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Abstract—In this paper we introduce a procedure, based on 8) for overlapping pattern classes, create regions in the space
the max-min clustering method, that identifies a fixed order of the input parameters that exhibit the least possible overlap.
of training pattern presentation for fuzzy adaptive resonance A nergl-network classifier that satisfies most of the afore-
theory mapping (ARTMAP). This procedure is referred to as . .. .
the ordering algorithm, and the combination of this procedure Mentioned properties is fuzzy adaptive resonance theory map-
with fuzzy ARTMAP is referred to as ordered fuzzy ARTMAP. ping (fuzzy ARTMAP) [2]. Fuzzy ARTMAP is capable of
Experimental results demonstrate that ordered fuzzy ARTMAP  establishing arbitrary mappings between an analog input space
exhibits a generalization performance that is better than the s arbitrary dimensionality and an analog output space of
average generalization performance of fuzzy ARTMAP, and in . . . . .
certain cases as good as, or better than the best fuzzy ARTMAP arbitrary dimensionality. Fuzzy _ARTMAP is a member of
generalization performance. We also calculate the number of the class of neural-network architectures referred té&\R3-
operations required by the ordering algorithm and compare it to  architecturesdeveloped by Carpenter, Grossberg, and col-

the number of operations required by the training phase of fuzzy - |eagues. The ART-architectures are based onAR& theory
ARTMAP. We show that, under mild assumptions, the number introduced by Grossberg [3].

of operations required by the ordering algorithm is a fraction of . . .
the number of operations required by fuzzy ARTMAP. Fuzzy ARTMAP can operate ioff-line or on-line modes.

In the on-line mode, the network must process the data as it
becomes available, without storing or reusing it. In the off-line
mode, the data can be stored and repeatedly presented to the
network. In this paper, we consider the off-line operation of
. INTRODUCTION fuzzy ARTMAP in classification problemge.g., recognizing
ATTERN classification is a key element in many engihandwritten digits). In particular, we consider one of the
neering applications. For example, sonar, radar, seismiggjor limitations of fuzzy ARTMAP, its dependence on tuning
and diagnostic applications all require the ability to accurateparameters [which is a violation of property 6) above]. It
classify data. In addition, control, tracking, and predictiohas been documented in the literature that the performance
systems will often use classifiers to determine input—outpot fuzzy ARTMAP depends on the values of two parameters
relationships. Simpson has identified a number of desiraldalled the choice and vigilance parameters, and also on the
properties that a pattern classifier should possess [1]. Thesder of pattern presentation for the off-line mode of train-
properties can be summarized as follows: A successful pattémg. To circumvent the first problem, most fuzzy ARTMAP
classifier should be able to 1) learn the required task quickifmulations that have appeared in the literature assume zero
2) learn new data without having to retrain with old data (onvalues for the choice and vigilance parameters. One of the
line adaptation); 3) solve nonlinearly separable problems; djain reasons for the popularity of this choice is that it tends
provide the capability for soft and hard decisions regarding minimize the size of the resulting network architecture. This
the degree of membership of the data within each class;quite desirable, especially when performance comparisons
5) offer explanations of how the data are classified, aRfle made between fuzzy ARTMAP and other neural-network
why the data are classified as such; 6) exhibit performangghitectures that offer more compact representations of the
that is independent of parameter tuning; 7) function withoyfata such as multilayer perceptrons [4]. The problem of
knowledge of the distributions of the data in each class; aBQttern ordering is not as easy to solve. One way around it
is to consider different orders of presentations of the training
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pattern presentation. We refer to this procedure asttiering Inter-ART module
algorithm When the training input patterns are presented to
fuzzy ARTMAP according to this fixed order we end up with a
trained fuzzy ARTMAP whose generalization performance is;-------1
better than the average generalization performance of fuzzy
ARTMAP, and in certain cases as good as, or better than
the best network generalization performance. In the former
case we consider the average of a fixed number of exper-
iments corresponding to random orders of training pattern
presentations, and in the latter case we consider the bes
of a fixed number of experiments corresponding to random
orders of training pattern presentations. For simplicity, we;
refer to fuzzy ARTMAP trained with the fixed order of input !

pattern presentations aglered fuzzy ARTMAMrdered fuzzy ART, module ' ART, module
ARTMAP has the following desirable properties.

1) It achieves good generalization performance witholi
requiring parameter tuning.

