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Fingerprint matching is often affected by the presence of intrinsically low quality fingerprints and various
distortions introduced during the acquisition process. An effective approach to account for within-class
variations is by capturing multiple enrollment impressions of a finger. The focus of this work is on effec-
tively combining minutiae information from multiple impressions of the same finger in order to increase
coverage area, restore missing minutiae, and eliminate spurious ones. We propose a new, minutiae-
based, template synthesis algorithm which merges several enrollment feature sets into a ‘‘super-tem-
plate”. We have performed extensive experiments and comparisons to demonstrate the effectiveness
of the proposed approach using a challenging public database (i.e., FVC2000 Db1) which contains small
area, low quality fingerprints.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Fingerprint matching is among the most widely used biometric
technologies with a broad range of both government and civilian
applications such as driver’s license, social security, passport con-
trol, ATM/credit card, and medical records management, laptop
and cell phone access control [1]. The key challenge in fingerprint
matching is getting a match decision between a pair of fingerprints
from the same finger under various within-class variations. These
variations can be caused by several factors such as non-linear geo-
metric distortions due to skin elasticity, inconsistent finger place-
ment and contact pressure, small sensing area, environment
conditions, and sensor noise. As a result, impressions of the same
finger may be quite different from each other, making matching
very difficult. For example, noise results in missing/spurious minu-
tiae, while small sensing area results in small overlap.

An effective approach to account for within-class variations is
by capturing multiple enrollment impressions. Information from
multiple enrollment impressions can be integrated in two different
ways. The first approach involves matching a given impression (i.e.,
query) against each of the enrollment impressions. The final
matching is obtained by fusing the individual matching results
either at the score level (e.g., maximum score) or at the decision le-
vel (e.g., majority voting). The second approach involves merging
the enrollment impressions into a ‘‘super-fingerprint” by register-
ing the enrollment impressions together and matching the query
against the super-fingerprint. The first approach has shown to in-
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crease accuracy to desired levels, however, its main drawback is
that it increases both storage and time requirements. On the other
hand, the second approach is less space and time consuming but
registering the enrollment impressions accurately is a challenging
issue.

Merging a number of enrollment impressions into a super-fin-
gerprint increases fingerprint area and accounts for low quality
impressions. Fig. 1 shows an example where the overlapping area
between two fingerprints from the same finger is less than 40% of
the overall fingerprint area. Merging can be performed either at the
image level or at the minutiae level. Image level merging, also
known as ‘‘mosaicking”, creates a super-fingerprint image by reg-
istering the enrollment impressions. Minutiae-level merging cre-
ates a super-fingerprint template (i.e., ‘‘super-template”) by
registering the corresponding enrollment minutiae templates. This
approach is simpler and can tolerate non-linear distortions better
than image mosaicking. However, the resulting super-template
could only be used with minutiae-based, fingerprint matching
algorithms.

In this paper, we propose a new, minutiae-based, template syn-
thesis approach which employs a novel hierarchical matching
strategy to combine a number of enrolment minutiae feature sets
into a super-template. Assuming that each finger is represented
by multiple enrollment impressions, the key objective of our ap-
proach is merging the feature sets of each finger into a super-tem-
plate to improve the quality of features used, reduce space
requirements, and improve speed. To build a super-template from
a number of enrollment feature sets, one of the enrollment tem-
plates is selected first to initialize the super-template. Then, the
remaining enrollment feature sets are aligned and merged with
the super-template on an incremental basis. Minutiae in the
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Fig. 1. Small overlapping area problem; the two images shown come from the same
finger, however, the overlapping area between them is less than 40% of the overall
fingerprint area.
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super-template are assigned a weight based on the frequency of
their occurrence in the enrollment feature sets. These weights
serve as a quality measure of the minutiae. To merge an enrollment
feature sets with the super-template, we search for minutiae corre-
spondences between the enrollment template and the super-tem-
plate using a hierarchical matching algorithm.

Our hierarchical minutiae matching algorithm builds upon our
earlier work on Delaunay triangulation-based fingerprint indexing
and matching [2]. We exploit the invariance of features extracted
from Delaunay triangles and accumulate evidence about matching
triangles in a transformation space using voting. To account for
missing and spurious minutiae, the proposed approach explores
the super-template minutiae hierarchically. This is performed by
organizing the minutiae into a hierarchy of Delaunay triangula-
tions, where higher levels of the hierarchy correspond to higher
quality minutiae and lower levels of the hierarchy correspond to
medium and low quality minutiae. Matching is performed hierar-
chically, starting at the top level of the hierarchy and moving down
to lower levels until matching has been accomplished or the last
level of the hierarchy has been reached.

Our hierarchical matching and template synthesis approaches
are closely interrelated. The template synthesis relies on hierarchi-
cal matching to merge the enrollment feature sets into a super-
template while the hierarchical matching relies on template syn-
thesis to build the super-templates. Therefore, once the super-tem-
plates have been built, a similar hierarchical matching algorithm is
employed for recognition. The proposed template synthesis and
hierarchical matching approach is less sensitive to missing and/
or spurious minutiae. Also, it addresses the small overlapping area
problem since the coverage of the super-template increases with
the number of enrollment feature sets merged together. Combin-
ing the enrollment feature sets into a super-template also elimi-
nates the problem of template selection [3]. Finally, this
approach is better suited for updating the template over time.
We have evaluated and compared our approach with related ap-
proaches on a challenging public database (i.e., FVC2000 Db1)
which contains small coverage area, low quality fingerprint
images.

