
-- --

Fingerprint Identification Using Delaunay Triangulation

George Bebis†, Taisa Deaconu† and Michael Georgiopoulos‡

†Department of Computer Science, University of Nevada, Reno
‡Department of Electrical and Computer Engineering, University of Central Florida

{bebis, deaconu}@cs.unr.edu, mng@ece.engr.ucf.edu

Abstract

This paper presents a new indexing-based approach to
fingerprint identification. Central to the proposed
approach is the idea of associating a unique topological
structure with the fingerprint minutiae using the Delau-
nay triangulation. This allows for choosing more "mean-
ingful" minutiae groups (i.e., triangles) during indexing,
preserves index selectivity, reduces memory require-
ments without sacrificing recognition accuracy, and
improves recognition time. Specifically, assuming N
minutiae per fingerprint on the average, the proposed
approach considers only O(N) minutiae triangles during
indexing or recognition. This compares favorably to
O(N 3), the number of triangles usually considered by
other approaches, leading to significant memory savings
and improved recognition time. Besides their small num-
ber, the minutiae triangles we used for indexing have
good discrimination power since, among all possible
minutiae triangles, they are the only ones satisfying the
properties of the Delaunay triangulation. As a result,
index selectivity is preserved and indexing can be imple-
mented in a low-dimensional space. Some key character-
istics of the Delaunay triangulation are (i) it is unique
(assuming no degeneracies), (ii) can be computed effi-
ciently in O(NlogN) time, and (iii) noise or distortions
affect it only locally. The proposed approach has been
tested on a database of 300 fingerprints (10 fingerprints
from 30 persons), demonstrating good performance.

Ke ywords: fingerprint recognition, Delaunay triangula-
tion, indexing

1. Introduction
Fingerprint matching is one of the most popular

and reliable biometric techniques used in automatic per-
sonal identification. There are two main applications
involving fingerprints: fingerprint verification [1][2] and
fingerprint identification [3]-[5]. While the goal of fin-
gerprint verification is to verify the identity of a person,
the goal of fingerprint identification is to establish the
identity of a person. Specifically, fingerprint identifica-
tion involves matching a query fingerprint against a fin-
gerprint database to establish the identity of an individ-

ual. To reduce search time and computational complex-
ity, fingerprint classification is usually employed to
reduce the search space by splitting the database into
smaller parts [5][6]. Matching is usually based on lower-
level features determined by singularities in the finger
ridge pattern known as minutiae.

Given the minutiae representation of fingerprints,
fingerprint matching can simply be seen as a point
matching problem [7]-[9]. In this context, matching two
fingerprints implies finding a subset of minutiae in the
first fingerprint that best match to a subset of minutiae in
the second fingerprint through a geometric transforma-
tion in an optimal sense (i.e., least-squares). Besides
matching two fingerprints together, the main issue when
dealing with large fingerprint databases is how to select
the most similar fingerprints to the query fingerprint from
the database. Both of these problems appear very often in
computer vision, particularly, in object recognition. As a
result, methods for object recognition have much in com-
mon with fingerprint identification methods.

Indexing-based methods [10]-[12] are quite attrac-
tive when dealing with large object databases, since the
query object does not have to be compared with every
other object in the database. Specifically, indexing is a
mechanism which, when provided with a key value, is
able to rapidly access some associated data. Thus,
instead of having to search the space of all possible
matches and explicitly reject invalid ones, indexing
inverts the process so that only the most feasible matches
are considered. The main idea behind indexing is to pre-
store information about the models in a table. For each
model, groups of features are extracted and an index is
computed from each group. Information about each
group is then stored in the indexed location. During
recognition, the information stored in the table is used to
quickly eliminate non-compatible matches. Recently,
Germain et al. have proposed using the FLASH algo-
rithm [4], an indexing-based object recognition algo-
rithm, for fingerprint identification.

There are important issues to be considered when
using indexing for fingerprint identification including the
issues of memory requirements and index selectivity. In
terms of memory requirements, the number of table
entries will be of the order of O(N S), where N is the

-- --

av erage number of object features and S is the size of
groups. Fingerprints usually contain between 30 and 80
minutiae [1][2], a number which is higher than the aver-
age number of features (e.g., curvature extrema) found in
a typical object. This, along with the common practice to
store more than one imprints of the same finger in the
database to improve robustness and accuracy [1][2],
leads to much higher space requirements.