2) The sizes of the networks that ordered fuzzy ARTMAResignated byl has the form
creates are comparable to the sizes of the networks that

{g. 1. A block diagram of the fuzzy ARTMAP neural-network architecture.

fuzzy ARTMAP creates when trained using a random I=(aa’)= (a1, an,,af - af,)
order of pattern presentation. where
3) Under mild conditions, the computational overhead a; €[0,1] and af=1-a; 1<i<M, (1)

imposed by the ordering algorithm is small compared to .

the computations required to perform the training phadde output pattern, designated by has the form

of fuzzy A_RTMAP for a single random order of pattern o= (51, - _7be) whereb, € [0,1]; 1<k <M. (2)
presentation.

The organization of this paper is as follows. In Section IFuzzy ARTMAP operates in two distinct phases: the
we briefly discuss the fuzzy ARTMAP architecture, includingf@ining phaseand the performance phaseAs mentioned
the form of its inputs, training phase, performance phasgarlier, in this paper we are interested in the off-line
and functionality. In Section Ill, we introduce the orderin@peration of fuzzy ARTMAP in classification tasks, where
algorithm. In Section IV, we illustrate with simple exammany inputs are mapped to a single, distinct output.
ples the effect of the ordering algorithm on the categoridde off-line training phaseof fuzzy ARTMAP works as
created by fuzzy ARTMAP, and we explain the motivatiofollows: Given a list of training input—output pairs, such
for choosing this ordering algorithm. In Section V, we exas {I',O'},---{I",0"},... {I"*,O"'T}, we want to train
perimentally demonstrate the superiority of ordered fuzA{zzy ARTMAP to map every input pattern of the training
ARTMAP’s generalization performance compared to the avdist to its corresponding output pattern. In order to achieve the
age fuzzy ARTMAP generalization performance, and in certagiorementioned goal, we present the training list repeatedly
cases compared to the best fuzzy ARTMAP generalizatié® the Fuzzy ARTMAP architecture. That is we present
performance. Also, in Section V we discuss the comput®: t0 ART, and O' to ART,, then I* to ART, and O?
tional complexity of the ordering algorithm and comparé® ART,,:--, and finally I"" to ART, and O"" to ART,.
it to the computational complexity of the training phaséhis corresponds tone list presentationThe training list is
of fuzzy ARTMAP. Finally, in Section V we compare thePresented as many times as it is necessary for fuzzy ARTMAP
generalization performance of the ordered fuzzy ARTMAF® correctly classify all the input patterns. The classification
and other classification techniques that have appeared in #gk is considered accomplished (i.e., learning is complete)

literature. Section VI provides a summary of the paper anghen the weights do not change during a list presentation. The
offers some concluding remarks. performance phaseccurs when the trained fuzzy ARTMAP

network is used to classify a list of test input patterns.

Two of the most important network parameters of the
fuzzy ARTMAP architecture are the choice parameter and
A detailed description of the fuzzy ARTMAP neural netthe vigilance parameter in th&RT, module. For all of the
work can be found in [2]; we present only the necessary detadigperiments in this paper the values of these parameters are
here. The fuzzy ARTMAP neural network consists of twehosen to be zero (actually the choice parameter is a very
fuzzy ART modules, designate8iRT, and ART,, as well as small positive constant), because our objective is to focus
an inter-ART module as shown in Fig. 1. Inputs are presented algorithms that do not require tuning of parameters. As
at the ART, module, while their corresponding outputs arenentioned previously, this choice of the network parameters
presented at thART, module. The inter-ART module includesleads to fuzzy ARTMAP network architectures of minimum
a MAP field whose purpose is to determine whether the corresize. The functionality of fuzzy ARTMAP is better illustrated
input—output mapping has been established. The input pattém,referring to the geometrical interpretation of the weights

Il. THE Fuzzy ARTMAP NEURAL NETWORK
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to be presented. These patterns are chosen according to the
1 minimum Euclidean distance criterion from the,,, cluster
centers defined in Stages 1 and 2. Below, we describe in more
detail each of these stages.