The rest of the paper is organized as follows: In Section 2, we
review the problem of merging a number of fingerprint images
or minutiae feature sets into a super-fingerprint image or a
super-template. Section 3 presents the details of the proposed
hierarchical matching strategy. Our minutiae template synthesis
algorithms is presented in Section 4. Section 5 discusses fingerprint
authentication; results and comparisons are given in Section 6.
Finally, Section 8 presents conclusions and discusses directions
for future research.
2. Background

Algorithms that have been proposed in the literature to com-
bine multiple impressions of a finger are typically based on two
main approaches: (i) mosaicking [4,5], which combines the enroll-
ment impressions at the image level, and (ii) template synthesis
[6,7], which combines the enrollment impressions at the feature
level.

In [4], Ratha et al. used several blending algorithms to tile the
image sequence of a rolling fingerprint grabbed by a large area
scanner. Since the images were obtained by rolling the fingerprint
on the sensor, successive images were assumed to be spatially reg-
istered. In [8], Jain and Ross combined multiple enrollment impres-
sions by aligning the ridges of two images using the iterative
closest point (ICP) algorithm. However, they did not account for
non-linear deformations. In [9], Zhang et al. mosaicked the stream
of swipe fingerprint frames using a minimum mean absolute error
criterion. This technique cannot handle rotation, scale, or shear in
individual frames of the swipe fingerprint images. Moreover, it
does explicitly take non-linear deformations in consideration.

In [10], Choi et al. tried mosaicking different parts of a finger-
print which were collected by having the subject roll and slide
his/her finger on the surface of a small area fingerprint scanner.
Rolling and sliding over a small area sensor can cause severe plastic
distortion and smudging, which degraded the performance of their
system. Although they addressed the small overlapping area prob-
lem, handling missing/spurious minutiae was not explicitly con-
sidered. Shah et al. [5] performed mosaicking by employing a
thin plane spline as a transformation model to account for non-lin-
ear distortions in fingerprints. However, they could not get a cor-
rect alignment in 16% of the cases; they handled these failures
using score-level fusion. Although they showed better results using
mosaicking than the individual enrollment impressions, their sys-
tem is semi-automatic and requires intervention when mosaicking
does not work.

Among the template synthesis methods, Yau et al. [11] com-
pared three transformations for aligning two sets of minutiae for
template synthesis: affine, projective, and topological. Their results
indicated that affine transformation performed better. They dem-
onstrated that template synthesis can lower the number of false
rejections. A modified ICP algorithm was used by Moon et al.
[12] to search for the optimal registration before merging two
minutiae sets. In Ryu et al. [13], a Bayesian estimation approach
was used to merge several enrollment minutiae sets. Toh et al.
[6] created a synthesized template using multiple enrollment fea-
ture sets. Even though they showed significant improvements
using the combined template as compared to a single feature set
that included the center of the finger, the reported accuracy rates
were much lower than current benchmarks.

In [7], Jiang and Ser created and updated a super-template as
the user provided new samples during verification. Similar to our
study, they assigned a weight to each minutia according to its fre-
quency of occurrence. Depending on the weight values, spurious
minutiae can fade away over time while missing minutiae can ap-
pear at some point in time. In contrast to our approach that utilizes
minutiae of various quality for matching, they simply discarded
low quality minutiae by thresholding the weights. They reported
an improvement in accuracy relative to using individual feature
sets; however, no comparisons with other fusion approaches were
shown.

In a recent study comparing image mosaicking versus template
synthesis using thin-plate splines [14], it was found that both
methods improve matching performance, however, template syn-
thesis outperformed image mosaicking. In a related study [12], it
was found that image mosaicking worked better than template
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synthesis when the size of the component images decreased. The
authors justified this result by the fact that the number of spurious
minutiae gets smaller as the image size decreases.

3. Fingerprint matching using Delaunay triangulation
hierarchies

Combining a number of enrollment feature sets into a super-
template requires finding an alignment transformation to register
each of the enrollment feature sets with the super-template. Given
a pair of minutiae sets, one from enrollment and the other from the
super-template, the alignment transformation can be computed by
finding corresponding minutiae in the two sets. Our matching
strategy for template synthesis builds upon our previous work on
fingerprint matching using Delaunay triangulation [2] with some
important extensions to account for missing and spurious minu-
tiae. Readers who are not familiar with this approach are encour-
aged to review Appendices A and B.

A key issue when employing Delaunay triangulation for matching
is that missing or spurious minutiae could change the triangulation
locally by introducing spurious triangles or eliminating important
triangles. As a result, matching quality could be degraded, especially
when the overlap between minutiae sets to be matched is poor.
When multiple impressions of the same fingerprint are available,
one can make more reliable decisions about the presence or quality
of fingerprint features by combining information from each impres-
sion. In this section, we present our novel minutiae matching algo-
rithm which builds upon the algorithm in Appendix B.

To address the issue of missing and spurious minutiae, we pro-
pose performing the matching hierarchically based on minutiae
quality. The key idea is representing the super-template minutiae
in terms of a hierarchy of Delaunay triangulations where every le-
vel of the hierarchy corresponds to a subset of minutiae, having
certain quality only. Specifically, the Delaunay triangulation at
the lowest level of the hierarchy contains all minutiae, indepen-
dently of quality, while the Delaunay triangulations at higher lev-
els of the hierarchy contain minutiae of higher quality only.
Matching is performed hierarchically, starting at the top of the Del-
aunay hierarchy, which contains high quality minutiae only, and
moving down to lower levels, effectively considering lower quality
minutiae on an incremental basis. At each level, a number of align-
ment hypotheses are computed, as described in Appendix B, and
refined in an iterative fashion using affine transformations [2].

