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Abstract—This paper focuses on two ART architectures, the Fuzzy ART and the Fuzzy ARTMAP. Fuzzy ART isa
pattern clustering machine, while Fuzzy ARTMAP is a pattern classification machine. Our study concentrates on the
order according to which categories in Fuzzy ART, or the ART, model of Fuzzy ARTMAP are chosen. Our work
provides a geometrical, and clearer understanding of why, and in what order, these categories are chosen for various
ranges of the choice parameter of the Fuzzy ART module. This understanding serves as a powerful tool in developing
properties of learning pertaining to these neural network architectures; to strengthen this argument, it is worth
mentioning that the order according to which categories are chosen in ART 1 and ARTM AP provided a valuable tool
in proving important properties about these architectures. Copyright © 1996 Elsevier Science Ltd.
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1. INTRODUCTION

In this paper we focus our attention on two ART
architectures, Fuzzy ART and Fuzzy ARTMAP.
These architectures were introduced by Carpenter et
al. (1991b, 1992), and they belong to the class of
neural network architectures that fall under the
category of adaptive resonance theory (ART) neural
networks. Adaptive resonance theory was developed
by Grossberg (1976), and a list of some of the ART
architectures introduced in the last 10 years are
included in the reference list (Carpenter & Grossberg,
1987a, b, 1990; Carpenter et al., 1991a, b, 1992; Healy
et al., 1993).

Fuzzy ART is a pattern clustering machine that is
capable of clustering arbitrary collections of arbi-
trarily complex analog input patterns, while Fuzzy
ARTMAP is a pattern classification machine that is
capable of establishing an arbitrary mapping between
an arbitrary collection of analog input patterns and
an arbitrary collection of corresponding analog
output patterns. Fuzzy ARTMAP has been success-
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fully used to solve pattern classification problems in a
fast and efficient way (Carpenter et al., 1992).

It is worth mentioning that Fuzzy ART is one of
the components of a Fuzzy ARTMAP architecture,
in the sense that Fuzzy ARTMAP consists of two
Fuzzy ART modules and an inter-ART module. One
of the Fuzzy ART modules receives as inputs the
input patterns of the pattern classification task, and
the other Fuzzy ART module receives as inputs the
corresponding output patterns of the pattern
classification task. The Fuzzy ART module that
accepts the input patterns clusters them into
appropriate categories, while the Fuzzy ART
module that accepts the output patterns also clusters
them into appropriate categories. Our main focus in
this paper is the operation of Fuzzy ARTMAP for
pattern classification problems, which are many-to-
one maps. Hence, the kind of clustering done at the
Fuzzy ART module that accepts as inputs the output
patterns is trivial, because every output pattern forms
its own cluster. The type of clustering established in
the Fuzzy ART module that accepts as inputs the
input patterns is much more interesting. From this
perspective Fuzzy ART and Fuzzy ARTMAP can be
jointly investigated.

In this paper, we focus our attention on the
clusters established by Fuzzy ART, or the Fuzzy
ART module of Fuzzy ARTMAP that accepts as
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inputs the input patterns of the pattern classification
task. In particular, we investigate the order according
to which these clusters are chosen when an input
pattern is presented to the Fuzzy ART module. In
this investigation, we will emphasize the geometrical
interpretation of the clusters (categories) formed in
the Fuzzy ART module, because this interpretation
gives a better understanding of how categories are
chosen by Fuzzy ART. To the best of our knowledge,
such an investigation has been fully conducted for
ART]1 (Carpenter & Grossberg, 1987b), and partially
for Fuzzy ART (Carpenter et al., 1991b; Huang et al.,
1995) and ARTMAP (Georgiopoulos et al., 1994).

The organization of the paper is as follows: in
Section 2, we discuss the specifics of the Fuzzy ART
architecture. The reader who is familiar with Fuzzy
ART can go over this section very quickly, paying
attention only to the geometrical interpretation of
templates in Fuzzy ART and the distance of a pattern
from a template. In Section 3, we describe the major
results pertaining to the order of search in Fuzzy
ART. Specifically, we first present three fundamental
theorems, and then we state three results that describe
how Fuzzy ART is making category choices for three
distinct ranges of the choice parameter values. The
choice parameter is a parameter of the Fuzzy ART
architecture. In Section 4, we elaborate on our results
by providing some order of search rules, with
accompanying figures, that illustrate how Fuzzy
ART chooses categories to represent the input
patterns presented to it. In Section 5 we extend the
Fuzzy ART results of Sections 3 and 4 to the Fuzzy
ARTMAP architecture. In Section 6, we make some
important observations pertaining to the results
developed, and finally, in Section 7, we provide a
short review.

2. FUZZY ART

2.1. Fuzzy ART Architecture

The Fuzzy ART neural network architecture is
shown in Figure 1. It consists of two subsystems,
the attentional subsystem, and the orienting subsys-
tem. The attentional subsystem consists of two fields
of nodes denoted F} and F3. The F% field is called the
input field because input patterns are applied to it.
The Fj field is called the category or class
representation field because it is the field where
category representations are formed. These category
representations represent the clusters to which the
input patterns, presented at the F? field, belong. The
orienting subsystem consists of a single node (called
the reset node), which accepts inputs from the F3}
field, the F3 field (not shown in Figure 1), and the
input pattern applied across the F§ field. The output
of the reset node affects the nodes of the F3 field.
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FIGURE 1. A bilock diagram of the Fuzzy ART architecture.

Some preprocessing of the input patterns of the
pattern clustering task takes place before they are
presented to Fuzzy ART. The first preprocessing
stage takes as an input an M,-dimensional input
pattern from the pattern clustering task and trans-
forms it into an output vector a = (aj,...,aum,),
whose every component lies in the interval [0, 1] (i.e.,
0 <a; <1 forl <i <M,). The second preproces-
sing stage accepts as an input the output a of the first
preprocessing stage and produces an output vector I,
such that

I=(a,a“)=(al,...,aM_,aﬁ,...,a’;l.) (1)

where

ai=1-a; 1 <i <M,. 2)

The above transformation is called complement
coding. The complement coding operation is per-
formed in Fuzzy ART at a preprocessor field
designated by F§ (see Figure 1). From now on, we
will be referring to the vector I as the input pattern.
We denote a node in the F} field by the index
i(i€{1,2,...,2M,}), and a node in the F3 field by
the index j(j € {1,2,...,N,}). Every node i in the
field F3 field is connected via a bottom-up weight
with every node j in the F3 field; this weight is
denoted by W7j;. Also, every node j in the Fj field is
connected via a top-down weight with every node i in
the F{ field; this weight is denoted by w?;. The vector
whose components are equal to the top-down weights
emanating from node j in the F?3 field is designated by
wi and it is called a template. Note that

wi=(wi,wl,. .. ,why,) for j=1,...,N.. The
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vector of bottom-up weights converging to a node j in
the F3 field is designated by W;. Note that
Wi=(W W3, ....Wiy,,) for j=1,...,Na. In-
itial values of the bottom-up and top-down weights
are designated by W7;(0), and w7(0), respectively.
Initial values of the top-down weights are chosen
equal to one. Initial values of the bottom-up weights
are chosen equal to:

1
a, + M3

(3)

where a, and M7 are Fuzzy ART parameters. The
parameter «, is called the choice parameter and it
takes values in the interval (0, co). The parameter M2
takes values in the interval [2M,,00); we name this
parameter uncommitted node choice parameter. The
initial bottom-up and top-down weight choices in
Fuzzy ART correspond to the values of these weights
prior to presentation of any input pattern to the
Fuzzy ART architecture.

In the original Fuzzy ART paper (Carpenter et al.,
1991b) only the top-down weights of the architecture
are introduced. We have followed a different
approach in this paper, introducing both bottom-up
and top-down weights, so that we can naturally
introduce the uncommitted node choice parameter M,
which plays a significant role on the order according
to which nodes are chosen in the Fj field of Fuzzy
ART. Note also, that in the ART 1 paper (Carpenter
& Grossberg, 1987b) both bottom-up and top-down
weights were introduced.