Stage 1—The First PatternFor each pattern I
(a1, - an,,am, 41, +,azp, ) N the training set we
compute

M,
> |ansati — ail. 3)
=1

The pattern from the training set that maximizes the above
sum is the first pattern presented to ordered fuzzy ARTMAP,
and the first cluster center used in Stage 2. The training pattern
that maximizes the above sum is removed from the training
set S7. To understand how the first pattern is produced in
the first stage of the ordering algorithm we present a simple
example in Appendix I. The following two stages of the

) o ) ) ordering procedure involve calculation of Euclidean distances
in ART,. As initially discussed in [6] and further elaboratetymong patterns in the training set. In the calculation of these
in [7], every weight vector imART, defines a hyperrectanglegistances only the firsbZ, components of the input patterns
(hyperbox) in the input pattern space that includes all pattergg used (i.e., tha portion of thel vector). To avoid switching
that chose this weight vector as their representative during theck and forth between theandI notation, we refer to these
training process. In Fig. 2, we show the hyperrectangle th@ktances as the distances among Tise

the weight vectorw; (i.e., the weight vector corresponding  stage 2—The NeXtos: — 1) Patterns: This stage uses

to nodej in F3) defines. Note that patterds = (a', (a’)€), the Max-Min clustering algorithm to definéneus, — 1)

I = (a?,(a®)), P’ = (2 (a%)), I* = (a* (a’)), and appropriate cluster centers (patterns), which constitute the next
I’ = (a°,(a%)?) were coded byw§ = (uf, (v§)), where (, . 1)input patterns to be presented during the training
uj andv; correspond to the endpoints of the hyperrectanghase of ordered fuzzy ARTMAP. The steps followed to define
that wi defines. In Fig. 2, hyperrectangles are actually reghese cluster centers are as follows. The indenritialized and
angles since the input patterdsare four-dimensional, and ypdated in the step-by-step description of Stage 2, corresponds
their components (thex's) are two-dimensional. After the g the number of clusters that have been identified, at various
training of fuzzy ARTMAP is completed, the weight vectors ohoints, during the implementation of Stage 2.

committed nodes IRRT, represent clusters of input patterns 1) Denote the first cluster center (input pattern) identified
(hyperboxes) that are mapped to the same output pattern. in Stage 1 byL,, and initialize the index to one.

Compute the Euclidean distance of every input pattern
in the training setS7 to the kth cluster center, and find
the minimum oned! . . That is,

min*

"1
Fig. 2. The hyperrectangle which has coded the pattErns (a', (a')"),

12 — (azﬂ(aZ)c)_’ I'J (aliﬂ(aii)c)’ I4 (34,(34)0)’ and
I = (a°,(a%)°).

[l 2)
The purpose of the ordering algorithm of ordered fuzzy
ARTMAP is to identify the order in which patterns should
be presented during the training phase of fuzzy ARTMAP.
This task is accomplished by following a systematic procedure
that consists of three stages. Before we discuss these stages

THE ORDERING ALGORITHM

dglin = 12%27 {dISt(L Ig) } (4)

let us first define the parametens),.;, PT, and the setSy 3)
that appear in the algorithm’s description. In this paper, the
parametern s IS taken to be either equal to the number

of distinct classes or equal to one more than the number of
distinct classes associated with the pattern classification task.
The parametePT stands for the number of input—output pairs

in the training list. Finally,St is, prior to the application of

the ordering algorithm, the set of all training input patterns.

In Stage 1, we choose the first pattern to be presented. Thi¢)
pattern corresponds to the first cluster center of the training
input patterns. In Stage 2, we choose the n@xj,.. — 1)

Find the input pattern from the training sét that
maximizesd’. ; , I € sr. Designate this input pattern by
the generic namé&. The next cluster center, designated
by I;;™, is equal toI, that isI;t' = L This cluster
center constitutes the next input pattern to be presented
during the training phase of ordered fuzzy ARTMAP.
Incrementr by one, and eliminate input pattefnfrom

the training setSt.

If » = nqus this stage is completed; otherwise, go to
Step 2).

At the end of Stages 1 and 2, we have identifieg,:

patterns to be presented. These patterns correspond to the okestter centers that correspond to the input pattéfnsl <

(naust — 1) cluster centers of the training input patterns, and < nqust, Of the training set. The next stage identifies the
are identified using theMax—Min clustering algorithm [5]. order according to which the remaining input patterns should
In Stage 3, we choose the remainif®T — n.,s) patterns be presented to the ordered fuzzy ARTMAP.
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Fig. 3. Rectangles and decision regions of fuzzy ARTMAP (FAM) and ordered fuzzy ARTMAP (ordered FAM) for Example 1.