To discuss the proposed hierarchical matching algorithm, the
only thing to bear in mind is that the minutiae in the super-tem-
plate have quality weights associated with them based on their
number of occurrences. Fig. 2 shows an example of a super-tem-
plate which was built by merging three enrollment feature sets.
In this case, minutiae weights can have three possible values (i.e.,
Fig. 2. Illustration of the merging step using three templates. Minutiae in a super-templa
the enrollment templates and characterizes their quality.
1, 2, or 3) with higher weight values indicating higher quality
minutiae.

3.1. Hierarchical Delaunay triangulation

Missing and/or spurious minutiae as well as non-linear distor-
tions can severely affect the Delaunay triangulation as illustrated
in Fig. 3. In this example, the yellow triangle shown in Fig. 3(a)
could not be detected in Fig. 3(b) due to a spurious minutia (e.g.,
shown with a white rectangle in Fig. 3(b)), which is the result of
smudging. Fig. 3(c) and (d) contains no missing minutiae; however,
non-linear dislocations due to the elasticity of the skin have altered
the topology and shape of corresponding triangles.

Assuming that minutiae weights range from 1 to k, we form k
minutiae groups and organize their Delaunay triangulations in a
hierarchy. The group at the bottom of the hierarchy contains minu-
tiae having weights greater or equal to one (i.e., all possible super-
template minutiae, independently of their quality). A group at
some level i, where 1 6 i 6 k, contains minutiae having weights
greater or equal to i (i.e., lower quality minutiae are excluded as
we move to higher levels). Finally, the group at the top level of
the hierarchy contains minutiae having weights equal to k (i.e.,
highest quality super-template minutiae).

Fig. 2(d) shows the super-template built by merging the tem-
plates shown in Fig. 2(a)–(c). Fig. 4 illustrates the corresponding
Delaunay triangulation hierarchy which contains three levels in
this case. In particular, Fig. 4(a) shows the Delaunay triangulation
corresponding to minutiae whose weight is equal to 3. The triangu-
lation shown in Fig. 4(b) corresponds to minutiae whose weight is
equal to 2 or 3. Finally, Fig. 4(c) shows the triangulation corre-
sponding to minutiae whose weight is equal to 1, 2, or 3 (i.e., all
possible minutiae).

3.2. Hierarchical matching

When comparing a feature set (whether enrollment or query) to
a given super-template, matching is performed hierarchically,
starting at the top level of the hierarchy (i.e., considering hight
quality minutiae), and ending at the bottom level of the hierarchy
(i.e., considering all possible minutiae). Traversing the hierarchy in
a top-down way is equivalent to taking lower quality minutiae into
consideration in an incremental fashion. At each level, matching is
performed as described in Appendix B, that is, matching triangles
from the triangulation of the input feature set to triangles corre-
sponding to the triangulation of the super-template at that level.
Referring to Fig. 4, when matching a new feature set to a super-
template, its Delaunay triangulation might have to be compared
with all three triangulations in order to calculate an optimum
alignment between the feature set and the super-template.
te is associated with a weight which corresponds to their frequency of occurrence in



Fig. 3. Problems associated with the Delaunay triangulation of a set of minutiae: (a) and (b) show the effect of missing/spurious minutiae, (c) and (d) show the effect of non-
linear distortions. In the first case, spurious triangles might be introduced while original triangles might not be formed. In the second case, the topology and shape of certain
triangles might change.

Fig. 4. The Delaunay triangulation hierarchy corresponding to the super-template shown in Fig. 2: (a) triangulation using minutiae whose weight is equal to 3;
(b) triangulation using minutiae whose weight is equal to 3 or 2; and (c) triangulation using minutiae whose weight is equal to 3, or 2, or 1.
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Using minutiae weights ensures that low quality minutiae will
be considered only at the last stages of matching. Fig. 5 shows an
example to illustrate the benefits of the hierarchical matching ap-
proach. In this example, minutiae could have a weight equal to 1 or
2; therefore, the Delaunay triangulation hierarchy has two levels.
Using the bottom level of the hierarchy, we could match the white
triangles shown in Fig. 5(a) and (b) but not the yellow triangles.
This is because we cannot form the yellow triangles in Fig. 5(b)
due to the presence of a spurious minutia. Using the top level of
Fig. 5. An example illustrating the benefits of hierarchical matching. The Delaunay
triangulation corresponding to the input template is shown in Fig. 3(a). (a)
Delaunay triangulation of super-template minutiae having weights equal to 1 or 2;
(b) Delaunay triangulation of super-template minutiae having weights equal to 2.
Using the triangulation in (a), the yellow triangles in Fig. 3(a) and (b) can be
matched. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
the hierarchy, however, allows the formation and matching of
the yellow triangles as shown in Fig. 5(c).

Note that the Delaunay triangles at the iþ 1 level of the hierar-
chy are not necessarily a subset of the Delaunay triangles at the i
level of the hierarchy. To improve matching results by increasing
support in the transformation space, when considering the i level,
our matching algorithm considers not only Delanuay triangles at
this level but also Delaunay triangles at higher levels assuming that
(i) they are different from those at level i and, (ii) have been
matched successfully with the input template in previous itera-
tions. To illustrate this idea, Fig. 6(a) shows the combined triangu-
lations of Fig. 4(a) and (b), while Fig. 6(b) shows the combined
triangulations of Fig. 4(a)–(c). It can be observed that the triangles
shown in Fig. 4(b) are not all the same to the triangles shown in
Fig. 6. (a) The triangulations shown in Fig. 4(a) and (b) combined together; (b) the
triangulations in Fig. 4(a)–(c) combined together.
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Fig. 6(a). The same is true for the triangles shown in Figs. 4(c) and
6(b).