Before we proceed with the rest of our work it is
important to clarify the notation w**¢ and W]’-""]d, or
the notation w;™" and W;’“e“/, which is used
extensively throughout the paper. Quite often,
templates and bottom-up weights in Fuzzy ART are
discussed with respect to an input pattern I presented
at the F? field of Fuzzy ART. In particular, the
notation w;""ld or W;""ld denotes the template of node
Jj or the bottom-up weight converging to node j in the
F3 field of Fuzzy ART, prior to the presentation of an
input pattern I at the F% field. Furthermore, the
notation w;™" or W;™" denotes the template of
node j or the bottom-up weight converging to node j
in the Fj field of Fuzzy ART, after the presentation
of an input pattern I at the F?{ field. Similarly, any
other quantities defined with a superscript {a, old} or
{a, new} will indicate values of these quantities prior
to and after a pattern presentation to Fuzzy ART,
respectively.

2.2. Operation of Fuzzy ART

We have used I to indicate an input pattern applied at
the F{ field and w? to indicate the template of node j
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in F5. We will use [I| and |w}| to denote the size of /
and w;, respectively. The size of a vector in Fuzzy
ART is defined to be the sum of its components.
Furthermore we define I A w} to be the vector whose
ith component is the minimum of the ith I component
and the ith w? component. The operation A is called
the fuzzy-min operation, while a related operation
designated by V is called the fuzzy-max operation.
These operations are shown in Figure 2 for two two-
dimensional vectors, denoted by x and y.

Let us assume that an input pattern I is presented
at the F9 field of Fuzzy ART. The appearance of
pattern I across the F} field produces bottom-up
inputs that affect the nodes in the F5 field. These
bottom-up inputs are given by the equation:

(1)

H

Y if j is an uncommitted node
a 2

[TA w]‘."°ld| /{aa + |w]‘."°ld|) if j is a committed node

4)

where «, and M; are Fuzzy ART parameters
mentioned previously. A node in F3§ is called an
uncommitted node if all of its top-down weights are
equal to the initial top-down weights values (i.e.,
equal to one); otherwise the node is called a
committed node.

The bottom-up inputs activate a competition
process among the Fj nodes, which eventually leads
to the activation of a single node in F%, namely the
node which receives the maximum bottom-up input

1 4

4 Y@ ,xVy
|

] ® - O

4 xAy X
:

FIGURE 2. lllustration of the fuzzy min (A) and the fuzzy max (V)
operations in two-dimensional space. The horizontal axis and
the vertical axes designate the first and the second component
of the two-dimensional vectors, respectively.
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from F{. Let us assume that node J in F5 has been
activated through this process. The activation of node
J in Fj indicates that this node is considered as a
potential candidate by Fuzzy ART to represent the
input pattern 1. The appropriateness of this node is
checked by examining the ratio

[TA wj“’ldl

If this ratio is smaller than p,, then node J is deemed
inappropriate to represent the input pattern I, and as
a result it is reset (deactivated). The parameter p, is
called the vigilance parameter and it takes values in
the interval [0, 1]. The deactivation process is carried
out by the orienting subsystem, and in particular by
the reset node. If a reset happens, another node in F3
(different from node J) is chosen to represent the
input pattern I; this resets last for the entire input
pattern presentation. The above process continues
until an appropriate node in F3 is found, or until all
the nodes in F3 are exhausted. If a node in Fj is
found appropriate to represent the input pattern I,
then learning ensues according to the following rules.
Assuming that node J has been chosen to represent
I, the corresponding top-down weight vector w5°¢
becomes equal to w7, where
w3,new — (I/\ w;,old). (6)

Also, the corresponding bottom-up weight vector
W3 becomes equal to W™, where

IA wj""d
- aold| * (7)
o + [TA WYY

anew __
J

It is worth mentioning that in eqns (6) and (7) we
might have 5™ = w5 and W3 = W3, in this
case we say that no learning occurs for the weights of
node J. Also note that eqns (6) and (7) are a special
case of the learning equations of Fuzzy ART [see
Carpenter et al. (1991b)]. This special case of learning
is referred to as fast learning. The results in this paper
are valid only for the fast learning case.

We say that node J has coded input pattern I if
during I’s presentation at F}, node Jin F3is chosen to
represent I, and J’s bottom-up and top-down weights
are modified, as eqns (6) and (7) prescribe.

Note that the weights converging to or emanating
from an F3 node other than J (i.e., the chosen node)
remain unchanged during I's presentation.

2.3. Operating Phases of Fuzzy ART

Fuzzy ART may operate in two different phases: the
training phase, and the performance phase. Further-
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more, in the training phase Fuzzy ART may operate
under two different scenarios.

The first scenario of the training phase is as
follows: we have a collection of input patterns
designated as I',I%,...,I” that we refer to as the
training list. We want Fuzzy ART to cluster these
input patterns into different categories. Obviously, we
expect patterns that are similar to each other to be
clustered in the same category by Fuzzy ART. In
order to achieve the aforementioned goal, we present
the training list repeatedly to the Fuzzy ART
architecture. That is, we present I', then I?, and
eventually I”; this corresponds to one list presenta-
tion. We present the training list as many times as it is
necessary for Fuzzy ART to cluster the input
patterns. The clustering task is considered accom-
plished (i.e., the learning is complete) if the weights in
the Fuzzy ART architecture do not change during a
list presentation. The aforementioned training
scenario is called off-line training.

In the second scenario of training we do not have a
predetermined list of input patterns that are to be
clustered. On the contrary, input patterns are
presented one-by-one to the Fuzzy ART architec-
ture, and in most instances patterns are not presented
more often than once. Fuzzy ART learns these
patterns according to the Fuzzy ART rules described
in the previous sections, and training is over when the
learning process is disengaged. This second scenario
of training is called on-line training.

In the performance phase of Fuzzy ART the
learning process is disengaged and patterns from a
test list are presented in order to evaluate the
clustering performance of Fuzzy ART. Specifically,
an input pattern from the test list is presented to
Fuzzy ART and through the Fuzzy ART rules,
discussed previously, a node J is chosen in F3 that is
found appropriate to represent the input pattern from
the test list. Assuming that some criteria exist for
determining how well node J represents the cluster to
which the input pattern presented to Fuzzy ART
belongs, we can apply this process to all the input
patterns from the test list to determine how well
Fuzzy ART clusters them. Of course, our results are
heavily dependent on the criteria used to judge the
clustering performance of Fuzzy ART.

2.4. Templates in Fuzzy ART: A Geometrical
Interpretation

We previously referred to the top-down weights
emanating from a node in the F3 field as a
template. A template corresponding to a committed
node is called a committed template, while a template
corresponding to an uncommitted node is called an
uncommitted template. As we have already men-
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tioned, an uncommitted template has all of its
components equal to one.
In the original Fuzzy ART paper (Carpenter et al.,
1991b) it is demonstrated that a committed template
which has coded input patterns I' = (a(1), a°(1)),
12’ = (aQ), a°Q2)), ..., I* =(a(P), a°(P)), can be written
as follows:
w=I'APA.. AP =

(A= a(0), A a%(D)

8
— (AT a0, V. a)) ®
or
wi = (u}, {v}%) 9
where
u = A7 a(i) (10)
and
vi=v/_a(). (11)

Based on the aforementioned expression for w?,
we can now state that the weight vector w? can be
expressed in terms of the two M,-dimensional
vectors u? and v;. Hence, the weight vector w; can
be represented, geometrically, in terms of two
points in the M,-dimensional space, u} and vi.
Another way of looking at it is that w} can be

represented, geometrically, in terms of a hyperrcc-
tangle R} with endpoints u} and v} (see Figure 3
for an illustration of this when M, =2). For

v

R2

ua

1
FIGURE 3. Representation of the template w? = (u?, Lv,-lc) in
terms of the rectangle R} with endpoints u} and v{ (in igure
M, =2).
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simplicity, in this paper we refer to hyperrectangles
as rectangles because most of our illustrations are
in two-dimensional space.