Stage 3—The RemainifBT — n.ust) INput Patterns: The  first pattern to be presented (the closest point to one of the
steps followed in this stage are as follows. corners of the input pattern space), Stage 2 identified pattern 1

1) Set indexr t0 n..s. The patterns in the training setas the second pattern to be presented, and Stage 3 identified the
Sy are all of the training input patterns except the oneyder for the rest of the patterns in the training set. The training

identified as cluster centers in Stages 1 and 2. patterns in fuzzy ARTMAP were presented in the following
2) Calculate the Euclidean distance of every patfein order: {1.0,0.2,0.3,0,0.1,0.4,0.5}. Observe that in Fig. 3,
the setSt to the n...s: Cluster centers. the numbers above the black and gray circles indicate the order

3) Find the minimum of these distances. Assume that af their presentation in the training phases of fuzzy ARTMAP
corresponds to input pattedn This pattern is the next and ordered fuzzy ARTMAP. After training is over in fuzzy
in sequence input pattern to be presented in the trainiMRTMAP, rectanglesR; (with endpoints 0.2 and onef,
phase of fuzzy ARTMAP. Eliminat& from the setS;, (with endpoints zero and 0.5), anfl; (with endpoints 0.2
setT;; = T, and increment. and 0.3) have been created. After training is over in ordered
4) If r = PT this stage is complete; otherwise, go to Stefuzzy ARTMAP, rectangles?; (with endpoints zero and 0.1),
2). R, (containing the datum 1.0)k; (with endpoints 0.2 and
After the end of Stage 3, we have identified the orderéd3), andR,4 (with endpoints 0.4 and 0.5) have been created.
set of patternd},, 12, -, I5T. This is the order according to The decision regions for fuzzy ARTMAP (shown in Fig. 3),
which the patterns in the training set will be presented to tltassify test data between 0.2 and 0.3 and between 0.5 and one,
ordered fuzzy ARTMAP. The corresponding outputs of thias Class 2, and the rest of the test data as Class 1. On the other
ordered sequence of input patterns are the outputs from tiend, the decision regions for the ordered fuzzy ARTMAP
training list that these input patterns need to be mapped fshown in Fig. 3) classify the test data between zero and 0.15
For example, ifI}, = I?, thenI}’s corresponding output is and between 0.35 and 0.74 as Class 1, and the rest of the
02, It is worth mentioning that the ordering that the orderingata as Class 2. In this example, ordered fuzzy ARTMAP has
algorithm produces is independent of any permutations of theduced the effect of the nonrepresentative rectaRgleThis
input training patterns. Proof of this statement is provided tduction was done by shrinking the decision regioss, 1]

Appendix Il (Theorem 1). to the region[0.74,1]. RectangleR; of fuzzy ARTMAP is
nonrepresentative of the data because it forces the network to
IV. EXAMPLES—MOTIVATION classify all test data in the intervf).5,1] as data belonging

In order to better understand the differences betweent@Class 2, despite the fact that there is no Class 2 training
random order of training pattern presentation and the propogtia within the interva(0.3, 1].
fixed order of training pattern presentation, we present somen Example 2 (see Fig. 4), the datf0,0.05,0.1,0.4,
illustrative examples. Once the examples are presented it Wilit5,0.51} belong to Class 1, while the datfn.2,0.25,
be easier to explain the motivation for our work. In Exampl@.3,0.6,0.65,0.7} belong to Class 2. The ordering al-
1 (see Fig. 3) the dat40,0.1,0.4,0.5} belong to Class 1, gorithm, with n.. = 2, identified the following order
while the data{0.2,0.3,1} belong to Class 2. The orderingof training pattern presentation(0,0.7,0.05,0.65,0.1, 0.6,
algorithm, with nqus = 2, computed the following order 0.51,0.2,0.25,0.45,0.3,0.4} for ordered fuzzy ARTMAP.
for training pattern presentatiof, 1.0, 0.1,0.2,0.3,0.4,0.5}.  Note that Stage 1 in this example identified patieas the first
Note that Stage 1 in this example identified pattern O as tpattern to be presented (the closest point to one of the corners
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Fig. 4. Rectangles and decision regions of fuzzy ARTMAP (FAM) and ordered fuzzy ARTMAP (ordered FAM) for Example 2.

