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Abstract 
Face detection is an important prerequisite step for 
successful face recognition. The performance of 
previous face detection methods reported in the 
literature is far from perfect and deteriorates 
ungracefully where lighting conditions cannot be 
controlled. We propose a method that outperforms 
state-of-the-art face detection methods in 
environments with stable lighting. In addition, our 
method can potentially perform well in 
environments with variable lighting conditions. The 
approach capitalizes upon our near-IR skin 
detection method reported elsewhere [13][14]. It 
ascertains the existence of a face within the skin 
region by finding the eyes and eyebrows. The eye-
eyebrow pairs are determined by extracting 
appropriate features from multiple near-IR bands. 
Very successful feature extraction is achieved by 
simple algorithmic means like integral projections 
and template matching. This is because processing 
is constrained in the skin region and aided by the 
near-IR phenomenology. The effectiveness of our 
method is substantiated by comparative 
experimental results with the Identix face detector 
[5]. 
 
1. Introduction 

Face detection and recognition have been 
active research areas for more than thirty years. Face 
detection is an important preprocessing stage of an 
overall face recognition system. Although, it may 
appear rudimentary to a layman, face detection is a 
challenging machine vision operation, particularly 
in outdoor or semi-outdoor environments where 
illumination varies greatly. This is one of the 
primary reasons that face recognition is currently 
constrained to access control applications in indoor 
settings. 

There is a pressing need for expanding the 
application of face recognition technologies to 
surveillance and monitoring scenarios. Such systems 
would be most advantageous in the context of 

protecting high value assets (e.g. perimeter of 
government buildings) from asymmetric (terrorist) 
threats. They will also be advantageous in gate 
control points to automate the validation of 
incoming personnel in military bases. A major 
technical challenge that needs to be addressed in 
these directions is the low performance of face 
detectors in rather unconstrained environments. 
Visible-band face detectors, as those reported in the 
literature, opt for pure algorithmic solutions into 
inherent phenomenology problems. Human facial 
signatures vary significantly across races in the 
visible band. This variability coupled with dynamic 
lighting conditions present a formidable problem. 
Reducing light variability through the use of an 
artificial illuminator is rather awkward in the visible 
band because it may be distracting to the eyes of the 
people in the scene and reveals the existence of the 
surveillance system. 

In the current paper we present a novel face 
detection system based on near-IR phenomenology, 
and multi-band feature extraction. Facial signatures 
are less variable in near-IR aiding significantly the 
detection work. Illumination in the scene can be 
maintained at an optimal level through a feedback 
control loop that adjusts a near-IR illuminator. 
Since, near-IR light is invisible to the human eye the 
system can remain unobtrusive and covert. The 
above advantages in combination with the unique 
reflectance characteristics of the human skin in the 
near-IR spectrum allow for simple algorithmic-
based face detection methods to perform extremely 
well. 

The results of the present research will be 
incorporated in a prototype face verification system 
for gate control in a U.S. Naval Base in Hawaii. The 
system will use our face detector and the face 
recognition engine FaceIt of Identix to 
automatically verify the identity of incoming 
personnel. According to the application scenario the 
driver will stop his vehicle, lower his window, and 
turn his head towards the triple-band system. The 



system will acquire the driver’s facial image and 
verify it against the corresponding stored image. 
The ID emitted from the driver’s RF badge will 
index the stored image. Depending on the 
verification result the gate will open or an alarm will 
go off. Although, the target application is relatively 
constrained, it is an order of magnitude more 
challenging than the current indoors access control 
scenarios. 

The rest of the paper is organized as follows: 
In Section 2 we give an overview of previous work 
done in the area of face detection. In Section 3 we 
give a top-level description of the hardware and 
software architecture of our face detection system. 
In Section 4 we describe the Frame Acquisition 
module. In Sections 5, 6, and 7 we describe the 
software modules of the illumination feedback 
control loop. In Section 8 we provide a brief 
description of our skin detection method. In Section 
9 we elaborate on our face detection method, which 
builds upon our skin detection method. In Section 
10 we present and discuss the experimental results. 
Finally, in Section 11 we conclude the paper and 
present our plans for future work. 
 
2. Previous Work 

In recent years a sizable body of research in 
the area of face detection has been amassed. An 
excellent survey of the relevant literature can be 
found in [1]. The methodologies vary, but the 
research mainly centers around three different 
approaches: feature invariant approaches, 
appearance-based approaches, and wavelet analysis. 
Each of these approaches has its respective strengths 
and weaknesses when applied to face detection, but 
none has yet been able to attain results rivaling 
human perception.  

The majority of face detection research aims 
to find structural features that exist even when the 
pose and viewpoint vary. The existence of such 
features is associated with the existence of faces in 
the image. Feature extraction methods utilize 
various properties of the face and skin to isolate and 
extract desired data. Popular methods include skin 
color segmentation [2][3], principal component 
analysis [4][5], eigenspace modeling [6], histogram 
analysis [7], texture analysis [8], and frequency 
domain features [9]. 

