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Abstract. Horizon line detection is a segmentation problem where a
boundary between a sky and non-sky region is searched. Convention-
ally edge detection is performed as the first step followed by dynamic
programming to find the shortest path which conforms to the detected
horizon line. Recent work has proposed the use of machine learning to
reduce the number of non-horizon edges to accurately detect the horizon
line. In this paper, we investigate the suitablity of various local texture
features and their combinations to reduce the number of false classifi-
cations for a recently proposed horizon detection approach. Specifically,
we explore SIFT, LBP, HOG and their combinations SIFT-LBP, SIFT-
HOG, LBP-HOG and SIFT-LBP-HOG as features to train the SVM
classifier. We further show that using only edge information as the nodal
costs is not enough and propose various nodal costs which can result
in enhanced accuracy of the detected horizon line as evidenced by the
conducted experiments and results. We compare our proposed formu-
lations with an earlier approach relying only on edges and suffers due
to faulty assumptions. We report our comparative results for an image
set comprising of mountainous images captured during an outdoor robot
exploration of Basalt Hills.

1 Introduction

The problem of segmenting an image into sky and non-sky regions is termed
as horizon/skyline detection or sky segmentation. Various attempts have been
made to horizon line detection in the recent years due to many applications of
a detected horizon boundary. Horizon line detection finds its applications in the
navigation and obstacle avoidance for aerial vehicles (UAVs, MAVs) [4,5,6,7,8,9],
outdoor robot localization [1,10,11,12], visual geo-localization [17,18], ship de-
tection and port security[19,20]. Previous attempts to horizon line detection can
be grouped into two major classes; (i) methods modeling sky and non-sky re-
gions using machine learning techniques [4,5,6,7,8,9,22] and (ii) methods relying
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on edge detection as an essential preliminary step [1,2,3,21]. It should be men-
tioned that earlier methods to horizon detection suffer from the assumption that
the horizon boundary is linear and hence are limited.

Lie et al. [3] are the first to formulate horizon line detection problem as a multi-
stage graph problem. The detected edge map of the query image is converted
into a multi-stage graph; each edge pixel becoms a low cost node and each non-
edge pixel becoms a high cost node in the corresponding graph. Each column of
the image is taken as a stage of the graph and each pixel in the row is treated
as a node. Links are established between nodes in one stage(column) to nodes
in the next stage(column) with cost associated to the vertical distances of these
nodes. Lie et al. [3] fill up the gaps resulted by edge detection by introducing
high cost dummy nodes. They introduce source and sink nodes to the left and
right most columns of the graph respectively and a shortest path is searched by
Dynamic Programming(DP) which conforms to the detected horizon line.

Both Ahmad et al. [1] and Hung et al. [2] have recently proposed an im-
provement to Lie et al. [3] where they reduce the number of edge pixels signifi-
cantly by training a classifier. Hung et al. [2] train an SVM classifier using raw
pixel intensities as features around the edges and use the trained classifier to
reduce the number of edge in the novel test images. Ahmad et al.[1] reduce a
significant number of edges by first keeping only those edges which survive a
number of edge detection parameter choices [named Maximally Stable Extremal
Edges(MSEEs)] and then using a trained classifier to distinguish between horizon
and non-horizon edges. They then apply DP on top of these survived positively
classified horizon edges (termed as MSEE, ). Ahmad et al. [1] trained an SVM
classifier and used SIFT descriptors around edge pixels as feature choice unlike
pixel intensities as done by [2]. Although their approach works fine; there are
misclassifications due to classifier which intoduce gaps (due to false negatives)
and increase number of horizon classified edges (due to false positives). Also they
reported their preliminary results on a data set comprising only 10 images.

In this paper we investigate various other texture descriptors (SIFT[14],
LBP[13], HOGJ[15]) and their combinations with each other (SIFT-LBP, SIFT-
HOG, LBP-HOG, SIFT-LBP-HOG) to further reduce the number of false classi-
fications and enhance the accuracy of shortest path found by DP. In addition to
these textural features we investigate the use of gradient magnituded, difference
of gradient magnitude, normalized classification scores and combined gradient
and classifier scores as the node cost choices for edge pixels or horizon classified
edge pixels. We report our analysis on an extended data set comprising of 45
images with considerable viewpoint and scene changes, hand picked from Basalt
Hills data set acquired by an out door robot’s field navigation[23]. The rest of the
paper is organized as follows: Section 2 details about Ahmad et al. [1] and Lie
et al.[3], section 3 and 4 describe the details about various texture features and
formalism about the various nodal costs that we consider. We conclude the paper
in section 6 after listing and detailing the experiments and results in section 5.
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2 Background