The issue of index selectivity relates to the dis-
crimination power of the groups considered for indexing.
Groups with low discrimination power give rise to very
similar indices (low index selectivity). As a result, a large
number of hypothetical matches are generated during
recognition, making indexing ineffective. The main cause
of reduced index selectivity is the small size of groups
used for indexing and that almost every possible group is
considered for indexing. One way to deal with this prob-
lem is by increasing the index dimensionality using
larger size groups, however, this will also increase mem-
ory requirements since the number of groups increases
exponentially with size. Alternatively, additional infor-
mation can be computed from each group and added to
the index to increase its dimensionality. FLASH is based
on this idea (7-dimensional indices were used in [11] and
9-dimensional in [4]). Although this approach is effec-
tive, it also increases time requirements and raises the
issue of computing the additional information fast and
reliably.

In this paper, we propose a new approach to finger-
print identification based on indexing and the Delaunay
triangulation [13][14]. The problem of triangulation is a
fundamental one in computational geometry with appli-
cations in surface or function interpolation. Here, the
Delaunay triangulation is used to associate a unique
topological structure with the fingerprint minutiae. The
goal is to use the Delaunay minutiae triangles for index-
ing. This yields reduced memory requirements without
sacrificing recognition accuracy, preserves index selectiv-
ity without resorting to high-dimensional indexing
schemes, and improves recognition time. It can be shown
that if N is the number of minutiae, the Delaunay trian-
gulation produces O(N) triangles [14][15]. Thus, the
number of table entries will be of the order of O(N). This
compares favorably to O(N 3), the number of all possible
triangles considered by other approaches [4][10]. In
addition, the Delaunay minutiae triangles have good dis-
crimination power since, among all possible triangles,
they are the ones satisfying the properties of the Delau-
nay triangulation [14][15]. This, along with their small
number, leads to faster recognition and low-dimensional
indexing.

The key characteristics of the Delaunay triangula-
tion of a set of points is that it is unique. Also, it can be
computed efficiently in O(NlogN) time [16]. One prob-
lem is that it is sensitive to noise and distortions (e.g,
introduced by missing or spurious minutiae points), how-

ev er, both noise and distortion have only a local effect on
it. This means that correct identification will be possible
if some region of the fingerprint has not been seriously
affected.

The paper is organized as follows: in Section 2, we
discuss the use of indexing for fingerprint identification.
Section 3 reviews the Delanuay triangulation and Section
4 describes how the Delaunay triangulation is used for
fingerprint identification. Section 5 presents our experi-
mental results and finally, our conclusions are given in
Section 6.

2. Using indexing for fingerprint identifica-
tion

The problem of fingerprint identification has much
in common with the problem of 2D model-based object
recognition where recognition relies upon the existence
of a set of predefined models. Given an unknown scene,
recognition implies: (i) the identification of a set of fea-
tures from the scene which approximately match a set of
features from a model, (ii) the recovery of the geometric
transformation that the model has undergone and, (iii)
verification that other features coincide with the predic-
tions. Similarly, fingerprint identification refers to the
process of matching a query fingerprint against a finger-
print database in order to establish the identity of an indi-
vidual. In both cases, the goal is to quickly determine if
an object or fingerprint is in the database and to retrieve
those objects or fingerprints which are most similar with
the unknown scene or query fingerprint. Since usually
there is no a-priori knowledge of possible feature corre-
spondences, matching can be computationally too expen-
sive, even for a moderate number of models in the
database.

Indexing has received considerable attention in the
literature [10]-[12] since it does not require considering
each model separately, thus, it is less dependent on the
database size. Indexing-based methods have two phases
of operation: preprocessing and recognition. During pre-
processing, features which remain unchanged under geo-
metric transformations (invariants) are extracted from
groups of model points and used to form indices. The
indexed locations are filled with entries containing refer-
ences to the models. During recognition, features from
groups of image points are extracted and used to form
indices again. The models listed in the indexed entries
are collected into a list of candidate models and the most
often indexed models are selected for further verification.
Verification works by computing the transformation
between the model(s) and the image and then by aligning
the model(s) with the image using the computed transfor-
mation. Then, the similarity of the model with the image
is estimated (e.g., by finding the percentage of model
features that have been aligned with image features).