Obviously, the aforementioned representation
implies that we can geometrically represent an input
pattern I = (a,a®) by a rectangle with endpoints a
and a°. In other words, I can be represented by a
rectangle of size 0, which is the single point a in the
M,-dimensional space. Note that the size of a
rectangle R} with endpoints uf and v} is taken to be
equal to the norm of the vector v — w?. The norm of a
vector in Fuzzy ART is defined to be equal to the sum
of the absolute values of its components.

In summary, we will treat w? = (w?, {v*}°) as a
rectangle R? with endpoints u} and v} in M,-
dimensional space, and I = (a,a®) as the point a in
M,-dimensional space.

The reason why the rectangle representation of
a template w? is so useful is explained below.
Consider the template w} °d and its geometrical

representative, the rectangle Ra'old with endpoints
vg“"d and v}’ ©d - Assume that u]a o — AP_a(i) and
old

= V,_,a(z) Let us now present pattern
i— (a,2%) to Fuzzy ART. Recall that the quantities
defined above with a superscript {a,old} indicate
values of these quantities prior to the presentation
of T to Fuzzy ART. Suppose that, during I's
presentation to Fuzzy ART, node j in the F3 field is
chosen and node j with corresponding weight
vector v!,‘i"dd is appropriate to represent the input
pattern I. We now distinguish two cases.

In case 1 we assume that I lies inside the rectangle
R* that geometrically represents the template w°"¢

j
(see Figure 4). According to the Fuzzy ART rules

L

0 ——r T T ]
a,0ld A a,0d
Uy a Vit

0 1
FIGURE 4. input pattern I'= (i, 8°), represented by the point &,
lies inside rectangle R}°“ that represents template
Wi = (U {vpye), Leamlng of i leaves R} intact.
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a,0ld
Ve
a.old
Up
a,
0 — T T T T T T T -
,0ld a
yr® v g,
0 1

FIGURE 5. Input pattern i= (a,4°), represented by the point 3,
lies outside rectangle R,' old lhat represents template

W old = (uf ubed (v "“’} ). Learning of I creates a new rectangle
R (Ihe rectangle including all the points of rectangle R}’ old

and the point a) of larger size than R"”"’

a,old

w;° now becomes equal to wi""

, where

w;,new _ w;n,old /\i — (( aold /\a) { a,old v a}t)

=( a,old { aold} ) aold

In this case there is no actual weight change, or
equivalently, the size of the rectangle that represents
the template w;"’ld remains unchanged.

In case 2, we assume that I lies outside the
rectangle R“ that geometrically represents template

W’ old (see Flgure 5). Once more, according to the
Fuzzy ART rules, w}’ M becomes equal to WY

where

anew _ aold A I ( a,old /\a’ {va Lold v 5}0)

( aold ]a};ld/\aM-’(vja_l,old Al)c’“.
" (12)
it VaM.))

:’é (u}lold { aold} ) aold

In this case there is actual weight change; the size of
the rectangle that is defined by the new weight vector
w7 is increased. Thus, during the training process
of Fuzzy ART the size of a rectangle R?, that the
weight vector w? defines, can only increase from the
size of zero of possibly a maximum size which will be
determined below.

The maximum size of a rectangle is determined by
the vigilance parameter p,. More specifically, with
complement coding the size of an input pattern I is
equal to M,. Hence, a node j in the F3 field with
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corresponding weight vector wj‘-"°]d codes an input

pattern I if the following criterion is satisfied:

a,old
‘I Aw;

2 M,p,. (13)

However,

AW ) = [(a,8) A (@4, {24
(a A“z_l,old a A {V;’Old}c)l
(a ,Old (a v vi.l,old)C)I

M,

Z a,/\ua°'d)+Z(a, aold

i=1 i=1

M,
Z a'/\uaold +M Z a,VVaOId

i=1 i=1

—_-M I(avvaold)_(a/\uaold)l
=M, — |R}™|. (14)

From the above equations we can see that the
rectangle size is allowed to increase provided that
the new rectangle size satisfies the constraint

R| <My (1 - py).

The above inequality implies that if we choose p,
small (i.e., p, = 0), then some of the rectangles that
the Fuzzy ART architecture defines might fill most of
the entire input pattern space. On the other hand, if
pa is close to 1, all of the rectangles will be small.

2.5. The Definition of Distance in Fuzzy ART

For the results that are reported in this paper it is
important to define the distance of an input pattern I
from a rectangle R* that does not contain I. We have
already verified that every top-down weight vector w?
in Fuzzy ART has a geometrical interpretation, in
M,-dimensional space, in terms of a rectangle with
endpoints u? and v? (see for example Figure 6a, where
M, =2). Also an input pattern I = (a,a®) can be
geometrically represented by the M,-dimensional
input vector a (see for example Figure 6a). The
distance between two points X = (xj,...,Xxp,) and
y= (»,--.,ym,) in M,-dimensional space is defined
by

dis(x,y) =

Z |xi = yil. (15)

i=1

Based on the above definition we can now define the
distance of an input pattern I from a rectangle R®
that does not contain I (see Figures 6a—6b) as follows.
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a

R P —
dis (I. R?
0
0 (a)
//:.s (. B
0
0 (b

FIGURE 6. Distance of input pattern i = (&,4°), represented by
the point a, from the rectangle R® for different locations of a with
respect to the rectangle R? (a is outside rectangle R?).

DEefFINITION. The distance of an input pattern
I = (a,a%) from a rectangle R* that does not contain
1, denoted by

dis(I, R*) (16)

is defined to be the distance of a from the point p on the
boundary Bra of the rectangle R* that minimizes this
distance.

The distance of the input pattern I from the
rectangle R* is shown in Figures 6a—6b for various
respective locations of a with respect to the rectangle
R2,

It is not difficult to show that for an input pattern I
outside a rectangle R*°Y the following equality is
true:

IRa,new, — |Ra,oldl + diS(I, Ra,old) (17)
where R*"™¥ is the new rectangle created by the input
pattern I and the old rectangle R, if the input
pattern I chooses and is coded by the node whose
weight is represented by rectangle R2°%.

3. RESULTS

In this section, we report results pertaining to the
order in which categories are chosen in the F3 field of
Fuzzy ART for various ranges of the choice
parameter values: o, small, «, large, and «a, of
intermediate value. The effect on the order of choices
made by Fuzzy ART, due to the other two Fuzzy
ART parameters (M2 and p,), is implicit, and as a
result, more difficult to investigate. The implicit effect
that M and p, have on the order of choices that
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Fuzzy ART makes is that M and p, create coarse or
fine clusters (large or small rectangles), depending on
their actual values.

Before presenting our main results (Results A, B,
and C) we state and prove three theorems that are
used to demonstrate the results. Results A, B, and C
describe the order of choices made by Fuzzy ART for
a, small, a, large, and intermediate a, values,
respectively. Because Fuzzy ART exhibits a dis-
tinctly different behavior for different values of aj,,
presenting the results in this fashion gives us a better
understanding of the order of choices made by Fuzzy
ART.

THEOREM 1. If an input pattern 1 is lpresentea! to Fuzzy
ART, and 1 is inside rectangles R}’ M ond R;’Z"’]d, then 1

will first choose the rectangle of the smallest size.