of the input pattern space), Stage 2 identified pattern 0.7 as thayeneralization performance for different orders of training
second pattern to be presented, and Stage 3 identified the opddtern presentations. Furthermore, it is not an easy task to
for the rest of the patterns in the training set. The traininguess which one of the exceedingly large number of orders
patterns in fuzzy ARTMAP were presented in the following oref pattern presentations exhibits the best generalization. Our
der: {0,0.51,0.15,0.1,0.2,0.25,0.3,0.4,0.45,0.6,0.65,0.7}. assumption was that orders of pattern presentation that create
Observe that in Fig. 4, the numbers above the black andnecessarily large rectangles (e.g., rectadgjleof Example
gray circles indicate the order of their presentation duringfor fuzzy ARTMAP), that force assumptions about the data
the training phases of fuzzy ARTMAP and ordered fuzzyhere training data do not exist (e.g., regiorb, 1] for fuzzy
ARTMAP. After training is over in fuzzy ARTMAP, ARTMAP in Example 1), give credibility to possible outlier
rectanglesR; (with endpoints zero and 0.51)R, (with data (e.g., datum “1” in Example 1 for fuzzy ARTMAP),
endpoints 0.2 and 0.7), ank (with endpoints 0.4 and 0.51)and include in their regions data that belong to more than
have been created. After training is over in ordered fuzAne class (e.g., Examples 1 and 2), would not lead to good
ARTMAP, rectanglesR; (with endpoints zero and 0.1)3, 9eneralization performance. So, the idea was to address this
(with endpoints 0.6 and 0.7]; (with endpoints 0.2 and 0.3), Problem by sp_reading out enough initial_ clusters at locations
and R, (with endpoints 0.4 and 0.51) have been created. THé1€re data exist (e.g., clusters 1 and 2 in Examples 1 and 2),
decision regions for fuzzy ARTMAP (shown in Fig. 4) classify"‘”d then present the rest of the training data in order of closest
test data between zero and 0.2 and between 0.4 and 0.5figtance to these initial clusters. The examples presented above
Class 1, and the rest of the data as Class 2. On the other hdygfified the validity of our approach.

the decision regions for the ordered fuzzy ARTMAP (shown

in Fig. 4) classify the test data between zero and 0.15 and the V. EXPERIMENTAL RESULTS—COMPARISONS

test data between 0.35 and 0.55 as Class 1, and the rest of the . ) .

data as Class 2. In this example, ordered fuzzy ARTMAP has/N the following sections, we describe the databases used to

reduced the overlap among rectangles that lead to differ&@{Pare fuzzy ARTMAP and ordered fuzzy ARTMAP,_deflne

outputs [see desired Property 8) of a pattern classifier]. performgnce measures, and compare the two algorithms by
The major motivation for our work was the design of gonductlng appropriate experiments.

fuzzy ARTMAP algorithm that is independent of the tuning of

parameters, and achieves good generalization by avoiding &x-Databases

cessive experimentation. The dependence of fuzzy ARTMAP|n order to demonstrate the superior performance of ordered

on the choice parameter and the vigilance parameter is fagzy ARTMAP as compared to fuzzy ARTMAP, we chose to

inherent characteristic of the algorithm. Choosing these pesnduct experiments on a number of databases extracted from

rameters equal to zero frees the experimenter from the tedidlie UCI repository database [8]. The databases chosen from

task of optimizing the network performance with respect tthe repository were: Iris [9], Wine [10], Sonar [11], Diabetes

these two parameters. With the choice parameter and {lie], Breast [13], Balance [14], Bupa [8], Cars [8], and Glass

vigilance parameter chosen equal to zero, one ends up witf8Bh The Sonar, Diabetes, Breast, and Bupa are two-class

fuzzy ARTMAP algorithm that exhibits a significant variationclassification problems, the Iris, Wine, Balance are three-class
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TABLE |
GENERALIZATION PERFORMANCES OF THEFUzzY ARTMAP AND THE ORDERED Fuzzy ARTMAP WITH n¢jyst = (NUMBER OF CLASSES) + 1
Fuzzy ARTMAP Ordered Fuzzy ARTMAP

Database | Worst Gen. | Best Gen. | avg.Gen. | std.dev. | ncuse Gen.