-- --

Although indexing is an attractive approach, very
often it becomes less effective due to limited index selec-
tivity. The heart of the problem is the low dimensionality
of the invariants used to form the indices. In addition,
indexing has high memory requirements. In the case of
fingerprints, memory requirements can become much
higher since fingerprints contain more features on the
av erage than typical objects. Indexing-based methods
usually consider every possible group of features (of a
specific size) for building the table. There are two main
reasons for this: first, it is desirable to build some degree
of redundancy in the table so recognition can become
more robust and second, there is usually no a-priori
knowledge for choosing certain groups over others.
Although redundancy can improve robustness, redun-
dancy with limited index selectivity increase false posi-
tives, slowing recognition time significantly.

One way to deal with the problem of limited index
selectivity is by choosing larger size groups. However,
this will further increase memory requirements since the
number of groups increases exponentially with size [20].
To get around this problem, "grouping" has been sug-
gested in object recognition to identify important groups
of features only [21]. Using grouping in fingerprint
recognition, however, will not be a good idea since the
minutiae have a rather random distribution. Another idea
to improve index selectivity is by adding new inv ariants
to the index, thus, increasing its dimensionality. The
FLASH algorithm is based on this idea [11]. In [4], the
FLASH algorithm was used for fingerprint identification.
FLASH considers triangles of minutiae to compute a
9-dimensional index which includes information about
the lengths of the sides of the triangle formed by the tri-
angle, the ridge count between each pair, and angle infor-
mation. Although the idea of using high-dimensional
invariants does improve index selectivity, new issues
arise since we need to consider how the high-
dimensional invariants will be computed fast and reli-
ably.

In this paper, we propose a new indexing-based
approach to fingerprint identification. Central to the new
approach is the idea of associating a unique topological
structure with the minutiae using Delaunay triangulation.
The minutiae triangles of the Delaunay triangulation are
then used for indexing. There are several advantages
behind this idea. First of all, we only consider O(N) tri-
angles for indexing, implying lower memory require-
ments and less redundancy. Second, the minutiae trian-
gles of the Delaunay triangulation have good discrimina-
tion power since, among all possible triangles, they are
the only ones satisfying the properties of the Delanuay
triangulation. The improved index selectivity along with
the less redundancy of the information stored in the table
yield less false positives and improve recognition time.
Finally, indexing can be implemented in a low-
dimensional space.

3. Background on Delaunay triangulation
Triangulation is a process that takes a region of

space and divides it into subregions. The space may be of
any dimension, however, a 2D space is considered here
since we are dealing with 2D points (minutiae). In this
case, the subregions are simply triangles. Triangulation
has many applications in finite elements simulation, sur-
face approximation and nearest neighbor identification
[16]. Here, however, our goal, is to associate a 2D topo-
logical structure with the minutiae.

Given a set S of points p1, p2, . . . , PN , we can
compute the Delaunay triangulation of S by first comput-
ing its Voronoi diagram. The Voronoi diagram decom-
poses the 2D space into regions around each point such
that all the points in the region around pi are closer to pi

than they are to any other point in S. Giv en the Voronoi
diagram, the Delaunay triangulation can be formed by
connecting the centers of every pair of neighboring
Voronoi regions. Figure 1a shows a set of 2D points,
their Voronoi diagram is shown in Figure 1b while their
Delaunay triangulation is shown in Figure 1c. Delaunay
triangulation has certain properties, including: (1) the
Delaunay triangulation of a non-degenerate set of points
is unique, (2) a circle through the three points of a Delau-
nay triangle contains no other points and (3) the mini-
mum angle across all the angles in all the triangles in a
Delaunay triangulation is greater than the minimum
angle in any other triangulation of the same points.

(a) (b) (c)

Figure 1. (a) A set of points, (b) its Voronoi diagram, and
(c) its Delaunay triangulation.