2.1 Lie et al. [3]

Lie et al. [3] formulated horizon detection problem as a multi-stage graph prob-
lem where edge pixels are used as graph nodes and links are established between
these edge nodes belonging to adjacent stages. They dealt with edge discon-
tinuties by introducing high cost dummy nodes based on a neighborhood search
strategy. They assumed horizon line exists in the upper half of the image and
hence a bias towards solutions lying in the upper half of the image is induced
by initializing the nodes in the first and last stage of the graph according to the
vertical positions of nodes. There are three major steps involved in Lie et al.
approach i.e. edge detection, graph formulation and initialization and dynamic
programming. First edge detection is applied on a given image to get a binary
map I(x,y) where each edge pixel represented by 1 and non-edge pixel by 0.
This edge map is used to initialize the nodal costs of an Mx N multistage graph
G(V,E,¥,®) where ¥(i, j) is the cost associated with node 7 in stage j.

i I (xy) = 1
(i, 5) = {oo, if I(z,y) =0. (1)

Next, the links are established for each node i belonging to stage j with nodes
in j + 1 within a vertical neighborhood defined by a user specified parameter 4.
These link costs are associated with the absolute vertical disances between the
nodes belonging to stages j and j + 1.

ik, TG ) = Ik +1) =1
&(i, k,j) = and |i — k| <§ (2)

0, otherwise.

To deal with edge gaps; Lie et al. use a parameter tolerance-of-gap(tog) to
specify a fanout search window for node ¢ in stage j where an edge node is
searched in case no edge node is found in stage j + 1 within the § vertical
neighborhood. Once an edge node k is discovered in tog + § search window; the
two edge nodes are connected by introducing high cost dummy nodes in between.
Next, the bias towards horizon being present in upper half of image is encoded
by forcing the nodes in the stages 1 and N to be initialized according to their
vertical positions.

. o g .
mi,j){(’“.)’ ty=dong =N 3)
U(i,j), otherwise.

Finally, zero cost source and destination nodes s and ¢ are introduced to the
left of stage 1 and right of stage N. Zero cost links are established from source
node to all the nodes in stage 1 and from all the nodes in stage N to node ¢.
Dynamic programming is then applied on this formulated multi-stage graph to
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find the shortest path extending from node s to t. The shortest path thus found
confroms to the detected horizon line.

We show several step of Lie et al. for a synthetic image in figure 1 and to
also highlight the problem with their underlying faulty assumption of horizon
belonging to upper half of image. Figure 1-(a) shows the output of edge detection;
black and white reflects a pixel being an edge pixel or not. Figure 1-(b) highlights
a search window tog+ 4 for ¢ = 5 node in j = 5 stage when tog = 4 and § = 1 are
used as parameter choices. Figures 1-(c) and 1-(d) show two edge nodes being
diecovered within the fanout search window tog 4+ § and then being connected
to the node 5 in stage 5 by introduction of high cost dummy nodes. The bias
towards solutions in the upper half is then induced according to equation 3
as shown by increasing intensity of stages 1 and N in figure 1-(e). For graph
shown in figure 1-(e) there exist two paths of equal cost ignoring stages 1 and
N. Howere due to the bias induced towards horizon being in upper half of image
would reduce the cost of the upper path which would be found by the DP. It is
probable that the upper right edge segment in figure 1-(a) was due to a clound
and not part of horizon but ended up being detected as horizon part due to the
bias while the edge segment in the lower right belongs to true horizon but was
missed.

(d (&)

Fig. 1. Steps of horizon line detection approach by Lie et al.