3.3. Refinement using affine transformations

Due to non-linear distortions present in fingerprints, using rigid
transformations to register a pair of minutiae sets at any level of
the Delaunay hierarchy might not yield good results. Since it is
very important to align the enrollment templates with the super-
template as accurately as possible to avoid registration errors, we
improve the estimated alignment (i.e., based on rigid transforma-
tions) by applying affine refinements in an iterative fashion as in
[2]. The basic idea is finding additional minutiae correspondences
iteratively and re-estimating the parameters of the alignment.
First, a set of matching minutiae pairs is found by aligning the
minutiae sets using the estimated rigid transformation. An initial
affine transformation is computed using the matching minutiae
pairs. Then, the set of matching minutiae pairs is updated by align-
ing the minutiae using the estimated affine transformation. Using
the updated set of matching minutiae pairs, a new affine transfor-
mation is estimated to further improve the alignment transforma-
tion. This process is repeated until no more alignment
improvements are possible. In each iteration, a more conservative
criterion is used to establish matching minutiae pairs (i.e., the al-
lowed distance between matching minutiae pairs decreases in
each iteration).

Although affine transformations cannot model complex, non-
linear fingerprint distortions, they can still account for certain
kinds of deformations such as shearing. Fig. 7 shows an example
where the minutiae in Fig. 7(b) need to be registered with the
minutiae in Fig. 7(a). Fig. 7(c) shows the results of registering the
two sets using a rigid transformation while Fig. 7(d) shows the re-
sults after a single affine refinement only.

4. Fingerprint super-template synthesis

In this section, we describe our template synthesis algorithm.
First, the super-template is initialized by choosing one of the
enrollment feature sets based on quality criteria. Then, the remain-
ing enrollment templates are aligned and merged with the current
super-template sequentially. During this process, new minutiae
might be added to the super-template. Super-template minutiae
are associated with several attributes including their spatial coor-
dinates and the number of times they appear in the enrollment
templates (i.e., frequency of occurrence). This information serves
as a quality measure and is the key to the hierarchical matching
algorithm.

In the rest of the paper, we refer to the enrollment feature set
that is chosen to initialize the super-template as the ‘‘prime” fea-
ture set. The order of merging the rest of the enrollment feature
Fig. 7. Effect of affine refinements: (a and b) minutiae sets to be registered; (c) alignment
refinement.
sets with the current super-template is determined based on their
similarity with the current super-template. Given a number of
enrollment templates, the super-template is built as follows:

(1) Set t ¼ 1, choose the highest quality enrollment feature set
as the prime template Tp and initialize the super-template
S1 ¼ Tp. Set the minutiae frequencies in the initial super-
template to one.

(2) Compute the similarity of each of the remaining enrollment
feature sets with the current super-template using hierar-
chical matching and select the template Tn being most sim-
ilar to the current super-template.

(3) If Tn is ‘‘similar” enough with the current super-template,
then merge it with the current super-template:
Stþ1 ¼ St [ Tn.

(4) If there are more enrollment feature sets left for merging,
then set t ¼ t þ 1 and go to 2; otherwise exit.

4.1. Prime selection and order of merging

We found that the selection of the prime feature set has a sig-
nificant impact on the performance of the synthesis algorithm.
For example, selecting a low quality feature set might cause subse-
quent registration operations to fail. We associate a quality index
with the minutiae and select the template having the highest qual-
ity overall. To associate a quality index with minutiae, we used
NIST’s fingerprint processing software [15] to compute a quality
map for a fingerprint image. The software computes a block-wise
(i.e., 8 � 8 blocks) quality index map where the quality index is
an integer in the range [0–4] (i.e., 0 represents the lowest quality
index and 4 represents the highest quality index). To compute a
global quality measure for a given fingerprint image, we extract
its minutiae and assign a quality index to each of them by overlay-
ing them on the quality map (i.e., see Fig. 8). The average of quality
indices over all minutiae provides a global quality measure of the
underlying fingerprint image.

Once the prime has been selected, the order of merging is deter-
mined by computing the similarity of the remaining enrollment
feature sets with the current super-template and choosing the
one being most similar to the current super-template. The pres-
ence of very low quality enrollment templates could actually ham-
per the construction of the super-templates because low quality
images would not be aligned accurately with the current super-
template, increasing spurious minutiae. To deal with this issue,
we merge it only if it is similar enough with the current super-tem-
plate. We used a hysteresis-based decision making approach. If an
enrollment template has a similarity score higher than a threshold
s1, the merging takes place. If its similarity score is less than some
other threshold s2, where s2 < s1, then no merging takes place.
results using a rigid transformation; and (d) registration results after a single affine



Fig. 8. Quality index map with minutiae overlayed on it. Lighter areas correspond
to higher quality regions. The overall quality measure corresponds to average all
minutiae quality indices. Using this criterion, the lower-right fingerprint is selected
as prime.
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However, if its similarity score is between s2 and s1, we look at the
similarity scores computed for this enrollment template in previ-
ous iterations (i.e., assuming an earlier version of the current
super-template). If one of these scores was more than s1, then
we merge it with the current super-template; otherwise, no merg-
ing takes place. In our experiments, we set s1 to 20 and s2 to 10.

4.2. Super-template updating

When an enrollment feature set is merged with the current
super-template, then all the minutiae in the super-template that
have corresponding minutiae in the enrollment feature set have
their weights increased by one. Moreover, minutiae in the enroll-
ment feature set that do not have correspondences in the super-
template are added to the super-template and their weights are
set to one. Fig. 9 illustrates how the super-template minutiae are
updated using the enrollment feature sets shown in Fig. 10. In par-
ticular, Fig. 9(a) shows the prime template used to initialize the
super-template (i.e., same as Fig. 10(a)), while Fig. 9(b)–(d) shows
how the current super-template is updated. As new feature sets are
merged with the current super-template, the area of the super-
template grows, addressing the small area problem. Moreover,
the weights of stable minutiae increase, reflecting their frequency
of occurrence in the enrollment templates, addressing the spurious
minutiae problem.