Sonar 63.77 78.26 70.58 4.15 3 79.96

Diabetes 61.57 70.98 66.63 2.57 3 69.80

Breast 93.10 96.12 94.35 0.95 3 94.39

Bupa 47.37 63.16 56.84 4.22 3 57.01

Iris 89.58 95.83 95.00 1.91 4 97.92

Wine 91.38 98.28 95.69 2.70 4 98.27

Balance 71.63 78.85 75.91 2.42 4 75.48

Cars 63.21 69.29 66.43 2.13 5 67.50

Glass 57.97 76.81 63.77 6.18 7 69.56

classification problems, the Cars is a four-class classification TABLE I

problem, and finally the Glass is a six-class classification AVERAGE NETWORK SizE FOR Fuzzy ARTMAP AnND NETWORK SiZE OF

problem. Each of these datasets was split randomly into—a ROERED Fuzzy ARTMAP WITH neiust = (NUMBER OF CLASSES) + 1
training set (2/3 of the data) and a test set (/3 of the datg)z—— i\lj;_zileAtRsTi':':P S?é:ed Fuzzy AFf\ITe'\t"g'iDZe
The percentage of data from each class in the training a@g; 6 3 3

test set reflected the percentage of data from each class in"Buetes 43 3 44

entire dataset. The number of the data used in the training Setast 8 3 9

for Iris, Wine, Sonar, Diabetes, Breast, Balance, Bupa, CaBdPa 31 3 31

and Glass were 102, 120, 139, 513, 467, 417, 231, 566, 14&- > . .
respectively. The number of the data used in the test set for Irg;znce 79 2 120

Wine, Sonar, Diabetes, Breast, Balance, Bupa, Cars and Glaass 46 5 56

were 48, 58, 69, 255, 232, 208, 114, 280, 69, respectivelglass 27 7 30

The dimensionality of the input patterns for Iris, Wine, Sonar,

Diabetes, Breast, Balance, Bupa, Cars and Glass were 4, jh3nhe data set. This rule of thumb tends to produce an ordered

60, 8, 9, 4, 6, 18, 9, respectively. More detailed descriptiofgzzy ARTMAP with the best generalization performance.

of each one of these databases can be found in the referenceg, Taple I, we show generalization performance compar-
isons between fuzzy ARTMAP and ordered fuzzy ARTMAP

B. Measures of Performance when nq.st IS chosen to be equal to one more than the

One of the performance measures used to compare ordefdiPer of classed.ooking at the results we observe the fol-
fuzzy ARTMAP and fuzzy ARTMAP isgeneralization The OWINg: The generalization performance of the ordered fuzzy

generalization performance of a network is defined as AT MAP is better than the worsgeneralization performance

percentage of patterns in the test set that are correctly c/g5{uzzy ARTMAP by 16.19%, 11.59%, 9.64%, 8.34%, 8.23%,

sified by a trained network. Since the performance of fuz89%: 4.29%, 3.85%, and 1.29% for the Sonar, Glass, Bupa,
ARTMAP depends on the order of pattern presentation in the>: Diabetes, Wine, Cars, Balance, and Breast databases,

training set, ten different random orders of pattern presentati'iﬁ‘?pecnvely' Th_e generalization performance .Of the ordered
were investigated, and performance measures such as y ARTMAP is better than the averaggeneralization per-

average generalization performance, the worst generalizat@Hnance of fuzzy ARTMAP by 9.38%, 5.79%, 3.17%, 2.92%,

performance, the best generalization performance, and has%, 1,'07%’ 0'1,7%' ,0'04%’ anel0.43% for the Sonar,
standard deviation of the generalization performance weRiaSS: Diabetes, Iris, Wine, Cars, Bupa, Breast, and Balance
produced for fuzzy ARTMAP. Other measures of compariscﬁfa‘tabases' respectively. .The generalization perform.anc_e of the
of ordered fuzzy ARTMAP and fuzzy ARTMAP are the Sizeg)rdered fuzzy ARTMAP idetter than the begieneralization

of the networks that these two algorithms create, and tﬁgrforronance 0‘; fuzzy AFTMAP Ey 2'090/3' 1'7%0'010?’
numbers of operations required by ordered fuzzy ARTMAF71'18/°’__1'73 /‘”_1'7_9&_3'37 %, ~6.15%, and-7.25%
the Iris, Sonar, Wine, Diabetes, Breast, Cars, Balance,

as compared to the number of operations required by fuzfﬂxr k .
ARTMAP. Bupa, and Glass databases, respectively. Negative percentages