2.2 Ahmad et al. [1]

The use of a trained classifier in this scnario is two fold. Not only it helps
to reduce the number of non-horizon edges considerably but also reduces the
chances of non-horizon edges being detected as part of the horizon line. Ahmad
et al. [1] proposed a machine learning based horizon detection method where they
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Fig. 2. Steps of horizon line detection approach by Ahmad et al.

train an SVM classifier based on SIFT features to reduce the number of edges
found by an edge detector. Edge detection is the preliminary step to the horizon
detection approach proposed by Lie et al. However unlike Lie et al. [3]; they first
reduce the number of edges considerably and then formulate the reduced edge
map as a multi-stage graph. Figure 2 describes various steps involved in Ahmad
et al. approach. To train the classifier the ground truth horizons for the training
images are marked manually. Then the positive key points are chosen uniformly
from ground truth horizon locations from all training images. To generate the
negative key points; they compute the Maximallsy Stable Extremal Edges Images
(MSEE) by applying Canny edge detector with fixed o and varied higher and
lower thresholds. For a number of threshold choices; different binary edge maps
are gnerated based on which MSEE image comprising of pixels which survived
k different thresholds is computed. Mathematically,

E(e.y) 1, it YN I, y)i > k.
x7 = .
Y 0, otherwise.

(4)

where, I; through Iy are the binary edge images generated for N different
parameter choices, I(x,y); is a pixel at x,y location in edge map j and E is the
resultant Maximally Stabe Extremal Edges Image corresponding to the train
image. In their results Ahmad et al. [1] have shown that MSEE reduces the
number of edges considerably without harming the horizon edges. We also verify
this for our extended data set in the experimental section.

Once the MSEE is computed; the negative key points are chosen randomly
from the non-horizon edge locations from MSEE image.Ahmad et al. [1] then
generate the SIFT features around these positive and negative key points and
train an SVM classifier. This trained classifier is used for classifying the edges
of a query image. On the testing side, MSEE image E(z,y) is gnerated for a
given query image according to equation 4. The edges in the MSEE image are
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then classified as horizon or non-horizon edges by the trained classifier. The
resuntant edge image comprising of only horizon classified edges is named E. .
If the classifier is assumed to be a binary function assigning 1/0 labels to the
input edge pixel then mathematically F; can be written as,

1, if E(x,y) = 1& Classifier[E(z,y)] = 1.

0, otherwise.

E+(I?y) = { (5)

Instead of using the output of edge detector; Ahmad et al. use this horizon
classified edge MSEE image F to formulate the multi-stage graph G(V, E, ¥, ®).
So, the equations 2 and 3 are modified accordingly.

oL it E(2y) =1
(i) = {oo7 if B4 (z,y) =0. (6)

ik, i Be () = B (kg +1) =1
&(i, k,j) = and i — k| <6 (7)

0, otherwise.

Since, the number of candidate horizon edges are reduced considerably due
to the use of MSEE and the trained classifier; Ahmad et al. do not enforce the
bias towards horizon solutions in the upper half so equivalent to equation 4 is
skipped in their formulation. However, any kind of gaps are filled following the
conventional method. Next two nodes i.e. a source and a sink are added, essential
links between them and nodes in stages 1 and N are established with zero cost
and DP is used to find the horizon line.

3 Exploring Texture Features and Their Combinations

We have investigated three texture descriptors as feature choices to train the
SVM classifier namely Scale Invariant Feature Transform(SIFT)[14], Local Bi-
nary Patterns(LBP)[13] and Histogram of Oriented Gradients(HOG)[15]. We
also explore their combinations with each other and then all of them combined
as feature choices for our classifier. We use the implementation of these descrip-
tor available from vlfeat [16] which provides 128, 58 and 31 dimensional vectors
for SIFT, LBP and HOG respectively. We investigate individual descriptors as
well as their combinations as the feature choices to train the SVM classifier.
The combinations are formed by mere concatenation of the descriptor vectors
for each training and testing instance. The feature sizes for each combination :
SIFT-LBP, SIFT-HOG, LBP-HOG and SIFT-LBP-HOG are 186, 159, 89 and
217 respectively. We have found SIFT-HOG combination as the best choice when
compared with individual descriptors and other combinations as described in the
results section.
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4 Proposed Nodal Costs

In [3] Lie et al. proposed the use of edges where they use binary costs to encode
the information in the multi-stage graph about a node being an edge pixel or not
and then initialize the dummy nodes to high costs. Although Ahmad et al.[1]
and Hung et al.[2] reduce the number of horizon candidate edges considerably
by the use of MSEE and trained classifiers; they still use the same nodal costs
as proposed by Lie et al. We show in our experiments that using only the infor-
mation about pixels being edge or non-edge is not enough to initialize the nodal
costs as it is possible for DP to choose falsely classified horizon edges as part
of the solution. We propose the use of various nodal costs that provide further
evidence about the positively classified edges for being true horizon edges.