Proof. Assume that rectangle R“ld is smaller than
rectangle R“ld That is,

'Raoldl < |R2'01d|~ (18)

The bottom-up input to node j; due to the
presentation of pattern I is equal to:

|I A waoldl 3
aoldl

IW ?,old | M

N
aa+|waold| a,,+M

IR;,oldl
Lold)
|R5
(19)

a
M

a, + W

The bottom-up input to node j; due to the
presentation of pattern I is equal to:

. |IAwaold| B ij:az,oldl B _ lRi.l,oldl
J2 a, + |waold| a, + |waold| , +M IRaoldl
(20)
Due to eqn (18) we can deduce that
lRaoldl >M lRaOldl (21)

Hence, from eqns (19), (20) and (21) we conclude that

T > T8 (22)

and, according to the Fuzzy ART rules, rectangle
R“ld will be chosen prior to rectangle R}°

THEOREM 2. If an input pattern 1 is presented to Fuzzy
ART, and 1 is outside rectangle R°° and inside
rectangle R“ld, then 1 will first choose rectangle

Rao :ﬁ'

dis(L, R}™) < g(axa) (23)



where
( ) - IR;',’OMI Ma _ IR;\Z,oldI
g} = -
o+ M, — |RYM| oy + M, — |RYY
(24)
X (a0 + M, — |R}4)).

Proof. The bottom-up input to node j; due to the
presentation of pattern I is equal to:

II A waoldl B Ma _ |R;\],newl
;,oldl  + Ma _ IR;,old

a
T

25
ot (29)

The bottom-up input to node j, due to the
presentation of pattern I is equal to:

X II Awaold| |w},z B Ma _ |R)a_2,old
BT et Wi T aat W aq+ M, — [REF[
(26)
Suppose now that
T; > T;. 27

Then, substituting 7% and Tj, from eqns (25) and
(26) into inequality (27) we get

Ma _ ,R;,ncwl
o+ M, — |R;‘°ld|

lRaoldI
_ iR]:;,oldi '

28
.-,+Ma (28)

If in the above inequality we substitute |R;™"| with
its equal from below

[RE™| = R} + dis(1, R2Y) (29)

we derive, after minor manipulations, inequality (23).
Hence, inequality (23) is a necessary and sufficient
condition for pattern I to choose rectangle RJa old
prior to choosing rectangle R‘“’ld (provided that the
assumptions of the theorem are valid).

THEOREM 3. If an input pattern 1 is presented to Fuzzy
ART, and 1 is outside rectangles R} M ond R;old, then
I will first choose R“’l iff

dis(L, R3*Y) < h(a,) (30)

where

M. Georgiopoulos et al.

IRaoldl
iRaOldI

23 a,old
g (IR, -
o + M, — |[R3

o, + M, —
h{a,) =

dis(I, R2™
o, + M, — . R5™)

@31
IRa,oldI)

Proof. The bottom-up input to node j; due to the
presentation of pattern I is equal to:

Il/\waoldl Ma _
aa+|waold' aa+Ma

|R;,newl
old; *
— R

a
h T

(32)

The bottom-up input to node j; due to the
presentation of pattern I is equal to:

s Il/\waoldl Ma IR;newl (33)
R a, + Iwa oldl g+ M, — IRZ,o]dl -
Suppose now that
T, >T;. (34)

Then, substituting 7" i and T?, from eqns (32) and
(33) into inequality (34) we get

M, — |R2™| M, -

oy + M, — |R}™|

IR;;,newI
old) ©
[R3*

35
ot M= (3%)

If, in the above inequality, we substitute R}™" and
R™™ with their equals from below

new| _ | paold . old
IR = R} + dis(1, R;™C) (36)

and

IRanewl — IRaold|+dls(I Raold) (37)

we derive, after minor manipulations, that rectangle
RZI 1 will be chosen first if the following inequality is
satxsﬁed.

o + M, — |R3M
dis(L, R}*) < ————— A IR, ldldis(l, R
' ay + M, — |R™) :
+ (Ma — [R}™)
@ +M Raold
e Y e
oy + M, — RS

If we combine the last two terms in the right hand
side of the above inequality we end up with inequality
(30), being the necessary and sufficient condition for
the input pattern I to choose rectangle RJ“1'°ld prior to
choosing rectangle R M (brovided of course that the
assumptions of the theorem are valid).
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Theorems 1-3 are now used to derive the main
results of the paper.

RESULT A. If an input pattern 1 is presented to a Fuzzy

ART architecture with small o, parameter values (i.e.,

a, close to zero), and

1. 1 is inside rectangles R;’l‘md and R}a-z’°'d, then 1 will
first choose the rectangle of the smallest size.

2. 1 is outside rectangle R;’dd and inside rectangle
R 1 " then 1 will first choose rectangle R;z"’ld.

3.1 lS oulszde rectangles R*" and R**", then 1 will
a’b )2

first choose rectangle R;™* iff
M _ a,old
dis(I, R2) < | md" dis(I R2™).  (39)
a I3

Proof. Result AI. Result Al is actually a special case
(ca = 0) of Theorem 1.

Result A2. Result A2 is an immediate consequence of
Theorem 2. Theorem 2 says that rectangle Rji“l’°ld will
be chosen first iff

dis(L, R¥™) < g(ew). (40)

But g(a.) =0 when a,~0. Hence, the above
inequality cannot happen if a, is approximately
equa{]j to 0. Hence, I will always choose first rectangle
Ra° .

Result A3. Result A3 is a direct result of Theorem 3.
Theorem 3 stated that if input pattern I is outside
rectangles R“’ld and R®* then I will first choose
Ra Old ﬂ‘

dis(I, R}*) < h(ew). (41)

But since o, =~ 0, A(a,) =~ A(0), where

_ | anldl

M,
h(O) = a,old

dis(I, R3*). (42)
M, — |R¥™M|

The above arguments verify Result A3.

Result B. If an input pattern 1 is presented to a Fuzzy

ART architecture with large o, parameter values (i.e.,

o, approaching co), and

1. 1 is inside rectangles R;")ld and R;’old, then 1 will
first choose the rectangle of the smallest size.

2. 1is outszde rectangle RJaod and inside rectangle
R** then 1 will first choose rectangle R old e

dlS(I Raold) < 'Raoldl |R;,old| (43)
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or equivalently iff

R3] < IRy (44)

3. 1 is outside rectangles R* and R*®, then 1 will
abld 2
first choose rectangle R;™° iff

dis(L, R}™) < dis(I, R2™) + |R2M| — [R2M|  (45)

LA ]
or equivalently iff

lRanCWI < |Ranewl‘ (46)

Proof. Result Bl. Result B1 is actually a special case
(oa approaches oco) of Theorem 1.

Result B2. Result B2 is an immediate consequence of

Theorem 2. Theorem 2 sates that rectangle R;’l")]d will
be chosen first iff

dis(I, R**M) < g(a). (47)

*Th
But when «, — oo, g(a,) approaches

|R]:;,old| IRHOldI- (48)

Hence, the validity of Result B2 is evident.

Result B3. Result B3 is a direct result of Theorem 3.
Theorem 3 states that if the input pattern I is outside
rectangles Rz-‘l"’]d and R;i‘z’dd, then I will first choose
first rectangle R;“)ld iff

dis(I, R3*) < h(aw). (49)
But since o, — 00, h(a,) — h(00), where
h(co) = dis(I, R2**) + |R3™| — |R%). (50)

The above equation verifies the validity of Result B3.

Result C. If an input pattern 1 is presented to a Fuzzy

ART architecture with intermediate o, parameter

values (i.e., 0 < a, < o), and

1. I is inside rectangles Rj-‘l"’ld and R;‘z’dd, then 1 will
first choose the rectangle of the smallest size.

2. 1 is outside rectangle R and inside rectangle

N
RZ"’ld then 1 will first choose rectangle R}’ old g

dis(L, R3) < g(a) (51)

where, given that
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|R3) < R, (52)
g(«a) is a nondecreasing function of a,,and
0 < gla) < —IR}™| - |RI™M). (53)

3. L is outside rectangles Rf’z;"ld and R;‘z"’ld, then 1 will
first choose rectangle R}’ Id iff

dis(I, R2™) < h(ay) (54)
where, given that
IR:‘Oldl < |R2,old|’ (55)

h(c) is a nondecreasing function of o, and

M, — |R>M
»a—lﬁd—Idis(l, R < h(a,) < dis(I, RZ™)
M, — |R}z, I (56)

+ |R]a_z,old| _ |R;,old[.
Proof. Result CI. Result Cl is a special case of
Theorem 1.