Appearance-based approaches for face 
detection typically involve some kind of neural 
network. In these approaches, detection is based on 
learned models from a representative data set. 
Finding a representative data set is difficult. This 
difficulty is compounded by the fact that a strong 
counter example set must also be compiled to train 

the individual networks. Despite these obstacles 
many of the most promising results have been 
reported from research involving artificial neural 
networks.  In his work Rowley et al. [10] used an 
arbitration method among several networks to 
improve performance. His system produced some 
impressive results for forward facing subjects.  

Wavelet analysis is the newest of the face 
detection approaches under discussion. The general 
aim of the wavelet approach is maximum class 
discrimination and signal dimensionality reduction 
[11]. Due to the reduced dimensionality, wavelet-
based methods are computationally efficient. 

All of the above approaches are associated 
with visible spectrum imagery. Therefore, they are 
susceptible to light changes [12] and the variability 
of human facial appearance in the visible band. A 
distinct line of research pursued by our group 
proposed the fusion of two near-IR bands for the 
detection of face and other exposed skin areas of the 
body [13][14]. The method capitalizes upon some 
unique properties of the human skin in the near-IR 
spectrum. Our dual-band system maintains an 
optimal illumination in the scene through the liberal 
use of artificial non-distracting near-IR lights. As a 
result, the system performs superb skin detection 
both in indoor and outdoor settings. In the present 
paper, we report further algorithmic work that 
accurately locates the face within the detected skin 
region. 

 

 
Figure 1: The EM spectrum. 

 
3. System Overview 
3.1. Hardware Architecture 

The latest version of our face detection 
system uses three cameras as the input medium.  
Two of the cameras have Indium Gallium Arsenide 
Focal Plane Arrays (FPA), which are sensitive to a 
portion of the near-IR spectrum in the range 0.9-1.7 
µm. This range clearly falls within the reflected 
portion of the infrared spectrum and has no 
association with thermal emissions (see Figure 1). 
The third camera is a color visible band camera. A 
system of beam splitters (see Figure 2) allows all 
three cameras to view the scene from the same 
vantage point, yet in different sub-bands. The 
splitters divide the light reflected from the scene 



into the visible band beam (0.3-0.6 µm), the lower 
band beam (0.8-1.4 µm), and the upper band beam 
(1.4-2.4 µm). The three beams are funneled to the 
FPAs of the corresponding cameras. Each camera is 
connected to a frame grabber, which digitizes the 
incoming video.  

Although we have designed and 
implemented a tri-band system we use only the two 
near-IR bands in our approach. At the moment, we 
use the visible band only for comparative testing 
purposes with the Identix face detection and 
recognition software [5].  

 
Figure 2: Hardware diagram of the tri-band system. 

 
A major innovation in our design is the 

near-IR illumination control subsystem. We have 
developed a software component that analyzes the 
luminance in the incoming near-IR frames.  The tri-
band system then appropriately adjusts the output 
voltage on the programmable power supply unit 
connected to the computer via the serial port.  The 
power supply provides power for the near-IR lamp 
that illuminates the scene (see Figure 2). Through 
this feedback the tri-band system is able to keep the 
scene at a constant near-IR luminance regardless of 
external conditions.  

One of the main benefits of using the near-
IR spectrum is that subjects in the scene are unaware 
that they are being illuminated by the system. This 
is especially beneficial for covert operation in 
surveillance applications. One consideration, 
however, that must be made for the near-IR lamp is 
that like any intense light source it can be harmful to 
human eyes if direct exposure occurs for a 
prolonged period [15]. One possible method for 
damage avoidance is to strobe the lamp when a 
subject gazes at the system unknowingly for too 
long. 
 
3.2. Software Architecture 
 The tri-band system’s software consists of 
six modules (see Figure 3):  

 
• Frame Acquisition: Initially the system gets 

the input frames for all three bands from the 
respective frame grabbers. The near-IR frames 
are sent to: a) the Background-Foreground 
Segmentation and b) the Skin Detection 
modules. The visible-band frame is made 
available to the Identix face detector and 
recognizer. 

• Foreground-Background Segmentation: The 
foreground-background segmentation is 
performed based on frame differencing. The 
binarized along with the original frames are 
sent to the Near-IR Luminance Calculation 
module.  

• Near-IR Luminance Calculation: This 
module calculates the luminance levels present 
in the lower and upper near-IR bands. The 
calculation takes into account the background 
portions of the frames only. 

• Near-IR Illumination Adjustment: Based on 
the computed luminance levels the system 
adjusts the output on the power supply. The 
objective is to maintain a constant near-IR 
luminance level by appropriately adjusting the 
power of the illuminator in response to 
environmental changes. 

• Skin Detection: Upon receiving the two near-
IR frames the skin detector performs a series of 
operations to isolate the skin. The output of the 
skin detection module is a binary image where 
all skin appears black against a white 
background.  The skin image along with the 
original near-IR frames is then passed to the 
Face Detection module. 

• Face Detection: The face detector uses 
correlated multi-band integral projections to 
detect the existence and location of eyes within 
the skin region. In case this approach fails to 
detect any eyes an alternate approach based on 
dynamic thresholding and template matching is 
used. Eventually, if at least one eye is detected 
the skin region is declared a facial region.  