5. Fingerprint authentication

During fingerprint authentication, the identity of a new feature
set is verified by matching it with the super-template of the sub-
ject’s finger whose identity is claimed. Although any well known,
minutiae-based, matching algorithm could be used for verification,
here we used the same hierarchical matching strategy with minor
modifications and stricter parameter settings to better account for
imposters. This is essential since during merging, the enrollment
feature sets and current super-template all come from the same
finger. However, this might not be the case during authentication
where new templates might belong to different people than those
whose identity is claimed.

Specifically, when matching an new feature set to a given
super-template for verification purposes, we do not update the
super-template although one can envision incremental learning
schemes where super-template is updated over time. Second,
although affine refinements have shown to improve merging re-
sults, they have a tendency to increase imposter scores during
authentication. This is because the query template and the
super-template might not come from the same finger. Therefore,
we do not apply any affine refinements during authentication. Fi-
nally, stricter matching thresholds are required for verification in
order keep imposters low.
6. Experimental results and comparisons

In this section, we report experimental results to illustrate the
performance of the proposed template synthesis and matching ap-
proach as well as to compare it with other approaches. For minu-
tiae extraction, we used Verifinger [16] which outputs both the
coordinates and orientation of the detected minutiae.

6.1. Database

In choosing a database for experimentation, we looked at sev-
eral public databases from the Fingerprint Verification Competition
(i.e., FVC2000, FVC2002, and FVC2004). Our objective was to
choose a database containing multiple impressions from each fin-
ger (e.g., more than six), small coverage area, and low quality fin-
gerprint images. Synthetically generated databases were
excluded from our consideration. FVC2000 [17] contains four dat-
abases; among them, Db1 seemed to satisfy our criteria best (i.e.,
see details below). It should be noted that according to the
FVC2000 competition results, Db3 was the hardest database, how-
ever, fingerprint coverage area was much larger compared to Db1.
FVC2002 contains four databases too; among them, Db3 satisfied
our criteria best, however, competition results on this database
were better overall than on FVC2000 Db1. Considering the
FVC2004 databases, Db3 satisfied our criteria, however, this data-
base was obtained using a thermal sensor. Based on these observa-
tions, we decided that FVC2000 Db1 would be the most
appropriate database to be used in our experiments. To obtain sta-
tistically significant results, we used cross-validation as explained
in Section 6.2.

FVS2000 Db1 was created using a low cost small area optical
scanner called Secure Desktop Scanner by KeyTronic. It contains a
total of 800 300 � 300 images composed of 8 different impressions
from 100 different fingers. It corresponds to a typical, small area,
low quality database. Fingerprint images were captured from un-
trained people in two different sessions and no efforts were made
to assure a minimum acquisition quality. Fig. 11 shows several rep-
resentative samples from this database.

6.2. Experiments

In our experiments, we tested three different approaches: (i)
Score-Level Fusion (SLF), (ii) Template Selection (T_SEL), and (iii)
Template Synthesis (T_SYN). In the case of SLF, multiple enroll-
ment feature sets were stored in the enrollment database for each
finger. To verify a new (i.e., query) feature set, we computed its
similarity with each of the enrollment feature sets of the user’s fin-
ger whose identity was claimed and took the maximum matching
score. We also considered taking the average matching score,
which is known to work well in practice, however, it did not work
as good as the maximum score in our case. In the case of T_SEL,
only one of the enrollment feature sets was chosen to represent
each finger. We used the prime selection methodology described
in Section 4.1 to select a representative enrollment feature set
for each enrolled finger user. In both approaches, we used the
matching algorithm described in Appendix B.

For experimentation, the database was randomly divided into
two partitions, keeping N impressions in the first partition and



Fig. 9. Super-template updating: (a) prime feature set used to initialize the super-template; (b) current super-template after merging with the enrollment feature set shown
in Fig. 10(b); (c) current super-template after merging with the enrollment feature set shown in Fig. 10(c); and (d) current super-template after merging with the enrollment
feature set shown in Fig. 10(d).
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the rest in the second partition. We used the first partition to cre-
ate the enrollment database and the second partition for testing. To
show the effect of choosing a different number of enrollment
impressions, we conducted experiments using N ¼ 2, 3, 4, and 5.
Since randomness is involved in the selection of the enrollment
and test impressions, we repeated each experiment 30 times and
reported average performance.

For error rate estimation, we randomly picked one sample from
each finger in the test set and compared it against the enrollment
data of all other fingers yielding a total of 9900 imposter scores.
The number of genuine scores varied, depending on the number
of enrollment impressions. Using 2, 3, 4, and 5 impressions for
enrollment, the number of genuine scores were 600, 500, 400,
and 300, respectively. Although the number of genuine scores is
not very high, the use of cross-validation yields statistically signif-
icant results. For evaluation, we computed the Receiver Operating
Characteristics (ROC) curve, which shows the variation of False
Acceptance Rate (FAR) versus False Rejection Rate (FRR). Specific
FRR readings at certain FAR rates (i.e., FAR = 0.0%, 0.1%, and 1.0%)
are also reported for a more detailed comparison.