Property 1 supports the use the Delaunay triangles for
indexing. Property 2 implies that the insertion of a new
point in a Delaunay triangulation affects only the trian-
gles whose circumcircles contain that point. As a result,
noise affects the Delaunay triangulation only locally.
This is very important in the context of our application.
The last property implies that the triangles obtained are
not "skinny". This is also very desirable in our applica-
tion since the computation of the geometric transforma-
tions between fingerprints is based on corresponding
minutiae triangles. Using skinny triangles can lead to
instabilities and errors [10]. In a comparison study that
involved several well known topological structures [18],
the Delaunay triangulation was found to have the best
structural stability under random positional perturba-
tions.

-- --

The Delaunay triangulation and the Voronoi dia-
gram are very efficient algorithms since the number of
edges in both of them is proportional to a small constant
times the number of points (O(N)). Since each edge
belongs to at most two triangles or polygons, then the
number of triangles generated by the Delaunay triangula-
tion is also linear to the number of points. In our experi-
ments, we have used Fortune’s implementation which is
available from http://netlib.bell-labs.com/netlib/voronoi.
The complexity of the algorithm is O(Nlog(N)).

4. Indexing using Delaunay triangulation

4.1. Minutiae triangulation
The proposed fingerprint identification system rep-

resents fingerprints in terms of their minutiae. The two
most prominent minutiae, which are also the ones used
here, correspond to ridge endings and ridge bifurcations.
Each minutiae is represented by its coordinates (x, y).
Once the minutiae have been extracted (we use the algo-
rithm in [5]), their Delaunay triangulation is computed.
Figure 2 demonstrates the Delaunay triangulation of the
minutiae extracted from one of the fingerprints in our
database.

Figure 2. The Delaunay triangulation of the minutiae.

4.2. Building the index table
The index table is built by considering the minu-

tiae triangles formed by the Delaunay triangulation.
Before deciding what invariants will be computed from
each minutiae triangle, the geometric transformation that
relates different fingerprint instances should be defined.
Usually, it is assumed to be a rigid or similarity transfor-
mation [2]-[4][5]. In this paper, we assume similarity
transformations (translation, rotation, and scaling) with a
refinement step based on affine transformations (see Sec-
tion 4.4). From each minutiae triangle, information
invariant to similarity transformations is thus computed.
Then, an index is formed using the invariants and appro-
priate information is stored in the indexed table location.

Without using the Delaunay triangulation, we
would have to consider every possible triangle. Assum-
ing N minutiae on the average, the number of possible
triangles is O(N 3). In contrast, the Delaunay triangula-
tion yields only O(N) triangles. Since these triangles sat-

isfy the properties of the Delaunay triangulation, they
can be found through a well defined procedure and have
good discrimination power. Using these triangles for
indexing preserves index selectivity and allows for
implementing a low dimensional indexing scheme.

Given a minutiae triangle (e.g., see Figure 3), we
compute three invariants which are then used to form a
3-dimensional index. The invariants are based on the
sides and angles of the minutiae triangle. First of all, we
sort the sides of the triangle to avoid considering all pos-
sible orders of three points:

l1 ≤ l2 ≤ l3

Then, the following invariants are computed:

0 ≤
l1

l3
≤ 1

0 ≤
l2

l3
≤ 1

−1 ≤ cos(A) ≤ 1

where A is the angle between the smallest two sides.

l l

l3

21

A

B C

Figure 3. Invariants using the minutiae triangles.

The reason for using the cosine of the angle and
not the angle itself is because the value of the angle is
sensitive to noise introduced by the minutiae extraction
algorithm while the cosine can filter out part of that
noise. It should be mentioned that the angle we consider
for indexing is the largest of the three angles in the trian-
gle under consideration. Obviously, very large angles
yield triangles whose points are almost collinear.
Although the Delanuay triangulation tends to avoid such
"skinny" triangles as mentioned in Section 3, this cannot
always be guaranteed (unless extra points are inserted in
the minutiae set, e.g., see [16]). Such triangles are not
desirable since the computation of the geometric trans-
formation becomes unstable (small errors in the minutiae
locations yield large errors in the computation of the
parameters of the transformation). Thus, we reject trian-
gles whose largest angle is greater than a threshold (168
degrees).