 
 
4. Frame Acquisition 
The goal of the Frame Acquisition module is to 
acquire and distribute for processing spatially and 
time registered frames form all three bands. 
Although the module is wrapped in software it relies 
primarily on the hardware design to achieve its goal. 
Spatial frame registration takes place at the optical 
level for all three bands through a system of beam 
splitters that break the incoming light three ways. 



Each of the three split light beams is directed to the 
FPA of the respective camera. Solving the spatial 
registration problem at the optical level bypasses 
algorithmic difficulties and facilitates the 
application of multi-band fusion methods. The three 
cameras are synchronized through an external 
SYNC source. The spatially and time registered 
frames arrive at the respective frame-grabbers and 
get distributed into different software modules. The 
two near-IR frames feed into the Skin Detection and 
Background-Foreground Segmentation modules. 
The visible band frame feeds into the Identix face 
detection and recognition software. 

 

 
Figure 3: Software diagram of the tri-band system. 

 
5. Foreground-Background 

Segmentation 
The tri-band system features a feedback 

control loop that monitors continuously the 
luminance in the near-IR bands and adjusts 
appropriately the power in the near-IR illuminator. 
The objective is to maintain constant near-IR 
illumination in the scene irrespectively of ambient 

light changes. The feedback control loop consists of 
three software modules: the Background-
Foreground Segmentation module, the Near-IR 
Luminance Calculation module, and the Near-IR 
Illumination Adjustment module. 

The purpose of the Foreground-
Background Segmentation module is to isolate the 
static background of the scene from the silhouettes 
of any humans. The background region is then used 
for the computation of the scene luminance in the 
Near-IR Luminance Calculation module.  

We avoid associating the scene luminance 
with the luminance of the entire image for a good 
reason. Whenever a human enters into the scene he 
affects the overall image luminance. The change 
could be quite dramatic since the human face is 
highly reflective in the lower band and highly non-
reflective in the upper band. Therefore, if we 
associate the scene luminance with the overall 
image luminance then, every time a human walks 
into the scene the feedback control loop will adjust 
the illuminator to compensate for the perceived 
luminance change. The correct behavior is for the 
feedback control loop to get activated only when 
there is true illumination change in the scene.  

We assume an initial static scene with no 
human presence. Once the level of illumination is 
stabilized to an optimal level we designate the 
incoming near-IR frames as reference frames and 
store them away. From that point on all subsequent 
near-IR incoming frames are subtracted from the 
respective reference frames. The difference frames 
are then thresholded using an adaptive thresholding 
method [16]. Let p(1), … p(I) represent the 
histogram probabilities of the observed gray values 
1,…,I; p(i) = #{(r,c)|Diff_Image(r,c) = I}/#RxC is 
the spatial domain of the difference image. 
Assuming a bimodal histogram, the histogram 
thresholding problem is to determine an optimal 
threshold t separating the two modes of the 
histogram from each other. Each threshold t 
determines a variance for the group of values that 
are less than or equal to t and a variance for the 
group of values greater than t. We adopt the 
definition for best threshold suggested by Otsu [16]. 
In this context, we compute the threshold for which 
the weighted sum of group variances is minimized. 
The weights are the probabilities of the respective 
groups. Based on the threshold value t we binarize 
the difference image. In the resulting binary image, 
black represents the initial static scene and white 
any object foreign to the initial scene. In our case 
such foreign objects are humans that step into the 
field of view of the tri-band system. 
 



6. Near-IR Luminance Calculation 
We apply a 12x16 grid upon the binary 

image resulted from the Foreground-Background 
Segmentation module. We check each grid cell to 
find if any foreground (white) pixels are present. 
Cells that contain at least one foreground pixel are 
labeled foreground cells and are eliminated from 
consideration. Cells that contain exclusively 
background pixels are labeled background cells and 
are sub-sampled. The sub-sampling amounts to 
taking into consideration only the center of the cell 
(see Figure 4). The cell center indexes the intensity 
value in the original near-IR image. We compute the 
overall scene luminance for each near-IR band by 
averaging the intensity values of the corresponding 
background cell centers. Specifically, for the lower 
band the scene luminance lowerµ is computed by 
applying Eq. (1): 

( , )lower lower
N

I i j
N

µ = ∑1
, (1) 

where N is the number of background cell centers 
and ( , )lowerI x y their corresponding intensity 
values. We apply a formula similar to Eq. (1) for the 
computation of the scene luminance upperµ in the 
upper band. 
 

 
Figure 4: (a) Lower near-IR image. (b) Foreground-Background 
image with the centers of the background cells highlighted in red. 

 
7. Near-IR Illumination Adjustment 

The Near-IR Luminance Calculation 
module computes the overall luminance in the lower 
and upper near-IR bands. Then, the Near-IR 
Illumination Adjustment module uses the luminance 
value in the lower band to adjust appropriately the 
power of the illuminator. 

The adjustment is based on a look-up 
operation at the Luminance-Voltage diagram that 
we have constructed experimentally (see Figure 5). 
In the absence of ambient illumination we have 
stepped up the power voltage in the near-IR 
illuminator incrementally. For every step we have 
computed and recorded the cumulative increase in 
the low near-IR scene luminance as a percentage of 
the ideal scene luminance (cumulative diagram). 

