Figure 8. The detection rate

on these datasets is comparable, which indicates that

method is robust and consistent. It can be observed

Fig. 8: Comparison of the detection accuracies on CASIA
v1.0, CASIA v2.0 and Columbia datasets using Cr, Cb and

Cr + Cb

that Columbia with Cr channel achieves the best per-

formance. In general, Cr performs better on all datasets.

5.5 Effectiveness of Combining LBP with DCT

As we discussed, LBP operator highlights tampering

artifacts and then block based DCT transfers the LBP

image into the frequency domain to capture the local

frequency fluctuations, caused by these artifacts, using

statistical measures. In this section, we investigate the

effectiveness of integrating LBP and DCT. To achieve

this goal, we implemented the method by extracting the

features using only one of them at a time. The results

of using LBP alone, just DCT and their integration are

shown in Figure 9. It can be observed that the integra-

tion of LBP and DCT achieves higher results. Moreover,

we notice that DCT has a stronger effect on the detec-

tion performance than LBP. This observation supports

what we mentioned above, that the role of LBP is to

highlight the tampering artifacts, and the key factor

in forgery detection is to trace the effect of these arti-

facts in the local frequency distribution which is done

by using DCT.

6 Comparison with Existing Methods

In the literature, there exist some image forgery detec-

tion techniques that either use DCT or LBP. To our

best knowledge, there is only one technique that com-

bines LBP with DCT [8]. Zhang et al. [8] employed LBP

and DCT for feature extraction in a different way. Their

method was evaluated on Columbia dataset using SVM

with RBF kernel. For the validation of our approach, it

is important that we thoroughly compare our method
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Table 2: Performance (mean±std) for copy-move and splicing forgery detection on CASIA v1.0 dataset.

Fogery Type Channel Accuracy(%) TPR(%) TNR(%) AUC

Copy-move Cr 96.63 ± 1.73 97.38 ± 1.71 95.97 ± 2.28 0.96 ± 0.01
Splicing Cr 96.41 ± 1.45 95.48 ± 2.62 97.28 ± 2.26 0.96 ± 0.01
Copy-move Cb 95.86 ± 1.9 96.27 ± 2.83 95.51 ± 3.45 0.95 ± 0.02
Splicing Cb 96.52 ± 1.83 95.94 ± 3.45 97.09 ± 2.98 0.95 ± 0.02
Copy-move Cr+Cb 96.30 ± 1.93 97.03 ± 2.82 95.71 ± 2.67 0.96 ± 0.02
Splicing Cr+Cb 97.5 ± 1.36 96.75 ± 3.02 98.24 ± 2.53 0.97 ± 0.01

Table 3: Detection performance (mean±std) on CASIA v2.0 and Columbia datasets.

Fogery Type Channel Accuracy(%) TPR(%) TNR(%) AUC

CASIA-2 Cr 97.41 ± 0.33 98.01 ± 0.59 96.93 ± 0.63 0.97 ± 0.004
Columbia Cr 97.77 ± 2.19 98.30 ± 3.78 97.07 ± 4.15 0.97 ± 0.03
CASIA-2 Cb 97.5 ± 0.41 98.31 ± 0.44 96.88 ±0.56 0.97 ± 0.005
Columbia Cb 95.27 ± 3.47 95.12 ± 3.98 95.52 ± 5.93 0.95 ± 0.04
CASIA-2 Cr+Cb 97.5 ± 0.31 98.45 ± 0.41 96.84 ± 0.56 0.97 ± 0.04
Columbia Cr+Cb 96.66 ± 2.86 96.33 ± 4.31 79.09 ± 4.09 0.96 ± 0.03

Fig. 9: The effectiveness of combining LBP and DCT in the
proposed method.

with Zhang’s method; we implemented this method us-

ing both grayscale and Cr channel. Our implementation

achieved similar results compared with that of the orig-

inal paper when grayscale images were used (89.93%).