-- --

After the invariants have been computed, linear
scaling followed by quantization yields an integer index.
For each index computed, information about the finger-
print and its minutiae is stored in the index table. Specif-
ically, the entries stored in the table have the following
format:

(person_ID, imprint_ID, m1(x, y), m2(x, y), m3(x, y))

where person_ID corresponds to an identification code
for the person, print_ID is an identification code for the
particular imprint of that person (i.e., each person can
have more than one imprints stored in the database), and
mi(x, y) are the (x, y) coordinates of the mi point in the
group of minutiae.

Fingerprint images are usually very noisy due to
various factors such as fingerprint morphology and imag-
ing conditions. Also, certain amount of noise is intro-
duced by the minutiae extraction process. In order to
account for variations in the fingerprint images of the
same finger, it is often imperative to store in the database
information from several different images of the same
finger taken at different times. Although this increases
memory requirements, it makes the system more robust
to noise and distortions. In Section 5, we report a num-
ber of experiments by varying the number of imprints
stored in the database.

4.3. The identification step
During identification, each index generated by a

query fingerprint is used to retrieve all model fingerprints
stored in the database under the same index. While pro-
cessing the query fingerprint, the minutiae points are
extracted and their Delaunay triangulation is computed.
For each Delaunay minutiae triangle, the lengths of the
sides are calculated, sorted in ascending order, and the
invariants are computed. Then, the invariants are quan-
tized as in preprocessing. The resulting index is used to
retrieve from the database all the entries stored at the
same index table location. To account for noise, we also
retrieve entries stored in a small neighborhood (i.e., a cir-
cle of radius 2) around the indexed location.

Most indexing-based approaches accumulate evi-
dence about a model by casting a vote for every entry
stored in the indexed locations and by "histograming" the
entries to pick the ones which have received a high num-
ber of votes [10]. The problem with this approach is that
it takes into consideration only the number of votes
received by a particular entry and does not consider
whether these votes are consistent among themselves. To
introduce a measure of coherence, Lamiroy and Gros
[19] have proposed voting in the transformation space.
The key idea behind this approach is to consider transfor-
mations which form large clusters in the transformation
space. The same idea was also used in [4].

We hav e also adopted this idea in our work since it
is very effective. Specifically, each of the entries
retrieved from the index table represents a hypothesized
correspondence between three minutiae in the query fin-
gerprint and three minutiae in the model fingerprint.
Given this information, the transformation that best maps
the query triangle to the model triangle is computed. The
computed transformation parameters are binned and,
along with the person_ID and imprint_ID, form a key
that indexes another data structure used for evidence
accumulation. An 8-dimensional integer array was used
in order to store the number of votes in the transforma-
tion space (six dimensions for the parameters of the
transformation, one for the person_ID and one for the
imprint_ID).

If a large number of minutiae can be brought into
correspondence by a transformation, then the indices
generated by the triangles formed by those minutiae will
generate the same or very similar transformation parame-
ters. Hence, a larger number of votes for a correct match
will be accumulated. There might be a number of ran-
dom correspondences between minutiae triangles in the
query fingerprint and some model fingerprint, however,
the likelihood of a number of consistent transformation
parameters being generated by random correspondences
is small, and the verification step will eliminate most of
them.

4.4. The verification step
The transformations that are further considered for

verification are the ones with the 4 largest number of
votes. The verification stage determines whether two fin-
gerprints correspond to the same finger or not. This is
performed by aligning the two fingerprints using the
transformation computed in the previous step and by
computing the amount of overlap. Specifically, giv en a
query fingerprint, a list of candidate fingerprints which
possibly match the query fingerprint is generated. For
each candidate match, a transformation is computed.
Then, the computed transformation is applied on the can-
didate fingerprint to align it with the query fingerprint. If
a large number of minutiae from the candidate fingerprint
are "close" (i.e., less that 15 pixels) to a large number of
minutiae from the query fingerprint, then it is very likely
that the two fingerprints come from the same finger. To
compute the percentage of overlap, we use the following
formula:

p =
2n

m + q
x 100

where n is the number of matched minutiae, m is the
number of minutiae in the candidate fingerprint and q is
the number of minutiae in the query fingerprint.