Our Luminance-Voltage diagram is complementary 
to the cumulative diagram and expresses the amount 
of voltage required to bring less than ideal scene 
luminance (< 100%) to its optimal level. 

During normal operation the Near-IR 
Luminance Calculation module computes the 
background scene luminance. Then, we estimate 
what percentage of the ideal luminance is the 
existing luminance in the lower band. The 
percentage indexes in the diagram of Figure 5 the 
voltage that we should apply to the power source. 
 

Figure 5. Voltage versus luminance diagram for the adjustment 
of the near-IR lamp. 

 
8. Skin Detection  
 The near-IR spectrum is particularly 
beneficial for skin detection purposes [13][14]. 
Human skin exhibits an abrupt change in reflectance 
around 1.4 µm. This phenomenology allows for a 
highly accurate skin mapping by taking a weighted 
difference of the lower band near-IR image and the 
upper band near-IR image. A consequence of the 
phenomenological basis of our skin detection 
method is that artificial human heads cannot fool the 
system (see Figure 6). 

The pixel mapping for the difference of the 
two near-IR images is as follows:  
 ( , ) ( , ) ( , )diff lower upperI i j I i j f I i j= − * , (2) 

where ( , )xI i j is the pixel value at position 

( , )i j in the respective image x and f  is the 
weight factor used.  The weight is the ratio of the 
luminance lowerµ in the lower near-IR to upperµ in 
the upper near-IR band: 

 lower

upper

f µ
µ

= , (3) 

where lowerµ and upperµ are computed according to 
Eq. (1). The typical weight ratio calculated by the 
system ranged from about 1.4 to 1.8 µm.  



The weighted subtraction operation 
increases substantially the contrast between human 
skin and the background in the image. This prepares 
the ground for the successful application of a 
thresholding operation [16] to extract the scene 
regions. Then, the resulting binary image undergoes 
a series of morphological operations (see Figure 7): 
 

 
Figure 6: (a) Example of successful discrimination between a 
real and an artificial human head. (b) The binary output of the 
skin detection process. 

 

 
Figure 7: The skin detection process: (a) The lower near-IR band 
image (b) The upper near-IR band image (c) The weighted 
subtraction image (d) The thresholded image. (e) The opened 
image. (f) The closed image. (g) The dilated image (using 
diamond-shaped element). (h) The eroded image (using diamond-
shaped element). 
 
• Opening and Closing: The opening operation 

smoothes the contour of the skin region, breaks 
narrow isthmuses, and eliminates small islands 
and sharp peaks or capes. The closing operation 
fuses narrow breaks and long, thin gulfs; 
eliminates small holes; and fills gaps on the 
contours. We apply opening once and closing 

twice. A rectangular structuring element is used 
in the opening and first closing. A diamond-
shaped structuring element is used in the second 
closing to connect more efficiently the square 
components generated by the previous step. 

 
Figure 8: An outline of the face detector functionality. 

9. Face Detection  
 Only frontal or near-frontal faces are 
considered in this study. The face detector uses skin 
region information as well as the lower and upper 
near-IR images to determine the location and extent 
of the face. Obviously, the detection of skin regions 
does not necessarily imply that there is a face 
present in the imagery (i.e., other human body parts 
like hands can give rise to skin regions). To verify 
the presence or absence of a face in the scene, 
further processing is required. 
 The most common approach is locating 
various facial features within the skin region such as 
the eyes, the nose, and the mouth. Localization of 
facial features is also important for the operation of 
the face recognizer, which our face detector will 
ultimately cater. Our face verification scheme relies 
on the detection of the eyes and the eyebrows within 
the skin region, exploiting the phenomenology 
exhibited by the skin, eyes, and hair in the near-IR 
band of the EM spectrum.  
 The proposed face detection scheme 
operates in two distinct modes (see Figure 8). In 
both cases, the system capitalizes on the observed 



phenomenology of the near-IR. When in the first 
mode, the system uses correlated multi-band integral 
projections to detect the eyes and the eyebrows. If 
face detection fails in this mode, the system enters 
the second mode of operation. Facial feature 
detection in this mode is based on a dynamic 
thresholding model and template matching. The two 
detection modes are applied in the given order 
because the integral projection mode is much faster 
than the template-matching mode.  This allows the 
system to operate in the most time efficient manner. 
 

 
Figure 9: Outline of the first mode of our face detector. 

 
9.1 Face Detection Using Correlated Multi-
Band Integral Projections  
 In this mode, the system tries to find the 
facial features within the skin region using the 
horizontal integral projections of the skin region in 
the lower and the upper band near-IR images. Using 
integral projections for facial feature detection is not 
a new idea [17][18]. The innovation of our 
approach, however, lies on correlating the 
information extracted from the lower and upper 
near-IR bands to improve the robustness of feature 
extraction. In particular, eyebrows show up very 
nicely in the upper near-IR band because human 
hair is highly reflective in this band and contrasts 

with the highly non-reflective skin. Eyes show up 
better in the lower near-IR band because they are 
non-reflective in this band and contrast with the 
highly reflective skin. Once the integral projections 
pass the correlation stage, then they are checked for 
symmetry. Provided that the symmetries match, then 
the eye and eyebrow regions are extracted using 1D 
Watersheds [19] (see Figure 9).  
 