Result C2. The first statement of Result C2 is actually
Theorem 2, where 0 < a, < co. To demonstrate the
second statement of Result C2, consider the function
g(ca) defined in the statement of Theorem 2. With a
little algebraic manipulation it is easy to show that

daon) __(Ma— IRDIRE - RS o

da, (aa + M, — |RZ))?

The following equalities are true:

M, — |[R*™| >0 (58)

J2
and
[R:Y| — [R™) < 0. (59)

Inequality (58) is obvious, while inequality (59) is an
assumption of Result C2. Utilizing the above
inequalities in eqn (57) we obtain

dg(ca)
do,

=0, (60)

which implies that g(«,) is a nondecreasing function
of its argument a,. Consequently,

infg(aa) = lim gloa) = £(0) = 0 (61)
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and

sg‘pg(aa) = lim g(aa) = [RZ%| — [R2].  (62)

Result C3. The first statement of Result C3 is actually
Theorem 3. The statement about the behavior of
h(a,) can be proven by considering the derivative of
h(oy). With a little algebraic manipulation it can be
shown that the derivative of h{ca,) with respect to a,
is equal to:

dh(a,) _ (M, — IR;“WD(IR;,oldl _ IR;,oldl)

der, (@0 + My — lR}a_z,oldl)Z (63)
Since,
| R;,o|d| > | R;,oldl (64)
and
IRY™™] < My, (65)

we conclude from eqn (63) that h(a,) is a
nondecreasing function of its argument «,. Thus,

Lold
M, — R

M, —|RE

J2

inf h(a,) = liII{) h(o,) = h(0) dis(l,R;""d)

(66)
and
sup h(aa) = lim h(as) = dis(L, R;™) + [R3™] — |R2).

(67)

4. DISCUSSION OF THE RESULTS

Let us now examine Results A, B, and C to establish
some order of search rules according to which
categories (or their corresponding rectangles) are
chosen in the F5 field of Fuzzy ART. Orders of
search rules are named after the results that generate
them (e.g., the order of search rule B2a is the first
order of search rule pertaining to Result B2, while
order of search rule BC2b is the second order of
search rule pertaining to results B2 and C2).

ORDER OF SEARCH RULE ABCI. If ir‘ziput pattern 1 is

inside rectangles R‘-‘l’°ld and R;z"" , and |R;‘°[d|

< |R™Y, then pattern 1 chooses first the rectangle o
72 . P a,old

the smallest size R;"".

This order of search rule is a restatement of
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Alla, values

2,0l
4 A2

0.3
ol

0.2 1

017 - AL

0 T T — T T — T 1

0 01 02 03 0.7 1

FIGURE 7. lllustration of the order of search rule ABC1. Pattern
I, represented by the point in the figure, is inside rectangles
R;°™ and R}:°. Pattem | chooses first the rectangle of the
smallest ﬂze Rf”d The rectangle of choice is shown in the
figure with a bold-faced perimeter.

Results Al, Bl and Cl, and is illustrated in Figure 7
for M, = 2.

ORDER OF SEARCH RULE A2. If input pattern 1 is
outside rectangle R 4 and inside rectangle R ©d - and
«, is small, then pattern I chooses first rectangle Ra old,

o is small
1
07 7
i H;.ol!
4
0.3 1
Rk ol
02
011~
3 : T T — 1 )
o 01 03 04 09 1

FIGURE 8. lllustration of the order of search rule A2. Pattern |,
represented by the point in the figure, is outside rectangle R‘ o
and inside rectangle R' °d and a, is small. Pattern 1 chooses
first rectangle R} old The rectangle of choice is shown in the
figure with a bold-faced perimeter.
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o I8 larae or of intermediate value
11
0.7 1
RE'O”
0.6
Ry ol
05 T
0.2
o —————r : -~
[ 0.2 06 07 08 1

FIGURE 9. lllustration of the order of search rule BC2a. Pattern I,

represented by the point in the figure, is outside rectangle Rz old

and inside rectangle R, [R:M| < IR,'1 ld| and o, is either of

intermediate value or ol Iarge value. Paftern | chooses first
rectangle R}*". The rectangle of choice is shown in the figure
with a bold-faced perimeter.

This order of search rule is a restatement of Result
A2, and is illustrated in Figure 8 for M, = 2.

ORDER OF SEARCH RULE BC2a. If input pattern I is
outside rectang e R 4" and inside rectangle Ra’°d,
IR“‘ | < |R“‘o [, and o, is either of intermediate
value or of large value, then pattern 1 chooses first
rectangle R;dd.

This order of search rule is an immediate
consequence of Result B2 [see eqn (43)], for o,
large, and Result C2 [see eqn (51)], for a, of
intermediate value. This order of search rule is
illustrated in Figure 9 for M, = 2.

ORDER OF SEARCH RULE BC2b. If input pattern 1 zs
outside rectan%le R“l and inside rectangle R“
|Ra°] [ < |R“° | < ]Ra""wl, and «a, is cither of
mtermedtate “Value or of large value, then pattern 1
chooses first rectangle R} old,

This order of search rule is also an immediate
consequence of Result B2 {see eqn (44)], for a, large,
and Result C2 [see eqns (51), (52) and (53)], for a, of
intermediate value. This order of search rule is
illustrated in Figure 10 for M, = 2.

ORDER OF SEARCH RULE B2c. If an input pattern 1 zs
outside rectangle R and inside rectangle R“ ,
[RG™Y| < |Ra°1d|, and o, is of Iarge value, then
pattern 1 chooses first rectangle R}, wold

This order of search rule is also an immediate
consequence of Result B2 [see eqn (44)], and is
illustrated in Figure 11 for M, = 2.
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a, is large or of iIntermediate value

08 7

0.1

0 v : : T T t T T Y

0 Q.1 03 04 0.7 0.9 1

FIGURE 10. lllustration of the order of search rule BC2b. Pattern
I, represented by the point in the figure, is outside rectangle
R}°“ and inside rectangle R, IR < RIS < |R;™™|, and
a, is either of intermediate value or of large value. Pattern |
chooses first rectangle R,';“". The rectangle of choice is shown
in the figure with a bold-faced perimeter.

ORDER OF SEARCH RULE C2c. If input pattern 1 is
oulside rectangle R;"’ld and inside rectangle R;‘Z‘°]d,
IR, ™| < IR;'I’Oldl, and o, is of intermediate value,
then pattern 1, at times, chooses R;""d first and,
at other times, R;’dd first. The rectangle chosen
depends on the distance of 1 from the rectangle that
does not contain 1, and the sizes of the rectangles.
The frequency with which rectangle R;"”d is chosen
first by a pattern 1 does not decrease as o, increases
from 0 to oco.

The first two statements of the above rule are a
consequence of Result C2 [see eqns (51), (52), and
(53)]. The last statement of the above rule is valid
because of eqn (51) and the non-decreasing nature of
g(ca). The above rule is illustrated in Figures 12a—
12d for M, = 2.

ORDER OF SEARCH RULE ABC3a. If pattern 1 is outside
rectangles R;’old and R;z’dd, R;"’ldl < |R;-’2‘°1d|, and
|R"| > |RZ™™|, then pattern 1 first chooses
rectangle R;z"’]d.

This order of search rule is an immediate
consequence of Results A3, B3 and C3 [see eqns

(39), (45), (54), and (56)], and is illustrated in Figure
13 for M, = 2.