When we tested this method using Cr channel, we found

that the detection performance is better than that of

the grayscale (91.38%). A comparison between the re-

sults of our method and Zhang’s method using Cr chan-

nel is depicted in Figure 10. It can be observed that our

method achieved a higher detection performance. To

check whether this achievement is statistically signifi-

cant, the t-test with 95% confidence level was applied

and significant difference was found. Table 4 presents

a comparison between the proposed method and stat-

of-the-art forgery detection methods, which use SVM

with RBF kernel and the same datasets. It can be ob-

served that the proposed method outperforms the ex-

isting techniques.

Fig. 10: A comparison between the results of the proposed
method (red) and the method in [8] using Cr (blue).

7 Conclusion

In this paper, a novel copy-move and splicing forgery

detection method based on LBP and DCT has been

proposed. The chroma channel of an input image is di-

vided into overlapping blocks and then LBP code of

each block is transformed into DCT domain. Later,

standard deviation of each DCT coefficient of all blocks

is computed and used as features. SVM classifier is used

for classification. The method was extensively evalu-

ated. The experimental results showed that the chroma

channels, when used in the proposed method, outper-

form the other color channels; it further validates the

fact that the chroma channels are more suitable for

forgery detection. The proposed method was evaluated

using three benchmark datasets (CASIA TIDE v1.0,

CASIA TIDE v2.0 and Columbia datasets); it gives al-

most similar results i.e. accuracies of 97%, 97.5% and
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Table 4: Comparison between the detection accuracies (%) of the proposed methods and state-of-the-art methods. .

Method Accuracy (%)
CASIA-1 CASIA-2 Columbia

Proposed method 97.00 97.50 97.77
Muhammad et al.[20] 94.89 97.33 96.39
Hussain et al. [4] 94.29 - -
Zhang et al. [8] - - 91.38
He et al. [16] - 89.76 93.55

97.77%, respectively, on the three datasets, which are

higher than those of other recent methods. It also in-

dicates that the proposed method is robust and con-

sistent. Our future plane is to localize the tampering

regions. Also, apply feature selection techniques and

tuning the parameters using meta-heuristics methods.

Acknowledgements This project was supported by NSTIP
strategic technologies programs, grant number 10-INF1140-
02 in the Kingdom of Saudi Arabia.

References

1. Farid, H., A Survey of image forgery detection, IEEE Sig-
nal Processing Magazine 2(26), 16-25 (2009).

2. Mahdian, B. and S. Saic, A bibliography on blind meth-
ods for identifying image forgery, Signal Processing: Image
Communication 25(6), 389-399 (2010).

3. Shivakumar, B. L. and S. S. Baboo, Detecting Copy-Move
Forgery in Digital Images: A Survey and Analysis of Cur-
rent Methods, Global Journal of Computer Science and
Technology, 10(7), 61-65 (2011).

4. Hussain, M., S. Q. Saleh, Aboalsamh, H., Muhammad, G.,
Bebis, G., Comparison between WLD and LBP descriptors
for non-intrusive image forgery detection, Proc. IEEE Inter-
national Symposium on Innovations in Intelligent Systems
and Applications (INISTA 2014), (2014).

5. Muhammad, G., Hussain, M., Bebis, G., Passive copy
move image forgery detection using undecimated dyadic
wavelet trans- form, Digital Investigation, 9(1), 49-57
(2012).

6. Jaberi, M., Bebis, G., Hussain, M., Muhammad, G., Ac-
curate and robust localization of duplicated region in copy-
move image forgery, Machine Vision and Applications,
25(2), 451-475 (2014).

7. Shi, Y. Q., C. Chen, A natural image model approach to
splicing detection, Proc. 9th workshop on Multimedia and
Security, Dallas, Texas, USA, 51-62 (2007).

8. Zhang, Y., C. Zhao, Revealing Image Splicing Forgery
Using Local Binary Patterns of DCT Coefficients, Com-
munications, Signal Processing, and Systems, 202, 181-189
(2012).