9.1.1 Horizontal Integral Projections 
 Horizontal (and vertical) integral 
projections (or profiles) have been used in 
association with visible band imaging for facial 
feature extraction [17][18]. Assuming that the 
search region is a HxW rectangle, the horizontal 
integral projection can be computed as follows: 

 ( ) ( , ),..
W

j
P i I i j i H

=

= ≤ ≤∑
1

0 , (4) 

where ( , )I i j  is the intensity function of our search 
window. Locating the facial features is then 
equivalent to finding certain local minima and 
maxima in ( )P i . This method works only when the 
face is facing fairly forward and is unobstructed.  
 

 

Figure 10: An example of the integral projection in the visible 
band. (a) The visible band image. (b) The gray scale version of 
the visible band image with its integral projection overlaid in red. 
The dark stripe in the background creates a significant valley that 
would make eye detection very hard. 

 
There are two main difficulties with using 

integral projections in the visible spectrum. First, it 
requires that the skin region has been extracted, a 
non-trivial task in the visible spectrum. Without this 
assumption, it would be quite difficult to locate 
accurately the correct minima or maxima due to 
noise introduced by non-trivial backgrounds (see 
Figure 10). Second, even moderate illumination 
changes can affect the shape of the integral 
projection significantly. 
 Within the context of our method the 
background noise is not an issue, since we apply the 
integral projection on the skin region only. The 
feedback control mechanism that maintains constant 
scene luminance further facilitates the effectiveness 
of integral projection. Integral projections are also 
facilitated by the facial phenomenology in near-IR. 



In the lower near-IR band, the eyes appear dark 
while the skin is light. This creates a consistent 
relative minimum where the eyes are located in the 
horizontal integral projection of the skin region (see 
Figure 11(a)). In the upper near-IR band, the 
eyebrows appear light while the skin is dark. This 
creates a consistent relative maximum in the 
horizontal profile where the eyebrows are located 
(see Figure 11(b)). By correlating the minima in the 
lower band with the maxima in the upper band, we 
can find the eye-eyebrow pair more robustly than 
carrying out the detection in the visible spectrum 
(see Figure 11(c)).  
 The correlation is based on the Euclidean 
distance between the eyes and the eyebrows (i.e., 
estimated from the distance of the feature rows).  An 
adaptive distance threshold is imposed on the results 
based on a percent height of the input skin region.  
This restricts the results to pairs that conform to 
anthropometric dimensions. If the distance between 
the eyes and eyebrows exceeds the threshold, then 
the system switches to its second mode of operation.  
 

 
Figure 11: (a) The integral projection of the lower band skin 
region with the min location in red. (b) The integral projection of 
the upper band skin region with the max location in blue. (c) Both 
the min and the max locations overlaid on the visible band image 
for visualization purposes. 

 
9.1.2 Symmetry Test 
 The purpose of the symmetry test is to 
verify that the eyes and eyebrows were extracted 
correctly. The human face is bilaterally symmetrical 
across the sagittal plane. Consequently, the point of 
symmetry between the eyes and that between the 
eyebrows should be approximately aligned in the 
vertical direction. To determine the point of 
symmetry between the eyes, we consider each 
pixel ( , )c ci j between the eyes and compute the sum 
of differences between pixels at equal radii from 
( , )c ci j  along the eye line. The pixel 

**

( , )
c c

ji minimizing the sum of differences is 

considered to be the point of symmetry: 

( , )

**( , ) ( , ) ( , )min
=

= − − +∑
0c c

D

c c c c cc
i j r

I i j r I i j rji ,(5) 

where D  is the shortest distance of ( , )c ci j from 
either endpoint of the eye line. The eyebrow point of 
symmetry is computed similarly.  
 The symmetry test fails if the distance 
between the eye and eyebrow points of symmetry is 
more than a certain percentage of the height of the 
skin region. Besides verifying the extraction of the 
eyes and eyebrows, the symmetry condition ensures 
that the face is frontal or nearly frontal. When the 
symmetry test succeeds, we use the extracted feature 
regions (see next section) to estimate the intensity 
distributions of the eye and eyebrow pixels. This 
information is used by the second mode of operation 
of the face detector (see Section 9.2).  
 
9.1.3. Feature Extraction 
 Once it has been established that the skin 
region comes from a face, the next step is to extract 
the regions corresponding to the eyes and eyebrows. 
Extracting the eye and eyebrow regions uses the fact 
that we already know their horizontal location in the 
image from the computation of the integral 
projections. Moreover, these features have some 
distinct phenomenology that facilitates region 
extraction. Figure 12 shows the intensity variation 
of these features along the row they lie on for 
several subjects. In the upper near-IR band, the 
eyebrows appear as peaks situated around the axis 
of symmetry. In the lower near-IR band, the eyes are 
distinguishable as two valleys around the axis of 
symmetry.  

The region extraction is based on a 
modified watershed algorithm [19]. If the profile is 
treated as a surface in which water can be poured, 
then to find the bounds of a valley water is added to 
the valley until it overflows into another valley.  
Taking the negative of the profile turns the peaks 
into valleys, so the same method can be applied for 
both peaks and valleys. Figure 13 shows an example 
of our region extraction. 
 