ORDER OF SEARCH RULE B3b. If input pattern 1 is

ouiside rectangles R;""d and R;;"’ld, |R2‘°’d| < |Rja»2’°'d|,

and a, is large, then pattern I chooses R;l’"ld Sfirst if and
. a,new a,new

only if |[R™| < |R™|.

M. Georgiopoulos et al.

o, Is large

08 1

F!,-§‘°"’

05 7

03 7

01

0 T T T T T T T N

0 e8] 03 04 05 09 1

FIGURE 11. lilustration of the order of search rule B2c. Pattern |,
represented by the point in the figure, is outside rectangle R;:"’“

and inside rectangle R}, |R}"| < |R}.*|, and a, is a large

value. Pattern | chooses first rectangle R,'1’°"'. The rectangle of
choice is shown in the figure with a bold-faced perimeter.

This order of search rule is an immediate
consequence of Result B3 [see eqn (45)], and is
illustrated in Figures 14a and 14b for M, = 2.

ORDER OF SEARCH RULE C3b. If input pattern 1 is
outside rectangles Rj‘-,"Jld and RZ“’d, |RYY| < |R;2’°'dl,
and «, is of intermediate value, then pattern 1, at times,
chooses Rj‘-l“’]d first and, at other times, it chooses Rj‘;"’ld
first. The rectangle chosen depends on the distance of 1
from the rectangles and the relative sizes of the
rectangles. The frequency with which rectangle R;’OM
is chosen first by a pattern 1 does not decrease as o,
increases from 0 to co.

The first two statements of the above rule are a
consequence of Result C3 [see eqns (54), (55), and
(56)]. The last statement of the above rule is valid
because of eqn (54) and the non-decreasing nature of
h(a,). The above rule is illustrated in Figures 15a—
15d for M, = 2.

It is worth pointing out that the results of the
previous section (Results A, B, and C) explain how
Fuzzy ART chooses among the committed nodes
during off-line training, or on-line training, or the
performance phase. Results A, B, and C ignore the
effect of uncommitted nodes on the Fuzzy ART
choices. However, under mild conditions on the
Fuzzy ART parameters, we can make the claim that
Results A, B, and C describe completely the Fuzzy
ART choices after the first list presentation of an off-
line training phase. To justify this claim let us present
a theorem.
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FIGURE 12 (a,b,c,d). llustration of the Rule of Thumb C2c. Pattern | is outside rectangle l"l'1
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(d)
and inside rectangle R},

IRR™™| < |R}:|, and a, is of intermediate value. Pattern |, at times, chooses R} first and, at other times, R} first. The rectangle
chosen depends on the distance of | from the rectangle that does not contain |, and the relative sizes of the rectangles The frequency
with which rectangle R"°"’ is chosen first by a pattern | does not decrease as «, increase from 0 to  [compare Figure 12 (a,b,c,d)]. In
the ilgure the gray marks indicate patterns | that choose rectangle R' 4 and the black marks indicate patterns | that choose rectangle

R"" .

THEOREM 4. In Fuzzy ART if

Qy

o+ M2 — M, (68)

pa >

then uncommitted nodes will not be chosen after the
first list presentation of an off-line training phase.

Proof. After the first list presentation of an off-line
training phase every input pattern I from the training
list has a subset template w*°!d that can represent the
input pattern (i.e., if w*°4 is chosen it will not be
reset).

At this point it is appropriate to define the concept
of a subset template in Fuzzy ART. A template w*°!d
is a subset template of an input pattern I if each one of

the w*°4 components is smaller than or equal to its
corresponding components in I (ie., w® 4 <1 <i
<2M,).

A subset template w2 will be chosen before an
uncommitted node iff

!Il |I A wa,old|
a, + M: a, + |wa,old|

|wa,old|
" o + [weod]

_ _ |Ra,old!
et My — [
(69)

However, M, — |R**Y| > M,p, and |I| = M,. Hence,
a sufficient condition for eqn (69) to be valid is

Ma Mapa

. 70
aa+M: o, + M,p, ( )
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All a, values

0og 4

06 -

0 01 02 03 0.7 09 1

FIGURE 13 (a,b). lllustration of the order of search rule ABC3a.
Pattern |, represented by the point in the figure, is outside
rectangles "ﬁ"”” and R}, R <|R%™|, and
[RZ™*™[ > |R.""|. Patiern I first chooses rectangle Rl'l’“’"’. The
rectangle of choice is shown in the figure with a bold-faced

perimeter.

After minor manipulations, inequality (70) becomes:

Qa
pa > o T MM, (1)
Hence, under the conditions specified by the above
inequality, uncommitted nodes will not be chosen in
Fuzzy ART after the first list presentation of an off-
line training phase.

It is easy to see that condition (71) is not very
stringent, considering that M? >2M, and most
Fuzzy ART simulations involve a, parameter values
that are smaller than M,. We are now ready to state
another result.

RESULTD. Results A, B, and C describe completely the
order of choices made by the Fuzzy ART architecture
after the first list presentation of an off-line training
phase, provided that the Fuzzy ART parameters are
chosen according to the following rule:

243

o+ M- M, (72)

Pa >

5. EXTENSIONS TO FUZZY ARTMAP
5.1. Fuzzy ARTMAP

A block diagram of the Fuzzy ARTMARP architecture
is provided in Figure 16. There are many similarities

M. Georgiopoulos et al.

q s large

q s large

(b)

FIGURE 14 (a,b). lllustration of the order of search rule B3b.
Pattern | is ouiside rectangles R}* and R?™, [R}°%| < |R]"|,
and a, is large. Pattern | chooses R;°" first if and only if
[RZ™¥| < |R;™™|. Gray marks Indicate patterns | that choose
Rf"""' first, and black marks indicate patterns | that chooseﬁ;”"’
first.

between the Fuzzy ART architecture and the Fuzzy
ARTMAP architecture, due to the fact that two of
the three modules of Fuzzy ARTMAP are Fuzzy
ART architectures. These modules are designated
ART, and ARTy in Figure 16. The ART, module
accepts as inputs the input patterns, and the ART},
module accepts as inputs the output patterns of the
pattern classification task that Fuzzy ARTMAP is
required to learn. All of the details mentioned about
the Fuzzy ART architecture in Section 2.1 are valid
for the ART, module, without any change, and for
the ART, module by substituting the superscript {a}
of Section 2.1 with the superscript {b} to emphasize
the fact that we are referring to weights and
parameter values of the ART, module. The only
difference between the ART, and the ART, modules
in Fuzzy ARTMARP is that for pattern classification
tasks (many-to-one maps) we do not need to apply
complement coding to the output patterns presented
to the ART, module (see Figure 16).
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FIGURE 15 (a,b,c,d). lllustration of the order of search rule C3b. Pattern | is outside rectangles R} ° and R}, R < |R°“|, and a, is
of intermediate value. Pattern |, at times, chooses RI %% first and, at other times, it chooses R, 2o tirst, The reclangle chosen depends on
the distance of | from the rectangles and the relative sizes of the rectangles. The frequency with which rectangle R‘ 19 is chosen first by
a pattern | does not decrease as a, increases from 0 to = [compare Figure 15 (a,b,c,d)]. In the figure the gray marks indicate patterns |
that choose rectangle R,‘;"” and the black marks indicate patterns | that choose rectangle R,';"”

Asg illustrated in Figure 16, Fuzzy ARTMAP
contains a module that is designated the inter-ART
module. The purpose of this module is to make sure
that the appropriate mapping is established between
the input patterns presented in ART, and the
patterns presented in ART,. There are connections
(weights) between every node in the F3 field of ART,
to all the nodes in the MAP field F,, of the inter-
ART module. The weight vector with components
emanating from a node j in Fa and converging to
nodes of field F,p is denoted w (wj“lb, . wa}:, ey
W,N,,) where Ny, are the number of nodes in F, ab (the
number of nodes in F,p is equal to the number of
nodes in F3 of ARTp). There are also fixed
bidirectional connections between a node k in F,
and its corresponding node k in F3.