4.1 Gradient Magnitude and Difference of Gradient Magnitude

We use the information due to gradient magnitudes and difference of gradient
magnitudes to initialize the node costs of our multi-stage graph. Unlike Lie et
al. and others who formulate the multi-stage graph based only on edges we
propose here to make a dense multi-stage graph where each pixel would be a
node of the graph and would be conneted to it neighbors in the next stage.
However, the nodes are initialized according to the gradient information. As
gradient magnitudes are used as an intermediate part of edge detection the DP
should find a solution where the sum of the gradient magnitude is maximized but
for continuity we should also enforce that the difference between the gradient
magnitudes of two adjacent neighbors should be minimized. We should also
note that gradient based approach does not involve any kind of training and is
presented here to establish that using just the constant low and high costs for
edge and non-edge pixels (horizon classified edges in case of Ahmad et al. and
Hung et al.) are not enough to find the accurate horizons.

In gradient based approach; given a query image Q(x,y) the gradient magni-
tude for each pixel of the image is computed. Mathematically,

V(z,y) = I'Q(x,y)] (8)

Where, I' is the function which takes a gray scale image as an input and
returns the corresponding gradient magnitude image V. Next, the difference
of the gradient magnitude image is computed. Since, a node % in stage j can
be connected to as many nodes as defined by the ¢ neighborhood; one should
generate as many gradient difference images where the difference should be taken
with the node in next stage to which the current node is being connected. The
equation below shows the making of difference of gradient mask for connections
at the same level.

dv (i, j) = [V (i, j) = V(i,j +1)| (9)

Since, we want to maximize the gradient magnitude while minimizing the
difference of gradient magnitude we normalize the magnitude and difference
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images between 0 and 1. The nodal costs (i, j) of the graph are then set as a
weighted combination of these two images depending upon to which node in the
next stage the current node is being connected; identified by the sub-script &k in
the equation below.

Cl(imj) = !p(l,j) = w*dvk(z7.7> + (1 - w) * (1 - V(Zvj» (10)

where w is the weight assigned to the difference of magnitude and the gradien
magnitude image; we use a value of 0.5 hence equally weighting both. Next, the
links costs may be initialized the way in equation 7; however for our experiments
we consider all the link weights to be equal and set them to zero since we are
considering a small neighborhood i.e. § = 1.

4.2 SIFT+HOG Classified Edges

The 2nd formulation that we investigate is fairly similar to Ahmad et al. the
only difference is that our classifier is trained based on SIFT-HOG as we would
show in experiments section the SIFT-HOG choice outperforms all other feature
choices. So eventually equation 5 through 7 are used to initialize the graph and
set the node/link costs.

4.3 SIFT+HOG Classifier Scores

As described earlier using a fixed low cost for edge pixels provides only par-
tial information and no confidence at all to compare two positively classified
nodes where one might be misclassified. To enfoce this knowledge in our dy-
namic programming formulation we propose a two fold use of the classifier; first
to distinguish between horizon and non-horizon edges as realised by equation
5 and second to provide a confidence about and edge pixel of horizon-ness. We
normalize the raw scores provided by the classifier between 0 and 1 without using
any thresholding. The node costs are then initialized by the actual classification
scores instead of initializing all positively classified edges to fixed low cost. The
equation 6 would be altered to reflect this information where (2 is realized as a
classifier which returns a value between [0-1]. Since, we want to find a shortest
path through DP we assume that the values have been reversed so a smaller
value reflects an edge pixel is more probable to be a horizon pixel.

Q(E+(.’1?,y)), if E+(.’17,y) =1

11

4.4 SIFT+HOG Classifier Scores+ Gradient Information

In this formulation we combine the classifier information with the gradient infor-
mation. By fusing equations 10 and 11 we get a new initialization for the nodal
costs.
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(12)

!I/(z ) _ wa * CQ(I’ZJ) + (1 - wz) * Cl(xvy)a if E+(‘ray) =1
" 0, if E+($,y) =0

where, ws is a scalar and we use 0.5 value to weight both the scores equally.

5 Experiments and Results

5.1 Ground Truth and Importance of MSEE

Since, we want to compare the detected horizon lines by various approaches;
we have manually created the ground truth for our data set which is comprised
of 45 images hand picked from Basalt Hills data set. The images chosen have
considerable viewpoint and scene changes and we make sure a full visible horizon
exists in these images. Edge detection is used as the preliminary step for the
manual labeling. The edges which belong to horizon line visually are kept for
further processing. Whereas pixels are linked manually if there exist any gaps
due to edge detection and become the part of ground truth horizon.