imply that the corresponding fuzzy ARTMAP generalization
, performance (worst, average, or best) is better than the ordered
C. Comparisons of Ordered Fuzzy ARTMAP fuzzy ARTMAP generalization performance.
and Fuzzy ARTMAP In Table I, we show the size of the network that ordered
The only weak link in the procedure that finds an orderddzzy ARTMAP created and the average size of the network
sequence of training patterns for ordered fuzzy ARTMAP ihat fuzzy ARTMAP created. It is worth pointing out that
that the number of clusters parametef;,.s:) must be specified the size of the neural-network architectures that ordered fuzzy
in Stage 2. Our experimental results have shown that a goARTMAP creates range between 0.80 and 1.52 of the average
rule of thumb for choosing the number of clusterg,s;, is size of the network architectures that fuzzy ARTMAP creates.
the number of classesr one more than theumber of classes Also, for most of the databases (Sonar, Diabetes, Breast, Bupa,
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Iris and Glass) the ordered fuzzy ARTMAP network size iachieved a generalization performance of 98.27% without any
either smaller or approximately equal to the average fuzparameter optimization. For the Glass database the reported
ARTMAP network size. In Appendix Il we perform a verygeneralization performance ranged from a minimum of 83.7%
detailed analysis of the number of operations required by a maximum of 95.13%. The corresponding ordered fuzzy
the ordering algorithm and the average number of operatioARTMAP generalization performance was 69.56%. Note that
required by the training phase of fuzzy ARTMAP. Thighe range of fuzzy ARTMAP generalization performances
analysis shows that in both cases the number of operatidos the Glass database was from a minimum of 57.97% to
required is O(PT), where the constant of proportionalitya maximum of 76.81%. Hence, fuzzy ARTMAP does not
in the ordering algorithm is approximately equal 43, .., perform very well with this database and the poor gener-
while the constant of proportionality in fuzzy ARTMAP isalization reported for this database should not necessarily
approximately equal tozf:lne, where n. is the average be attributed to any limitations of the proposed ordering
number of categories ¢ during theecth epoch of training, algorithm. Actually, from [15], we see the best generalization
and E is the average number of epochs needed by fuzpgrformances (95.13%) attained for the Glass is attributed to
ARTMAP to learn the required task. As can be seen i@impson’s algorithm, which is an example of an ART-like
Table I, there are databases (e.g., Diabetes, Bupa, Balarmrehitecture; although Simpson’s algorithm was allowed to
Cars), where the constanf, ., could be a small fraction of experiment with parameters in order to optimize generalization
>°F ., and as a result the operations required by orderpérformance. The objective in this paper was to propose an or-
fuzzy ARTMAP could be a small fraction of the operationglering algorithm that leads to a fuzzy ARTMAP network with
required by the training phase of fuzzy ARTMAP. It is worttgood generalization performance (at least for most databases)
pointing out that we have repeated the experiments with tiéthout having to resort to excessive experimentation to tune
above databases for three different collections of training/tdee network’s parameters. We believe that our experimental
sets beyond the ones for which results were reported f@sults, and the above comparisons with other techniques
Tables | and Il above. The numerical results obtained wigtpport the validity of our approach.

these new training/test data sets were slightly different than the

ones shown in Tables | and Il, but the conclusions obtained VI. REVIEW—CONCLUSIONS

fror_n these results were of the same nature as the conclusion% this paper we introduced a procedure, referred to as the
derived from Tables | and II. ordering algorithm, that identifies a fixed order of training

Since ordered fuzzy ARTMAP does not have the on- . . 8
line capability of fuzzy ARTMAP, it is fair to compare thepattern presentation for fuzzy ARTMAP. The ordering algo

performance of ordered fuzzy ARTMAP with other classitlgmi:at?oisicz tc;‘r; E)hriiel:/ilr?g)]( ;\I/Ig;gri(t:rllljrrswtzrr%gfl,?zlgsrg\hRn:ll"M;rI]De
fication techniques that have _appeared in the Iiterature.i called ordered fuzzy ARTMAP. Experiments with nine
order to make these comparsons we rely on the EXPefiferent classification problems have shown that ordered fuzzy
mental results produced by Jost al. [15] These aqthors ARTMAP attains a superior generalization performance as
compare a number of neuro?fuzzy, machine learning, aegmpared to the average performance of fuzzy ARTMAP,
statistical techniques on a variety of databases. The measWe i certain cases as good as, or better than the best

of comparison is the generalization performance. The CI"’\‘l'fl'zzy ARTMAP generalization performance. The average and

sical machine learning algorithms used in this Companse o generalization performances are obtained over a fixed

were ID3, HOODG, Const, 1B, C4.5, Bayes, oneR, Aha- : . :
IB, Dis-Bayes, and OC1-Inducer. The statistical techniq Jumber of experiments with fuzzy ARTMAP corresponding