The operation of the Fuzzy ART modules in

Fuzzy ARTMAP is a little different from the

operation of Fuzzy ART described in Section 2.2.
For instance, resets in ART, of Fuzzy ARTMAP
occur either because the category chosen in F3 does

’MARIM;

Field F,, } ART,

ART,
module

[ =
| FieldFy? eset L g«— Field F,°
o I b set
wa W w’ W,

Ij Field F® Match ]L Field F1 b
B |=(a, 8% TI. tracking

l Field F,® P O i

S | L

,_._,

FIGURE 16. A block diagram of the Fuzzy ARTMAP architecture.



1556

not match the input pattern presented in F3, or
because the appropriate map has not been established
between an input pattern presented in ART, and its
corresponding output pattern presented in ART,.
The latter type of reset is enforced by the inter-ART
module via its connections with the orienting
subsystem in ART, (see Figure 16). This reset is
accomplished by forcing the ART, architecture to
increase its vigilance parameter value above the level
that is necessary to cause a reset of the activated node
in the F3 field of ART,. Hence, in the ART, module
of Fuzzy ARTMAP, we identify two vigilance
parameter values, a baseline vigilance parameter
value p, which is the vigilance parameter of ART,
prior to the presentation of an input/output pair to
Fuzzy ARTMAP, and a vigilance parameter p, that
corresponds to the vigilance parameter that is
established in ART, via appropriate resets enforced
by the inter-ART module of Fuzzy ARTMAP. Also,
the node activated in FS due to a presentation of an
output pattern at F? can either be the node receiving
the maximum bottom-up input from F?, or the node
that is designated by the F,, field in the inter-ART
module. The latter type of activation is enforced by
the connections between the F,, field of the inter-
ART module and the F} field of ART,.

All the equations of Section 2.2 for the Fuzzy ART
module are valid for the ART, and ART}, module of
Fuzzy ARTMAP. In particular, the bottom-up
inputs to the F} field of the ART, module and the
F? field of the ARTy, module in Fuzzy ARTMAP are
given by:

T3(1)
I
o, + M3

if j is an uncommitted node

[TA w;’°’d| J(oa + |w}"°ld|) if j is a committed node

and (73)

T;10)
O]

if k is an uncommitted node
ap+ M:

|OAWS |/ (s + |W2*|) if kis a committed node
(74)

where in eqn (74), O stands for the output pattern
corresponding to the input pattern I, while the rest of
the ARTy, quantities are defined as they were defined
for the ART, module of Fuzzy ART in Section 2.1.
Similarly, the vigilance ratios for ART, and ART,
are computed as follows:

[TA w2

I (75)
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and

|0 Awg™| (76)
o]

The equations that describe the modifications of the
weight vectors w;‘b are explained verbally as follows.
A weight vector emanating from a node in F3 to all
the nodes in F,, starts initially from the “all ones”
vector and, after training that involves this F3 node,
all of its connections to F,p, except one, are reduced
to the value of zero.

The operating phases of Fuzzy ARTMAP are the
same as the operating phases of Fuzzy ART with the
only difference being that in the training phases of
Fuzzy ARTMAP we present to the network input
patterns along with corresponding output patterns.
Also the performance of Fuzzy ARTMAP is easier to
evaluate by providing the network with a test list of
input/output patterns. In particular, during the
performance evaluation of Fuzzy ARTMAP, only
the input patterns of the test list are presented to the
ART, module of Fuzzy ARTMAP. Then, Fuzzy
ARTMAP makes a prediction about the correspond-
ing output pattern and this prediction is compared
with the actual corresponding output from the test
list.

As we have emphasized before, since we are only
focusing on pattern classification tasks, the templates
formed in ARTy, are not very interesting (they are
equal to the output patterns presented in ARTy). To
enforce this type of clustering in ART)}, the vigilance
parameter (i.e., pp) in ART}, is chosen equal to one.
The templates formed in ART, though are a different
story. The discussion in Section 2.4 about templates
in Fuzzy ART is still valid for templates in the ART,
module of Fuzzy ARTMAP. Furthermore, the
definition of a distance in Fuzzy ART, mentioned
in Section 2.5, is also valid for the ART, module of
Fuzzy ARTMAP.

5.2. Results for Fuzzy ARTMAP

Theorems 1, 2, and 3 and Results A, B, and C of
Fuzzy ART are applicable without any modification
for the ART, module of Fuzzy ARTMAP. The order
of search rules, established for Fuzzy ART, is also
applicable for the ART, module of Fuzzy ARTMAP.
As was the case with Fuzzy ART, Results A—C and
the order of search rules in Section 4 explain how
Fuzzy ARTMAP chooses among the committed
nodes in the ART, module during off-line training,
on-line training, or the performance phase.

Theorem 4 and Result D of Fuzzy ART are
not applicable for Fuzzy ARTMAP. Theorem 4
is not valid because after the first list presentation
of an off-line training phase in Fuzzy ARTMAP,
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the network might choose uncommitted nodes in
the ART, module due to resets enforced by the
inter-ART module. Resets of the inter-ART mod-
ule are enforced because an input pattern from
the training list is mapped to the erroneous output
pattern.

6. REMARKS

One of our results in Section 3 referred to a Fuzzy
ART architecture with «, value approaching co. One
might question this choice, since when «, is large
Fuzzy ART has the tendency to choose uncommitted
nodes over existing committed nodes. Thus, it seems
that Result B pertains to a Fuzzy ART architecture
of questionable value, since every category formed in
F3 will correspond to a template that is equal to a
pattern from the training list. This is indeed the case if
we assume that the Fuzzy ART parameter M2 is
chosen equal to 2M,, as in the original Fuzzy ART
paper (Carpenter et al., 1991b). On the other hand, if
we consider a Fuzzy ART architecture with M2 very
large, so that committed nodes are chosen prior to
any uncommitted node, then it is reasonable to allow
a, to increase to large values as well. This Fuzzy
ART architecture produces a bottom-up input to a
committed node j in F2, with template w;"°ld,
proportional to:

L (77)

where I stands for the input pattern applied across
the nodes of the F} field of Fuzzy ART. It is worth
pointing out that this Fuzzy ART variant is also
mentioned in Carpenter and Gjaja (1994).

To justify the large «, values of the aforemen-
tioned Fuzzy ART variant (M2 — oo, and o, — 00),
we compared its performance with the performance
of the original Fuzzy ART algorithm (M2 = 2M,,
and reasonably small values for o). The criterion for
comparison is the average clustering performance of
the algorithms. In order to do the comparison we first
chose a number of benchmark databases. Then, for
representative vigilance parameter values (p,) we
evaluated the average clustering performance of the
Fuzzy ART variant for each of the chosen databases.
For the same databases, the same representative
vigilance parameter values, and a wide range of o,
values, we also computed the average clustering
performance of the original Fuzzy ART algorithm.
The results are reported in Table 1, where for ease of
presentation we report the average clustering
performance of the original Fuzzy ART only for
selective a, values; these a, values gave some of the
best average clustering performances of the original
Fuzzy ART algorithm. In the same table, we also
show the average number of F3 nodes created by the
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Fuzzy ART variant and the original Fuzzy ART
algorithms. Furthermore, standard deviations of the
clustering performance and the number of nodes are
also reported in Table 1. The results in Table 1
indicate that this Fuzzy ART variant compares
favorably with the original Fuzzy ART algorithm.

In the sequel, we provide some additional details
for the databases used and we explain how the
average clustering performance of the Fuzzy ART
variant and the Fuzzy ART algorithms was
computed.