 
Figure 12: (Top) Sample eyebrow row profiles. (Bottom) Sample 
eye row profiles. 



 

 
Figure 13: (a) The eye row profile in the lower band image with 
the corresponding feature extraction bounds. (b) The eyebrow 
row profile in the upper band image with the corresponding 
feature extraction bounds (c) Both the eye and eyebrow 
extraction bounds overlaid on the visible band image for 
visualization purposes. (d) The full 2D extracted feature overlaid 
on the visible band image for visualization purposes. 

 

 
Figure 14: An example causing correlation to fail. (a) The 
integral projections in both bands with the correlation failing (b) 
The results of feature extraction using dynamic thresholding with 
the eye locations produced by the template face detector overlaid. 
The regions in blue correspond to candidate eyebrow locations 
and the regions in red to candidate eye locations. 

 
9.2 Face Detection Using Dynamic 
Thresholding and Template Matching 
 The previous method based on correlating 
the integral projections works well only if the peaks 
and valleys can be extracted reliably. Some times, 
however, we might get some false minima in the 
near-IR band. Figure 14(a) shows an example where 
the nose gives rise to a slightly stronger minimum 
compared to that of the eyes. 
 Despite that we have a frontal face, 
correlation fails due to the fact that the distance 
between the feature rows exceeds our threshold. In 
cases like these, the face detector switches to its 
second mode of operation, which uses dynamic 
thresholding to hypothesize the locations of the 
features (see Figure 14(b)) and template matching to 
verify them.  Figure 15 illustrates the steps of the 
second mode. 

 
Figure 15: Outline of the second mode of operation of the face 
detector.  

 
9.2.1 Dynamic Thresholding 
 The purpose of this step is to hypothesize 
the locations of the eyes and eyebrows in the input 
imagery. This is performed by dynamically 
thresholding the lower and upper near-IR images. 
To determine the thersholds, we use the intensity 
distributions of the features as they were computed 
from a large number of subjects off-line. Figures 16 
and 17 show some typical intensity distributions for 
eyebrows and eyes. 

In the upper near-IR band, eyebrow hair 
stands out comparatively to the extremely low 
reflectivity human skin. In the lower near-IR band, 
the eyes stand out comparatively to the high 
reflectivity human skin. The intensity distributions 
of the eyebrows and the skin in the upper near-IR 



band exhibit good separation from each other. The 
eyes and the skin in the lower near-IR band, 
however, are more difficult to separate.  
 

 
Figure 16: The intensity distribution for skin and eyebrow in the 
upper near-IR band. 

 

 
Figure 17: The intensity distribution for skin and eye in the 
lower near-IR band. 

 
 Although the skin itself exhibits much 
higher reflectivity than the eyes in low near-IR the 
angle of incidence of the near-IR illumination can 
create shadows on the skin, especially when the face 
starts changing orientation. These shadows account 
for the large overlap in intensity values observed 
between the skin and the eyes in the lower near-IR 
band.  

Figure 18 shows an example of the upper 
and lower near-IR feature images. Each black pixel 
in Figure 18(a) corresponds to a candidate eyebrow 
location (eyebrow map) while each gray pixel in 
Figure 18(b) corresponds to a candidate eye location 
(eye map). Another example is shown in Figure 
14(b). 

 
9.2.2 Template Matching 
 To verify the eyebrow and eye locations, 
first we fuse the eyebrow and eye feature maps into 
a composite feature map (see Figure 18(c)). This is a 

tri-level image: the black areas denoting likely 
eyebrow regions, the gray areas likely eye regions 
and the white areas all the rest. To verify the 
candidate feature locations, we apply template 
matching on the composite feature image [20].  
 

 
Figure 18: (a) Eyebrow feature image extracted from the upper 
near-IR band. (b) Eye feature image extracted from the lower 
near-IR band. (c) Composite eyebrow-eye feature image. (d) The 
result of the template matching superimposed on the skin image. 

 
We use a simple template (see Figure 19) 

that is modeled after the expected appearance of an 
eye region in the composite feature image. This 
consists of a black region (modeling the eyebrow) 
over a gray region (modeling the eye). The template 
is rotated and sized at each point of implementation 
to account for the rotation and variation of 
individual faces.  The result of this step is a tri-level 
image where the background shows as white, the 
skin region as gray, and within the skin region the 
area(s) that exhibited the strongest response to our 
eye template as black (see Figure 18(d)).  
 

 
Figure 19: The template models the appearance of an eye region 
in the composite feature image, given the constraints of human 
anatomy. 

  
9.2.3 Blob Analysis 
 The face detector estimates the center of 
the subject’s eyes through blob analysis. Because of 
the variation in human faces several different 
patterns of ‘eye’ blobs can arise in the resulting 
template matching image (see Figure 20).  
Specifically: 



• Case 1: There is a single blob that spans the 
width of the face region.  The blob is bisected 
in the middle and processed as two smaller 
blobs. 

• Case 2: There are two blobs that are roughly 
equal size, which are higher than any other 
blobs. In this case the angle between the two 
potential eye blobs must be determined to 
eliminate cases, which would be clearly 
incorrect.  An example of this would be if the 
nose and one eye showed up as the two highest 
blobs. In that instance the angle between the 
two blobs would indicate the face would need 
to be rotated almost 45 degrees around the z-
axis (see Figure 21). That would exclude it 
from being a face within acceptable detection 
range (see our definition of Forward Face 
Present in Section 10). 