Although we use similarity transformations to
related different fingerprint instances, differences in the

-- --

pressure of the figure on the sensor or skin elasticity pro-
duce deformations which are not modeled very well by
similarity transformations. In our experiments, we have
found that a refinement of the computed similarity trans-
formations using affine transformations can align the fin-
gerprints more accurately. Based on this observation, our
verification procedure has two stages. In the first stage,
the two fingerprints are aligned through a similarity
transformation since the invariants computed are invari-
ants to similarity transformations. In the second stage,
however, we find additional minutiae correspondences
and we attempt improve the alignment by computing an
affine transformation. Figure 4a shows the alignment of
two fingerprints using just three minutiae and similarity
transformation. Figure 4b shows the aligned fingerprints
using more minutiae correspondences and affine transfor-
mation.

(a) (b)

Figure 4. Aligning the two fingerprints using a similarity
transformation, (b) improving the alignment through an
affine transformation.

In each stage, a different threshold is used to define
the percentage of minutiae from the candidate fingerprint
that are "close" to minutiae from the query fingerprint. In
particular, a smaller threshold (20%) is used in the first
stage to make sure that we consider as many candidate
matches as possible, thus, reducing the number of false
negatives. In the second stage, however, we filter out the
false positives introduced by the first stage by using a
higher threshold (40%). The threshold used to define the
"closeness" between minutiae is also different is each
stage (10 pixels in stage one and 15 pixels in stage two).

5. Experimental results

5.1. The data set
The fingerprint images used in this study have

been captured using an inkless fingerprint scanner. Our
database contains 300 fingerprints, captured from 30
individuals (10 images per finger for each individual).
The size of these images is 400 by 400 pixels. When
these fingerprint images were captured, no restriction on
the position and the orientation of fingers were imposed.

5.2. Experiments
To characterize system’s performance, we have

conducted several experiments. In the first set of experi-
ments, we vary the number of imprints stored in the
database for each person. Thus, a subset of the 300 fin-
gerprint images was used to build the database while the
rest images were used for testing. We hav e experimented
with storing 3, 5, and 7 images per person in the
database. In each case, six experiments were conducted.
In the first five experiments, the images stored in the
database were chosen randomly while in the last experi-
ment, the "best" images were chosen (in terms of image
quality according to our opinion).

We classify our results in four categories: (a) cor-
rect: the query fingerprint has been correctly matched to
one or more fingerprints from the same person, (b) false
positive: the query fingerprint has been matched to one or
more fingerprints from an incorrect person (c) false nega-
tive: the query fingerprint has not been matched to any
fingerprint in the database (we assume that the database
contains fingerprints from each person), and (d) mixed:
there is not enough evidence to assign the query finger-
print to one of the previous three categories. The reason
we have mixed matches is because we store more than
one imprints in the database for each person. Usually, the
query fingerprint is matched to more than one imprints
from the same person (see Figure 5). Sometimes, how-
ev er, the list of matches contains fingerprints from other
persons as well. We call this case a "mixed" match.
Mixed matches require further processing. Here, we
resolve the mixed results using a "majority" rule.
According to this rule, we assign the query fingerprint to
the individual with the maximum number of imprints in
the list of matches. In our experiments, we were able to
resolve all mixed matches correctly using this rule (the
percentage of mixed matches is shown in the last column
for completeness).

(a) (b)

Figure 5. Several imprints from the same finger match
the same query image; (a) imprint1, (b) imprint2. The
black lines correspond to the query image while the
white lines correspond to the model.

Tables 1-3 show the results obtained storing vari-
ous number of imprints (3, 5, and 7) in the database for

-- --

each person. From these results, we can infer that the
recognition accuracy depends on the number of imprints
stored in the database for each person. In particular, the
last row of each table shows that if the imprints stored in
the database are of good quality, then recognition accu-
racy can be improved significantly. The number of false
negatives are relatively high compared to the number of
false postives. Obviously, the threshold used for match-
ing (40% of points should match) has some effect on
this. Although this threshold was chosen experimentally
here, we plan to optimize its choice in our future work.

Table 1. Stored: 3 imprints per person; Tested: 210.