The databases used for the aforementioned
comparison were: the heart disease database, the
diabetes database, the wine recognition database, the
ionosphere database, and the sonar database. These
databases were selected from the collection of the
databases distributed by the machine learning group
at the University of California at Irvine (Murphy &
Ada, 1994). The training list of each one of these
databases consists of inputs and corresponding
output patterns. For the training of Fuzzy ART
only the input patterns of the training list were used.
For the heart database, M, = 13, and the training list
consisted of 203 input patterns belonging to five
different classes. For the diabetes database, M, = 8,
and the training list consisted of 576 input patterns
belonging to two different classes. For the wine
database, M, = 12, and the training list consisted of
120 input patterns belonging to three different classes.
For the ionosphere database, M, =34, and the
training list consisted of 200 input patterns belong-
ing to two different classes. For the sonar database,
M, = 60, and the training list consisted of 104 input
patterns belonging to two different classes.

To evaluate the clustering performance of Fuzzy
ART (Fuzzy ART variant or the original Fuzzy
ART) we trained it with the training list of input
patterns until it learned the list completely. After
training was over, we assigned a label to each
category formed in the F3 field of Fuzzy ART. A
category formed in F} of Fuzzy ART is labeled by the
output pattern to which most of the input patterns
that are represented by this category are mapped.
Then we evaluated the performance of Fuzzy ART
by presenting to it, one more time, the input patterns
from the training list. For every input pattern from
the training list, Fuzzy ART chooses a category in
F%. If the label of this category is the output pattern
that this input pattern corresponds to in the training
list, then we say that Fuzzy ART clustered this input
pattern correctly. If, on the other hand, the label of
this category is different from the output pattern that
this input pattern corresponds to in the training list,
then we say that Fuzzy ART made an erroneous
clustering. It is worth mentioning that the aforemen-
tioned procedure to evaluate the performance of
Fuzzy ART was motivated by Dubes and Jain (1976),
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TABLE 1

Average Percentage of Correct Clustering (avgey), Standard Deviation of Correct Clustgering (stdvcy), Average Number of F; Nodes
(avgno), and Standard Deviation of F5 Nodes (stdv,,,) for Fuzzy ART with M — « and a, — =, as well as Fuzzy ART with M} = 2M, and
Various Typical a, Parameter Values

Heart Database

pa =03 pa = 0.4 pa =06 pa =08
ay = 6.0 a; =00 03 =001 =130 a— a, =6.0 gy — 00 a, =60 aya—
Avg_cl 57.9% 57.7% 61.4% 65.1% 62.7% 69.3% 70.6% 74.6% 77.8%
Stdv_cl 1.44% 1.64% 1.75% 2.04% 2.34% 2.13% 1.56% 2.08% 1.57%
Avg_no 5.50 5.80 4.00 15.6 103 23.0 28.6 55.0 60.4
Stdv_no 0.53 0.000 1.18 1.35 0.79 1.89 1.78 2.89 272
Diabetes Database
pa =0.2 pa =04 pa =07 pa =09
a, =0.8 a; > 00 =001 a,=74 Qay; — 00 a; =1.0 g — 00 ag =2.6 a, — 00
Avg_cl 65.2% 65.7% 69.4% 724% 71.4% 81.3% 80.4% 92.9% 91.1%
Stdv_cl 0.62% 0.83% 1.80% 3.10% 3.40% 1.08% 1.45% 0.88% 1.05%
Avg_no 250 290 6.30 14.7 9.90 53.1 74.5 234.3 2457
Stdv_no 0.53 0.32 0.48 0.95 0.74 2.02 3.63 422 297
Wine Database
pa =05 pa =06 pa=0.7 pa=09
a3 =50 oag— 00 a;=0.01 a; =24 g =00 ag=24 Qg — 00 a, =0.8 ay — 00
Avg_cl! 63.2% 68.2% 87.8% 90.2% 82.8% 92.7% 91.0% 98.8% 98.2%
Stdv_cl 6.98% 6.95% 2.74% 4.06% 7.73% 231% 4.42% 0.75% 0.86%
Avg_no 3.00 2.00 5.20 8.80 5.60 100 1.2 53.6 53.8
Stdv_no 0.00 0.32 0.45 0.45 0.52 0.71 0.79 1.52 1.23
lonosphere Database
pa = 0.1 pa =02 Pa = 0.4 pa =07
ay =12 0y =00 =126 @ —00 a3=001 a;=340 a5z — 0 a; =0.6 a; — 00
Avg_cl 732% 89.0% 787% 93.0% 91.9% 87.0% 94.6% 94.7% 97.2%
Stdv_cl 3.30% 217% 2.99% 1.76% 2.69% 224% 1.07% 2.70% 1.53%
Avg_no 6.00 7.70 17.0 15.0 26.3 37.1 317 60.6 63.6
Stdv_no 0.47 0.71 0.94 1.00 1.64 1.45 2.03 1.63 1.88
Sonar Database
pa =04 pa=06 pa =07 pa =08
a; =08 az—o00 @=001 a;=300 a;—c0 =60 az—00 @=06 <a,—
Avg_cl 54.3% 54.9% 93.7% 87.0% 86.9% 94.4% 91.3% 95.4% 92.6%
Stdv_cl 2.73% 2.24% 2.28% 3.30% 5.59% 0.99% 3.44% 1.91% 1.64%
Avg_no 200 2.00 9.80 9.50 102 188 195 332 344
Stdv_no 0.00 0.00 0.79 1.08 1.03 1.93 2.01 230 217
where a number of clustering techniques are M, are not a good combination of parameter values
compared with each other. The average perfor- for Fuzzy ARTMAP. Fuzzy ARTMAP simulation
mances, shown in Table 1, were computed by results conducted with these parameter choices

training Fuzzy ART with ten different orders of indicated that Fuzzy ARTMAP created too many
pattern presentations from the training list.

Unfortunately, the very large choices for the classification tasks corresponding to the five data-
choice parameter value o, and the parameter value bases, mentioned above, and as a result they are not

clusters in ART, in order to solve the pattern
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worth mentioning here. Hence, Fuzzy ARTMAP
simulations with very large M2 and a, values are not
practical. Consequently, although order of search
results for Fuzzy ARTMAP were derived for small,
intermediate, and large «, values, only the results for
small and intermediate «, values are of practical
significance. On the other hand, the order of search
results for Fuzzy ART are of practical significance for
small, intermediate and large o, values.

7. CONCLUSIONS

In this paper we investigated Fuzzy ART and Fuzzy
ARTMAP from the perspective of the order
according to which categories are chosen to
represent the input patterns. We used the geome-
trical interpretation of these categories, in terms of
appropriate rectangles, to try to explain these choices
in a geometrical fashion. We illustrated that Fuzzy
ART and Fuzzy ARTMAP exhibit three distinct
behaviors, when «, is small, when «, is large, and
when a, assumes intermediate values. These beha-
viors were fully documented in terms of a certain
order of search rules that explain how choices of
categories (rectangles) are made by Fuzzy ART or
Fuzzy ARTMAP.

The importance of the work conducted here lies in
the fact that the geometrical interpretation of the
order of choices made by Fuzzy ART and Fuzzy
ARTMAP allows one to obtain a more intuitive
understanding of how these algorithms operate.
Furthermore, a complete understanding of the order
according to which categories are chosen in Fuzzy
ART or Fuzzy ARTMAP can help demonstrate
useful learning properties pertaining to these two
architectures. To strengthen our point, it suffices to
mention that the order according to which categories
are chosen in ART1 and ARTMAP (i.e., subset
categories are chosen first) produced several learning
properties for these architectures (Georgiopoulos et
al., 1990, 1991, 1992, 1994; Huang et al., 1995; Moore
1989). One of these properties predicted a good upper
bound on the number of list presentations required
by ART! and ARTMAP to learn a list of training
examples repeatedly presented to either one of these
two architectures.
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