• Case 3: There are two blobs which are roughly 
equal size and at the same height (ideal case). 

• Case 4: There is a single small blob set apart 
and higher than any other blobs. 

Ultimately, the face detector locates the center of the 
eyes as the centroids of the selected blobs.   

 

Figure 20: Two eye region blob cases: (1) A single blob covers 
both eyes (2) Each eye region appears as a distinct blob but at 
different heights. (3) Each eye region appears as a distinct blob at 
equal heights. (4) A single blob corresponding to a single eye 
region. 

 
10. Experimental Results 

We tested the performance of the system 
on a stream of single facial images taken live 
through our system. Only frontal faces were 
considered in this study. The images were taken 
inside our laboratory using a near-IR illuminator as 
well as visible band lighting. Our experimental data 
set was composed of 845 images taken from 16 
different subjects (see Figure 21). We used a wide 
variety of people including both genders, and 
subjects with facial hair. We chose not to include 

subjects with glasses in the data set for this work 
because glasses interfered with the skin 
phenomenology in the near-IR and hindered 
accurate feature extraction. Although, a lot of the 
data were acquired in a lab room, we varied the 
overhead lights through our dimmer control to 
simulate the light variability encountered in nature. 
Also, some of the data were acquired outdoors by 
imaging faces of drivers from the side window (see 
Figure 32). The bulk of our data set is publicly 
available in the project’s web page for the research 
community [21]. Each subject performed a series of 
head movements (see Figure 22). 
 

 
Figure 21: Three of the subjects used in our data set as they 
appear in the visible, upper near-IR, and lower near-IR bands. 
The subjects are representative of the Caucasian, African, and 
Asian groups. 

 

 
Figure 22: Subject head motion range. 

10.1. Comparison with Identix FaceIT Face 
Detector 
 To benchmark our system we tested its 
performance against Identix’ FaceIT face detector 
[5].  This is one of the leading commercial systems 
available on the market, and we thought that this 
would provide a good basis for comparison.  
Unfortunately, Identix has not released any 



information about how their FaceIT face detector 
functioned, which made it difficult to derive any 
useful methodological comparison between our face 
detector and theirs.  However, we were able to 
conduct a fair and meaningful performance 
comparison between the two systems. We used the 
visible band images as input for the FaceIT face 
detector of Identix. Our system used the 
corresponding lower near-IR and upper near-IR 
images as input. All of the input images were 120 x 
160 pixels in size.  
 For the purpose of determining system 
performance it is important to establish a clear 
definition of output classification. Successful face 
detection was defined as having at least one eye 
detected correctly. A false detection was defined as 
having both eyes detected incorrectly. The 
determination of whether eye detection was correct 
was based on the Euclidean distance between the 
detected eye location and the nearest true eye 
location (see Figure 23). In these experiments, we 
accepted as the maximum acceptable disparity (eye 
detection radius) between the true and detected eye 
centroids to be 5 pixels (see Figures 24, 25). 
 The performance of each system was 
measured by comparing the results of the respective 
system’s face detector with the actual facial 
locations that were determined manually and stored 
in a data file. This data file contained the location of 
each eye in each frame as well as a classification of 
the frame into one of three categories. The 
classification categories are as follows: 
 
• No Face Present: No eyes are visible in the 

image.  This includes images where a face is 
present but the eyes are occluded.  Occlusion 
occurred from extreme rotation or the face 
being only partially on the image with no eyes 
visible. 

• Forward Face Present: Two eyes are visible 
and the face is frontally oriented.  Frontal 
orientation of the face is defined as falling in 
the range of 

–100 to +100 rotation in the x-axis 
–200 to +200 rotation in the y-axis 
–100 to +100 rotation in the z-axis 

 (see Figure 22 for axes).  
• Rotated Face Present: Either one or two eyes 

are visible and the face is oriented outside of 
the bounds defined for a frontal face. 

The ranges chosen for the category 
delineations were compilations of commonly used 
values from other papers [1][10]. Only the first two 
categories were used in our comparisons. Figures 24 
and 25 illustrate the performance of the two systems 
for a continuum of eye detection radii. The near-IR 

face detector demonstrated superior performance, 
yielding a lower error rate by 7.64% for the radius 
of 5 pixels. Moreover, it demonstrated both lower 
false positive and false negative rates. Table 1 
contains the experimental results corresponding to 
eye detection radius of 5 pixels.  
 

 
Figure 23: An example of eye detection radius of 5 pixels. Any 
eye detected within the blue circles would be considered a 
correctly detected eye. 