Results
Trial Correct False Positive False Negative Mixed
1 86.6% 0.4% 13% 0%
2 87% 0% 13% 0%
3 87% 0% 13% 0%
4 86.2% 0% 13.8% 0%
5 86% 0% 14% 0%
Av erage 86.56% 0.08% 13.36% 0%
Best 96.7% 0% 3.3% 0%

Table 2. Stored: 5 imprints per person; Tested: 150.

Results
Trial Correct False Positive False Negative Mixed
1 93% 0% 7% 0.6%
2 95.4% 0.6% 4% 0.6%
3 93.4% 0% 6.6% 2.6%
4 92% 0% 8% 1.3%
5 92% 0% 8% 0.6%
Av erage 93.16% 0.12% 6.72% 1.14%
Best 99.4% 0% 0.6% 0%

Table 3. Stored: 7 imprints per person; Tested: 90.

Results
Trial Correct False Positive False Negative Mixed
1 90% 0% 10% 3%
2 95% 0% 5% 3%
3 97% 0% 3% 1%
4 93% 0% 7% 3%
5 96% 0% 4% 1%
Av erage 94.2% 0% 5.8% 2%
Best 100% 0% 0% 0%

We hav e also tested all possible combinations of
storing 9 fingerprints from each person in the database.
Recognition accuracy improved even more in this case,
however, our results indicate that there are certain finger-
prints that are very difficult to identify. The main reasons
for this are: (i) the quality of the query fingerprint is so
bad that it does not resemble very well any of the other 9
fingerprints and (ii) the query fingerprint does not have
many minutiae in common with the rest of the finger-
prints (e.g., two fingerprints might correspond to differ-
ent poses of the finger on the scanner or the minutiae

extraction algorithm failed to detect certain minutiae).
Figure 6 shows examples of these cases.

(a) (b)

Figure 6. (a) The query fingerprint is of bad quality, (b)
the query fingerprint has a small number of minutiae in
common with other fingerprints from the same finger
(the black lines correspond to the query fingerprint).

In the next experiment, we wanted to test how false
positives increase with the database size. Also, we were
interested in testing how the system performs on finger-
prints from people not represented in the database. In
order to test this assumption, we fixed the number of
query fingerprints to 50 by randomly choosing 5 persons
out of the 30 persons contained in our database. Then,
we used the fingerprints of the rest 25 persons (25 x 10 =
250) to build the database. Five experiments were con-
ducted by storing in the database 250, 200, 150, 100 and
50, randomly chosen, fingerprints.

As can be seen from Table 4, false positives
increase slowly with the database size. Usually, if a
query fingerprint has a match in the database, there will
be no room for false positives since the matched model
will receive a large number of votes. However, if a match
does not exist, we have noticed that false alarms usually
occur at around the threshold value (all the false alarms
encountered in our experiments had less than 45% com-
mon points while the threshold was 40%). One way to
improve the results is by using additional information for
verification. Currently, we just use the minutiae locations
for verification. However, additional information such as
local orientation can improve the results. Another way is
to increase the threshold for the number of matched
minutiae but this will of course increase the number of
false negatives. The answer to this dilemma depends on
the application.

The response time of our system depends on the
query fingerprint. If the query fingerprint has a match in
the database, then the response time is of order of a few
seconds (usually, 4-5 - no code optimization was per-
formed, all the experiments were run on an Ultra Sun
30). In this case, a few hypotheses are generated. How-
ev er, if a match does not exist, then the response time can
double or even triple. In this case, a large list of hypothe-

-- --

ses are created which are then subject to verification.

Table 4. False positives versus database size assuming
that the query fingerprints correspond to people not rep-
resented in the database.

Results
images in the database Av erage # of False Positives (5 trials)
50 0.6(1.2%)
100 0.8(1.6%)
150 1(2%)
200 1.4(2.8%)
250 1.6(3.2%)

6. Discussion and conclusions
We hav e proposed a indexing-based new approach

to fingerprint identification using the Delaunay triangula-
tion. The most important characteristics of the proposed
approach are: low storage requirements, improved index
selectivity, low dimensional indexing requirements, and
fast identification. Our results indicate that the accuracy
of a fingerprint recognition system can be improved by
storing in the database imprints of good quality. This is a
reasonable assumption since in most applications, the
quality of the imprints is (or can be) controlled during
acquisition. Our experiments have shown that most
misses occur in the case of images of poor quality or
images that do not have a good representant in the
database.