7. Results

Fig. 12 compares each method using different number of tem-
plates. The graphs have been logarithmically scaled for clarity.
Clearly, using more feature sets in enrollment improves the per-
formance of T_SLF and T_SYN, however, it does not have any ef-
fect on the performance of T_SEL. Since FVC2000 Db1 is a low
quality database, it can be clearly observed that using multiple
feature sets in enrollment does make a difference in terms of
accuracy and consistency. Using one template, however, as in
the case of T_SEL, yields lower performance due to noisy features
and small coverage area. Overall, T_SEL performed worst com-
pared to SLF and T_SYN, especially when increasing the number
of feature sets in enrollment.

Comparing SLF with T_SYN, we found that SLF performed
slightly better than T_SYN but performance differences got smaller
with increasing the number of feature sets in enrollment or FAR
rate as shown in Fig. 13. Table 1 shows some specific FRR readings
at certain FAR values for a more detailed comparison. These results
were somewhat surprising to us as we expected T_SYN to outper-
form SLF. An analysis of our results, however, revealed that the
main reason that T_SYN did not outperform SLF was because there
were inaccuracies in registering the enrollment feature sets with
the current super-template during merging.

Although SLF performed slightly better than T_SYN in terms of
verification accuracy, SLF had higher storage and time require-
ments compared to T_SYN. When N ¼ 4, the average storage
requirements of SLF, T_SEL, and T_SYN were 1540, 385, and
729 bytes, respectively, per finger. In terms of time, T_SEL was
the fastest, requiring 0.56 s on the average. T_SYN was faster on
the average than SLF, taking 1.84 s versus 2.24 s.



Fig. 10. The enrollment feature set used to build the super-template shown in Fig. 9.

Fig. 11. Typical samples from Db_1 FVC 2000 database.
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Table 2 provides some statistics on super-template minutiae
counts, as well as distribution of weights. Compared to individual
feature sets, the number of super-template minutiae increased
by 25.95%, 47.46%, 65.53%, and 81.46% when merging 2, 3, 4, and
5 enrollment impressions, respectively. When merging two
impressions, the percentage of minutiae having weights more than
1 was 48.46% of the total number of minutiae in the super-tem-
plate. The corresponding percentages for 3, 4, and 5 impressions
were 55.97%, 59.95%, and 60.83%.
8. Conclusion

We have considered the problem of integrating information from
multiple enrollment impressions in order to account for small cover-
age area and missing or spurious minutiae. In this context, we pro-
posed a new, minutiae-based, template synthesis algorithm which
employs a novel matching strategy based on Delaunay triangulation
hierarchies. The key idea was performing the matching hierarchically
by considering higher quality minutiae first. Lower quality minutiae
were considered for matching on an incremental basis. The same hier-
archical matching strategy, with minor modifications, was used for
authenticating new fingerprints. The proposed template synthesis
approach and matching approach is less sensitive to missing or spuri-
ous minutiae and addresses the small overlapping area problem. Our
main contributions can be summarized as follows:

� Proposed a novel hierarchical fingerprint matching strategy
which accounts for missing and spurious minutiae by using Del-
aunay triangulation hierarchies.

� Proposed a new methodology for minutiae-template synthesis
(i.e., building a ‘‘super-template” from a set of minutiae tem-
plates) which employs the hierarchical fingerprint matching
strategy.

� Performed extensive experiments and comparisons with tradi-
tional methods to evaluate the performance of the proposed
minutiae-template synthesis and matching methodology.

T_SYN is better suited for updating the template over time (e.g.,
during verification) compared to SLF. Moreover, although SLF per-



Fig. 12. ROC curves for each method assuming different number of templates: (a) SLF; (b) T_SEL; and (c) T_SYN.
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formed slightly better than T_SYN in terms of verification accuracy,
T_SYN has lower time and space requirements. If accuracy is more
important, multiple super-templates can be generated from the
available fingerprint images by choosing different prime finger-
print templates of even by changing the order of merging. Then,
SLF could be applied using multiple super-templates.

For future research, we plan to improve the proposed approach
in several ways. First, we plan to employ more powerful registra-
tion algorithms in order to build the super-templates more accu-
rately (e.g., using thin-plate spines [18,19]). Second, we plan to
consider additional minutiae features (e.g., ridge count informa-
tion) in order to reduce the probability of false alignments during
merging. Third, we plan to enhance our hierarchical matching
strategy. Finally, we plan to perform additional experiments using
more databases.
Appendix A. Delaunay triangulation

Given a set S of points p1; p2; . . . ; pN , we can compute the Dela-
unay triangulation of S by first computing its Voronoi diagram. The
Voronoi diagram decomposes the 2D space into polygonal regions
around each point pi such that all the points in the region of pi are
closer to pi than to any other point in S. Given the Voronoi diagram,
the Delaunay triangulation can be formed by connecting the cen-
ters of every pair of neighboring Voronoi polygons. Fig. A1(a)
shows a set of 2D points; their Voronoi diagram is shown in
Fig. A1(b) while their Delaunay triangulation is shown in Fig. A1(c).

The Delaunay triangulation has some nice properties, including:
(1) it is unique assuming a non-degenerate set of points, (2) a circle
through the three points of a Delaunay triangle contains no other
points, and (3) the minimum angle across all the angles in all the
triangles in a Delaunay triangulation is greater than the minimum
angle in any other triangulation of the same points. Property 1 is
very important as it allows us to use the Delaunay triangles for
matching. Property 2 implies that inserting a new point affects
only the Delaunay triangles whose circumcircles contain that
point. This implies that missing/spurious minutiae would affect
the Delaunay triangulation only locally. In a comparative study
involving several well known topological structures [20], the Dela-
unay triangulation was found to have the best structural stability
under random positional perturbations. The last property implies
that the Delaunay triangles would not be skinny. This is very
important in the context of our application since using skinny tri-
angles to compute alignment transformations between finger-
prints could lead to serious instabilities and errors.