Following Ahmad et al. as a first step to our proposed feature analysis we
compute the Maximally Stable Extremal Edge (MSEE) Images for all the images
in our data set. We compare the number of edges survived after MSEE compared
with the number of edges found by Canny edge detector of Matlab and see on
an average a 66.37% reduction in the number of candidate horizon edges which
are further reduced by the classifier.

5.2 Reduction in Horizon Candidate Edges due to Features and
Classifier

We investigate various texture desciptors and their combinations as the feature
choices to train our SVM classifier. We perform a 5-fold validation where for
each fold the data set is divided into non-overlapping train (9 images) and test
sets (36 images). Since, we have the ground truth horizons at our disposal we
know which egdes belong to true horizon and which do not. Table 1 shows the
percentage false positive and false negative errors averaged over the five folds of
training and the respective standar deviations. Figure 3 shows a graphical view
of the same information. Since, false negative error is of more importance we
choose the classifier based on SIFT-HOG combination for further evaluation.

5.3 Best Nodal Cost

We compare our proposed formulations (section 4) againts the state of the art hori-
zon detection method based on edges and DP i.e. Lie et al. [3]. To compare the
detected horizon lines found by each method with the ground truth horizons, we
compute an average pixelwise absolute error. Since, in all of our formulations we do
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% Error
=
=)

W% FN

E*%FP

Feature

Fig. 3. Mean of % False Positive and False Negative Errors when various Features and
their combinations used for training the SVM Classifier

not allow nodes to be connected within the same stage, there exists a one-to-one
mapping between the pixels of the detected(d) horizon and the ground(g) truth
horizon. The absolute average error for a detected horizon can be written as,

N
1
S= 2 IPag) = Pagy)| (13)
j=1

where Py;y and Py(;y are the positions (rows) of the detected and true horizon
pixels in column j and N is the number of columns in the test image. For
each of our formulation and Lie at al. we computer the average and standard
deviation over all images in the data set listed in the table 2. Clearly, SIFT+HOG

Table 1. Mean and standar deviations for % False Positive and False Negative Errors
due to Various Features and their Combinations

%FN %FP
Feature Mean Std. Dev. Mean Std. Dev.

SIFT 1.0224  0.7890 17.8090 5.6089

LBP 5.0332 8.3747 10.6366 8.0770

HOG 2.3285  2.3498 11.2331 5.6616
SIFT+LBP 0.6915 1.1827 10.6065 5.8949
SIFT4+HOG 0.6624 0.7436  11.0801 5.1797
LBP+HOG 3.3647  3.6415 10.0737  6.394
SIFT4+LBP+HOG 7.1887 8.1177  4.8302  4.0438
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Scores outperforms all others strengthing our understanding that using only edge
information is not enough for the nodal costs.

Table 2. Average absolute errors between the detected and ground truth horizons for
various choices of Nodal Costs

Absolute Error

Nodal Costs Mean Std. Dev.
Lie et al. (Edges) 5.5548  9.4599

Gradient Info. 3.9908  6.3530
SIFT+HOG Edges 0.5783  1.0227
SIFT4+HOG Scores 0.4124 0.8120

SIFT+HOG Scores + Gradient Info. 0.4358  0.8124

Figure 4 shows few sample test images from our data set with detected horizon
lines overlaid (in red) when SIFT-HOG classifier score is used as nodal cost.

Fig. 4. Detected Horizon Lines using SIFT-HOG Classifier Score as Nodal Costs; high-
lighted in red

6 Conclusion

We have investigated various texture features and nodal costs for a recently pro-
posed edge and DP based horizon line detection approach. We have established
by experimental evidence that using the binary scores in DP formulation is not
enough to find the true horizon line. Using the proposed nodal costs we were
able to show that even gradient information contributes more that mere edge
detection. Recently proposed approaches use the trained classifier to reduce the
number of candidate horizon edges whereas we extend the use of classifier not
only to classify the edges but to use the normalized classification scores as the
nodal costs.

The current analysis is based on a relatively small data set comprising of
45 images only; which though have significant scene and viewpoint changes but
come from the same geographical sight and are taken under same weather condi-
tions. In future, we hope to extend and verify this analysis for a more challenging
data set preferably mountain images with visible horizon collected from a search
engine.
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