References
[1] A. Jain, L. Hong, and R. Bolle, "On-line fingerprint verifi-

cation", IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 19, no. 4, pp. 302-314, 1997.

[2] P. Baldi and Y. Chauvin, "Neural networks for fingerprint
recognition", Neural Computation, vol. 5, pp. 402-418,
1993.

[3] B. Mehtre, "Fingerprint image analysis for automatic identi-
fication", Machine Vision and Applications, vol. 6, pp.
124-139, 1993.

[4] R. Germain, A. Califano, and S. Colville, "Fingerprint
matching using transformation parameter clustering",
IEEE Computational Science and Engineering, pp.
42-49, October-November 1997.

[5] N. Ratha, K. Karu, S. Chen and A. Jain, "A real-time sys-
tem for large fingerprint databases", IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 18,
no. 8, pp. 799-813, 1996.

[6] R. Cappelli, A. Lumini, D. Maio, and D. Maltoni, "Finger-
print classification by directional image partitioning",
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 21, no. 5, pp. 402-421, 1999.

[7] S. Ranade and A. Rosenfeld, "Point pattern matching by
relaxation", Pattern Recognition, vol. 12, pp. 269-275,
1980.

[8] J. Starink and E. Backer, "Finding point correspondences
using simulated annealing", Pattern Recognition, vol.
28, no. 2, pp. 231-240, 1995.

[9] G. Bebis, S. Louis, and Y. Varol, "Using genetic algorithms
for model-based object recognition", International Con-
ference on Imaging Science, Systems, and Technology,
pp. 1-6, 1998, Las Veg as.

[10] Y. Lamdan, J. Schwartz, and H. Wolfson, "Affine invariant
model-based object recognition", IEEE Trans. on
Robotics and Automation, vol. 6, no. 5, pp. 578-589,
October 1990.

[11] A. Califano and R. Mohan, "Multidimensional indexing
for recognizing visual shapes", IEEE Pattern Analysis
and Machine Intelligence, vol. 16, no. 4, pp. 373-392,
1994.

[12] G. Bebis, M. Georgiopoulos, M. Shah, and N. La Vitoria
Lobo, "Indexing based on algebraic functions of views",
Computer Vision and Image Understanding, vol. 72, no.
3, pp. 360-378, 1998.

[13] F. Aurenhammer, "Voronoi diagrams - A survey of a fun-
damental geometric data structure", ACM Computing
Surveys, vol. 23, no. 3, pp. 345-405, 1991.

[14] N. Ahuja, "Dot pattern processing using voronoi neighbor-
hoods", IEEE Pattern Analysis and Machine Intelli-
gence, vol. 4, no. 3, pp. 336-343, 1982.

[15] F. Preparata and M. Shamos, Computational Geometry,
Springer-Verlag, NY, 1985.

[16] S. Skiena, The algorithm design manual, Springer-Verlag,
NY, 1998.

[17] R. Sibson, "The Dirichlet tessellation as an aid in data
analysis", Scandinavian Journal of Statistics, vol. 7, pp.
14-20, 1980.

[18] M. Tuceryan and T. Chorzempa, "Relative sensitivity of a
family of closest-point graphs in computer vision appli-
cations", Pattern Recognition, vol. 24, no. 5, pp.
361-373, 1991.

[19] B. Lamiroy and P. Gros, "Rapid object indexing and recog-
nition using enhanced geometric hashing", European
Conference on Computer Vision (ECCV), pp. 59-70,
1996.

[20] D. Clemens and D. Jacobs, "Space and time bounds on
indexing 3D models from 2D images", IEEE Pattern
Analysis and Machine Intelligence, vol. 13, no. 10, pp.
1007-1017, 1991.

[21] D. Jacobs, "Robust and efficient detection of convex
groups", IEEE Pattern Analysis and Machine Intelli-
gence, vol. 18, no. 1, pp. 23-37, 1996.

-- --