Fig. 13. ROC curves corresponding to 2, 3, 4, and 5 templates.
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The Delaunay triangulation and the Voronoi diagram can be
computed very efficiently since the number of edges in both cases
is of the order of OðNÞ. Since each edge belongs to at most two tri-
angles or polygons, the number of triangles generated by the Del-
aunay triangulation is also linear to the number of points. In this
work, we used Fortune’s implementation which is available from
http://netlib.bell-labs.com/netlib/voronoi. The complexity of the
triangulation algorithm is OðNlogNÞ.

Appendix B. Fingerprint matching using Delaunay triangulation

Employing Delaunay triangulation for fingerprint matching has
received a lot of attention recently, for example see [21–26]. Our
matching strategy for template synthesis builds upon our previous
work on fingerprint matching using Delaunay triangulation [2].
Next, we review fingerprint matching using Delaunay triangulation.
To improve matching, we have incorporated orientation information
into the matching process.

B.1. Fingerprint matching using minutiae triangles

A common approach to matching a pair of minutiae sets is by com-
paring minutiae triangles. The main idea is forming triangles from
minutiae triplets and matching them using invariant features [27,2].
Fig. B1 shows an example. In general, a pair of minutiae triangles pro-
vides enough information to compute a transformation that poten-
tially aligns the minutiae sets. To compute good alignments, voting
is applied in the transformation space to find transformation that
are supported by many minutiae triangles. A number of hypothetical
transformations is then found by considering transformations that
have received high number of votes. Each hypothetical transforma-
tion is explicitly verified by using it to align the minutiae sets and
counting the number of overlapping minutiae. The best alignment is
the one maximizing the number of overlapping minutiae.

An important issue in matching is which minutiae triplets to
choose in order to form the minutiae triangles. Considering all pos-
sible minutiae triplets is computationally prohibitive since there
are Oðn3Þminutiae triplets. To keep complexity low, Germain et al.
[27] suggested a number of heuristics based on the distance between
minutiae. In a later study [2], we proposed associating a unique topo-
logical structure with the minutiae using Delaunay triangulation
and using the Delaunay triangles for matching. This reduces the
number of minutiae triangles to OðnÞ, speeding up matching consid-
erably without affecting accuracy significantly. Fig. B3 shows the
Delaunay triangulation of a set of minutiae, overlaid on the corre-
sponding fingerprint image.

http://netlib.bell-labs.com/netlib/voronoi


Table 1
Specific FRR readings at certain FAR values for specific comparisons.

Number of templates

2 3 4 5

SLF FRR (@FAR = 0.000) 5.00% (std:0.83) 2.92% (std:0.69) 1.83% (std:0.58) 1.53% (std:0.61)
FRR (@FAR = 0.001) 3.25% (std:0.72) 1.57% (std:0.48) 1.03% (std:0.40) 0.91% (std:0.48)
FRR (@FAR = 0.010) 1.70% (std:0.50) 0.76% (std:0.26) 0.58% (std:0.25) 0.48% (std:0.39)

T_SEL FRR (@FAR = 0.000) 9.88% (std:1.38) 9.77% (std:1.55) 9.30% (std:2.20) 9.20% (std:2.31)
FRR (@FAR = 0.001) 6.77% (std:0.95) 6.75% (std:0.73) 6.73% (std:1.16) 6.85% (std:1.21)
FRR (@FAR = 0.010) 4.40% (std:0.74) 4.14% (std:0.62) 4.31% (std:0.92) 4.48% (std:0.94)

T_SYN FRR (@FAR = 0.000) 8.71% (std:2.62) 5.23% (std:1.55) 3.90% (std:1.13) 3.62% (std:1.19)
FRR (@FAR = 0.001) 4.68% (std:0.74) 3.10% (std:1.03) 2.03% (std:0.50) 1.60% (std:0.54)
FRR (@FAR = 0.010) 2.81% (std:0.62) 1.75% (std:0.47) 1.23% (std:0.47) 0.99% (std:0.48)

Table 2
Super-template minutiae and weight statistics.

Number of templates

1 2 3 4 5

Avg. # of minutiae 32.64 41.11 48.13 54.03 59.23
Weight 5 N/A N/A N/A N/A 10.40
Weight 4 N/A N/A N/A 11.79 7.37
Weight 3 N/A N/A 13.54 9.65 7.86
Weight 2 N/A 19.92 12.30 10.95 10.40
Weight 1 32.64 22.29 21.19 21.64 23.20
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B.2. Invariant features

Once the Delaunay triangulation of a set of minutiae has been
computed, we consider two groups of features from each triangle
based on the sides and angles of the triangle. Specifically, given a
minutiae triangle (e.g., see Fig. B2(a)), the first group of features,
denoted as Vt , includes three attributes which are invariant to rigid
transformations:

Vt ¼
l1
l3
;
l2

l3
; cosðAÞ

� �
ðB1Þ

where l1 6 l2 6 l3 and A is the largest angle of the triangle (i.e., the
angle across from the largest side). We used the cosine of A instead
of A itself because the cosine is less sensitive to noise. The second
group of features, denoted as Vm, involves the angles of the minu-
tiae. Specifically, we order the minutiae forming the triangle with
respect to the length of the side across them and take their angles
as the second set of features:

Vm ¼ ½\m1;\m2;\m3� ðB2Þ

It should be mentioned that very large angles yield triangles
whose points are almost collinear (i.e., skinny). Such triangles are
not desirable since small errors in minutiae locations can lead to
large errors in the computation of the parameters of the alignment
transformation. Although the Delaunay triangulation tends to
avoid skinny triangles, it is not always guaranteed unless inserting
Fig. A1. Delaunay triangulation of a 2D point set: (a) a set of points
extra points [28]. To deal with this issue, we reject triangles whose
largest angle is greater than a threshold (e.g., 168 deg). Fig. B3
shows an example of minutiae features extracted by our algorithm.