9. Johnson, M. K. and H. Farid, Exposing digital forgeries
through chromatic aberration, Proc. 8th workshop on Mul-
timedia and Security, Geneva, Switzerland, 48-55, (2006).

10. Zhao, X., J. Li, Detecting Digital Image Splicing in
Chroma Spaces, Digital Watermarking, 6526: 12-22 (2011).

11. Alahmadi, A. A., Hussain, M., Aboalsamh, M., Muham-
mad, G., Bebis, G., Splicing image forgery detection based
on DCT and Local Binary Pattern, IEEE Global Con-
ference on Signal and Information Processing (GlobalSIP
2013) (2013).

12. Ng, T.-T. and S.-F. Chang, A Data Set of Authentic and
Spliced Image Blocks, ADVENT Technical Report, #203-
2004-3, Columbia University (2004).

13. Zhen, Z., K. Jiquan, An Effective Algorithm of Image
Splicing Detection, Proc. International Conference on Com-
puter Science and Software Engineering, Wuhan, Hubei,
1035 - 1039 (2008).

14. Wei, W., D. Jing, Image tampering detection based on
stationary distribution of Markov chain, 17th IEEE Inter-
national Conference Image Processing (ICIP 2010), Hong
Kong, 2101 - 2104 (2010).

15. CASIA, Image Tampering Detection Evaluation
Database, http : //forensics.idealtest.org.

16. He, Z., W. Lu, Digital image splicing detection based
on Markov features in DCT and DWT domain, Pattern
Recognition 45(12), 4292-4299 (2012).

17. Dong, J., W. Wang, Run-Length and Edge Statistics
Based Approach for Image Splicing Detection, Digital Wa-
termarking, 5450, 76-87, (2009).

18. Yu-Feng, H. and C. Shih-Fu, Detecting Image Splicing us-
ing Geometry Invariants and Camera Characteristics Con-
sistency, IEEE International Conference on Multimedia and
Expo, Toronto, Ontario, Canada (2006)..

19. Hussain, M., Muhammad, G., Saleh, S., Q., Mirza,
A., M., Bebis, G., Image forgery detection using multi-
resolution Weber local descriptors, Proc. IEEE EUROCON,
Zagreb, 1570 - 1577 (2013).

20. Muhammad, G., M. Al-Hammadi, Hussain, M., Bebis,
G., Image forgery detection using steerable pyramid trans-
form and local binary pattern, Machine Vision and Appli-
cations, 25(4), 985-995 (2014).

21. Zhang, G., X. Huang, Boosting Local Binary Pattern
(LBP)-Based Face Recognition, Advances in Biometric Per-
son Authentication, 3338, 179-186 (2005).

22. B. B. Lee, J. Pokorny, Luminance and chromatic mod-
ulation sensitivity of macaque ganglion cells and human
observers, JOSA A,7, 2223-2236(1990).

23. Di, H., S. Caifeng, Local Binary Patterns and Its Applica-
tion to Facial Image Analysis: A Survey, IEEE Transactions
on Systems, Man, and Cybernetics, 41(6), 765-781 (2011).

24. Cortes, C. and V. Vapnik, Support-Vector Networks, Ma-
chine Learning, 20(3), 273-297 (1995).

25. Hussain, M., Wajid, S., K., Elzaart, A., Berbar, M.,
A Comparison of SVM Kernel Functions for Breast Can-
cer Detection, Proc. 2011 Eighth International Conference
on Computer Graphics, Imaging and Visualization (CGIV
2011), Singapore, 145-150 (2011).

26. Chih-wei Hsu , Chih-chung Chang , Chih-jen Lin, A prac-
tical guide to support vector classification, (2010).

27. Sokolova, M., N. Japkowicz, Beyond Accuracy, F-Score
and ROC: A Family of Discriminant Measures for Perfor-
mance Evaluation, Advances in Artificial Intelligence, 4304,
1015-1021 (2006).