Figures 26-28 show some typical results of 
our system. Figure 26 shows some successful cases 
while Figures 26 and 28 show some unsuccessful 
cases due to failure of the integral projections and 
template matching correspondingly. There are 
several cases that can cause our system to fail. The 
first case is when part of the subject’s hair is 
included in the skin region due to errors in 
thresholding the difference image. In this case, the 
system might get confused and detect the hair 
instead of the eyebrows. The leftmost and rightmost 
images of Figure 27 show some examples. Another 
case is when the nose creates the best dip in the 
lower band near-IR (see Figure 14(a)). Finally, 
problems are caused sometimes when the subject’s 
eyes are either closed or the salient parts of the eyes 
are not visible (see middle image in Figure 27). This 
obscures the eyes and therefore makes it difficult to 
create a good composite feature image from which 
to find the eye regions. Overall, the template 
matcher reduced the error rate of our system by 2%. 
This demonstrates that most of the work is done 
using the simpler technique of integral projections, 
exploiting the near-IR phenomenology.  
 Figures 29-31 show some typical results of 
the Identix system. An analysis of instances where 
the Identix system fails reveals some interesting 
facts.  It appears that most of the frames that give 
Identix trouble are frames in where the subject is not 
well centered in the image (compare Figure 28 with 
Figure 29). Moreover, the Identix system also seems 
to have a propensity for finding non-existent eyes 
(see Figure 30). Our data set did not contain a large 
number of frames without any subject visible. From 
the observed behavior of Identix’ system, it appears 



that its performance would have been much worse if 
the data set contained a great number of frames with 
no face present.  
 

 
Figure 24: Identix system’s  performance using frontal faces. 

 
Figure 25: Our system’s performance using frontal faces. 

 
           It is readily apparent in the result graphs that 
the Faces Missed and the False Faces Detected 
curves differ only by a small amount and are both 
inversely related to the corresponding Faces 
Detected curves.  This is because most Faces 
Missed were missed not because the systems 
refrained from returning eye locations, but rather 
because they returned incorrect eye locations, which 
also counted as False Faces Detected.  The reason 
for the apparent small disparity between the Faces 
Missed and the False Faces Detected seems to be 
the data set frames where no face was present. 

In terms of speed, our system is faster, 
operating at an average of 6.07 frames per second 
on a 1.0 GHz Pentium III PC, a speed sufficient for 
most security applications. In contrast, the Identix’ 
FaceIT face detector processed at an average of 
1.08 frames per second on the same system. This is 
well below the speed that would be required for a 
real-time security application. 
 
 

Table 1. Face detection results from 845 images of 16 subjects 
(radius = 5). 

 
 

 
Figure 26: Examples of the proposed system’s performance 
using frontal faces. The superimposed crosses indicate the 
locations of the eyes.  

 

 
Figure 27: Examples of our system having trouble due to failure 
of the integral projections. 

 

 

Figure 28: Examples of our system having trouble due to failure 
of the template matching. 

 

 

Figure 29: Example output of the Identix FaceIt face detector 
performing well on frontal faces. The locations of the eyes 
reported by the detector are marked with green crosses.  

 

 

Figure 30: Example output of the Identix FaceIt face detector 
performing poorly on frontal faces. The location of the eyes 
reported by the detector is marked with green crosses.  

 



 
Figure 31: Example output of the Identix FaceIt face detector 
performing poorly on images with no face present.  The locations 
of the eyes reported by the detector are marked with green 
crosses.  

11. Conclusions and Future Work 
 We have expanded the skin detection work 
reported earlier by our group [13][14] by developing 
a face detection method based on multi-band feature 
extraction in the near-IR spectrum. The system 
operates in two modes. In both cases, it capitalizes 
on the observed phenomenology of the near-IR. 
When in the first mode, the system uses correlated 
multi-band integral projections to detect the eyes 
and the eyebrows. If face detection fails in this 
mode, facial feature detection is performed using 
dynamic thresholding and template matching. 
Experimental results and comparisons with the 
Identix system demonstrated the superiority of the 
proposed approach both in terms of performance 
and speed. 

In our future work, we plan to address a 
number of issues that we encountered during 
development such as processing higher resolution 
images, including subjects with irregularities in the 
data set, and adapting the system to work with 
multiple subjects in the same frame. We would also 
like to address the problem of face detection under 
extreme rotation, scale independence for face 
detection, and the case of subjects with glasses. We 
also are in the process of exploring several 
promising leads that could greatly enhance the 
system such as extracting other facial features to 
enhance the face detector’s orientation confidence. 
Other interesting questions related to the project 
include determining whether the reflectance 
properties of the skin in the near-IR band fluctuate 
due to moisture, exertion, or other external factors 
such as sunburn. To improve the performance of our 
system, we plan to model the probability 
distribution of the features using more powerful 
models (e.g., mixtures of Gaussians). 

Our ongoing work (see Figure 33) focuses 
on the exploitation of the face detection information 
for face recognition purposes. We are working 
towards incorporating the face recognition engine 
FaceIt [5] by Identix into our overall system. Since 
FaceIt relies primarily on facial geometry for face 
recognition, it can be invariably applied to visible as 
well as near-IR imagery. By replacing the nominal 
face detector in the FaceIt system with our face 

detector we will be able to readily extend to 
increasingly unconstrained application scenarios. 
Our first target application is the installation of a 
face verification system for gate control in a Navy 
Base in Hawaii during 2003.  

 

 
 
Figure 32: Example of our system detecting the driver of a car in 
an outdoor environment (a) Low near-IR image with the eye 
positions overlaid in green, (b) High near-IR image with the eye 
positions overlaid in green. 
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