Vm ¼ ½\m1;\m2;\m3� ðB3Þ
B.3. Hypothesis generation

The goal of this step is generating a number of hypothetical
alignments between minutiae sets. This is performed by finding
corresponding minutiae triangles using the invariant attributes.
To improve accuracy, we have modified our original algorithm by
incorporating minutiae orientation information in matching.
Minutiae orientation is defined by the orientation of the ridge con-
taining the feature. Specifically, let T and Q correspond to two dif-
ferent minutiae templates. Then, triangles in T are compared to
triangles in Q using the following three constraints:

(1) Similarity consistency: This constraint tests the similarity
between two minutiae triangles using the invariant features.
As shown in Fig. B3, each minutiae triangle is represented by
six invariants. If the differences between corresponding
pairs of invariants are all below a threshold, then we con-
sider that the triangles match. In our experiments, the
thresholds used for the spatial and angular features were
0.3 and 0.5, respectively. These thresholds were chosen rel-
atively high in order to account for non-linear minutiae dis-
locations. Many false matches are subsequently eliminated
by the third criterion.

(2) Planarity consistency: This constraint tests whether matching
minutiae triangles can be brought into alignment using in-
plane transformations only. Fig. B4 illustrates this criterion
with an example. If we order the minutiae in Fig. B4 starting
from the first one in each triangle and going clockwise, the
ordering in the left triangle would be m11m12m13 while the
ordering in the right triangle would be m21m23m22. Obvi-
ously, an out-of-plane transformation is required in order
to align the triangles in this case. Such inconsistencies can
; (b) the Voronoi diagram; and (c) the Delaunay triangulation.



Fig. B1. Matching by comparing minutiae triangles. Good alignment are computed
by using voting in the transformation space to find transformations that are
supported by many matching triangles.

Fig. B2. A triangle defined by a triplet of minutiae.
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be fixed by changing the order of the minutiae in the left tri-
angle (e.g., starting from m12). Then, the similarity consis-
tency between the two triangles can be tested using the
new ordering. We consider all three possible orders.

(3) Minutiae orientation consistency: The purpose of this con-
straint is to test whether corresponding minutiae have sim-
ilar orientations. This is performed by estimating the rigid
Fig. B3. An example of minutiae feat
transformation that aligns corresponding triangles and com-
puting the orientation differences of the corresponding
minutiae. If the average orientation difference is below a
threshold (e.g., 30 deg), then we consider that the corre-
sponding minutiae have similar orientations.

If all three constraints are satisfied for a given pair of minutiae
triangles, then we concluded that the minutiae triangles match. Gi-
ven a pair of matching triangles, a rigid transformation can be com-
puted which aligns them. These, ‘‘locally optimum”,
transformations are used to substantiate a number of hypothetical
alignment transformations between the minutiae sets which are
supported by many corresponding triangles. To find these, ‘‘glob-
ally consistent”, transformations we employ a voting scheme
where each matching pair of triangles casts a weighted vote in
the transformation space. The weight of a vote is inversely propor-
tional to the average minutiae orientation differences. To compen-
sate for quantization errors in the transformation space, we also
cast votes to the immediate neighbors of the estimated transfor-
mation using lower weights (i.e., 2/3 of the vote cast to the esti-
mated transformation). Alignment transformations that receive
high votes are considered for further verification.

Fig. B5 shows the structure of the entries in the transformation
space. Each entry holds (i) the transformation parameters, (ii) the
number of votes, and (iii) a list of corresponding minutiae that
have voted for this transformation. It should be mentioned that
the transformation space needs to be quantized coarsely enough
to let the entries receive enough votes and build reasonable histo-
grams. Since we align the minutiae triangles using rigid transfor-
mations, the transformation space is three-dimensional (i.e., x, y,
and h). However, since we use cosðhÞ and sinðhÞ in our calculations
frequently, we decided to store this information instead of the ac-
tual angle for efficiency.

After all the votes have been accumulated, local maxima in the
transformation space are detected and considered as possible can-
didates for aligning the minutiae sets. The resulting set of transfor-
mations yields a set of hypotheses which are verified in the next
stage.

B.4. Hypothesis verification

In this stage, the minutiae templates are aligned using the
hypothetical transformations in order to determine the highest
number of overlapping minutiae. First, each candidate transforma-
ures extracted by our algorithm.



Fig. B4. An example illustrating an inconsistency in the ordering of the minutiae
between triangles.

Fig. B5. Structure of entries in the transformation space.
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tion is refined (i.e., re-estimated) using all matching triangles that
have voted for that transformation. Unlike local transformation
computations, which are based only on a pair of minutiae triangles,
the refinement process computes globally consistent transforma-
tions by considering minutiae correspondences scattered over a di-
verse region of the fingerprint. Then, the quality of each hypothesis
is evaluated by aligning the minutiae sets and computing the num-
ber of overlapping minutiae.

The overlap between the minutiae sets is determined by consid-
ering the differences between corresponding minutiae locations
and orientation angles. The number of overlapping minutiae is nor-
malized to calculate a similarity score between the minutiae sets.
Specifically, let t and q be the number of minutiae in the two sets,
respectively, if m is the number of matching minutiae, then the
similarity score s is calculated as follows:

s ¼ 2m
t þ q

� 100 ðB4Þ

The hypothesis yielding the highest number of overlapping
minutiae is taken as the best hypothesis. It should be mentioned
that we tried several other ways to compute similarity scores,
however, the formula above gave the best results.
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