. o _ u{f different orders of training pattern presentations. We also
used were regression models and discriminant analysis.

neuro-fuzzy techniques utilized consisted of backpropagatic onstrated that under mild conditions on the pattern classifi-
i : ! . tion tasks, th ti ired by the orderi Igorith
backpropagation with momentum, Quickprop, R-Prop, LVQ on tasks, the operations required by fhe ordering aigorithm

13 a fraction of the operations required by the training phase of
OLVQ1, LVQ2, and LVQ3. The databases used were Irig, ARTMAP f . .
) . or a single order of training pattern presen-
Pythia, Soybean, Glass, lonosphere, ECG and Wine. 22y g ning p P

dat lit is the th in thi - fion. Furthermore, the sizes of the network architectures that
ata were spll (as is the the case in this paper) in O Jfdered fuzzy ARTMAP creates are comparable to the average
training set and a test set (2/3 and 1/3 of the whole data

. §be of the network architectures that fuzzy ARTMAP creates.
respectively). The reported results correspond to the best Eﬂally the proposed procedure for ordering the training
of parameters for each one of the aforementioned techniq '

: o RTMAP-IC architectures of Carpenter&t al. [17].
ARTMAP achieved a generalization performance of 97.92& P 7]

without any parameter optimization. For the Wine database,
the range of the generalization performances reported by using
the above techniques was from a minimum of 90.2% to aln order to explain the choice of the first pattern in the
maximum of 100%. The 100% performance was achieveddering algorithm, let us consider Example 2 of Fig. 4.
only by one algorithm (Simpson’s); the rest of the techniqués<ample 2 was fully described in Section IV. In this example,
had a best performance of 98%. Ordered fuzzy ARTMA®e data{0,0.05,0.1,0.4,0.45,0.51} belong to Class 1, while

APPENDIX |
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the data{0.2,0.25,0.3,0.6,0.65,0.7} belong to Class 2. If we Permutation 2 assigns indexes in increasing order first to
apply (3) to these datapoints: Datum “0” with representatidnput patterns of Class 2, and then to input patterns, of Class

(a1,a9) = (0,1) yields 3 _, |ai41 —a;| = [1-0| = 1, Datum
“0.05" with representation(a;,az) = (0.05,0.95) yields
S @i — a;] = ]0.95 — 0.05] = 0.9, Datum “0.1” with
representatiotfia; , az) = (0.1,0.9) yields 3>7_, |aiy1 — ai| =
|0.9 — 0.1] = 0.8, Datum “0.2” with representatiofu;, az) =
(0.2,0.8) yields 3>;_, |ait1 — ai| = [0.8 —0.2] = 0.6, Datum
“0.25" of with representatiorn(a;,as) = (0.25,0.75) yields
S laiys — a;] = [0.75 — 0.25] = 0.5, Datum “0.3” with
representatiofia , az) = (0.3,0.7) yields E;‘zl |ai41 —ai] =
|0.7 — 0.3| = 0.4, Datum “0.4” with representatiofu;, as) =
(0.4,0.6) yields S'_ |aiys — ai| = 0.6 — 0.4] = 0.2,
Datum “0.45” with representatiofa;,as) = (0.45,0.55)
yields S2'_, |aiys — ai| = [0.55 — 0.45] = 0.1, Datum
“0.51” of with representation(ay, a>) = (0.51,0.49) yields
S air1 — a;| = ]0.49 — 0.51| = 0.02, Datum “0.6” with
representatiofia; , az) = (0.6,0.4) yields Y"1 |aiy1 —ai| =
|0.4—0.6] = 0.2, Datum “0.65” with representatiofu;, az) =
(0.65,0.35) yields 321, |ait1 — a;| = [0.35 — 0.65] = 0.3,
Datum “0.7” with representatiofia;,a2) = (0.7,0.3) yields
23:1 |laiv1 —

calculations it is easy to see that the datum that maximiz
S Me Jairar, — as] is datum “0,” one of the endpoints of the
interval [0,1]. In higher dimensions, we expect Stage 1 tg
give us a datapoint that is close to one of the vertices of t

hypercube in which the input patterns reside.

APPENDIX Il

1. Within a class indexes are assigned in increasing order,
according to increasing distance from the vertex “0.” Hence,
for Permutation 2 we designate the collection of input patterns
as follows:

I' = (0.2,0.8)
1?2 = (0.3,0.7)
I? = (1.0,0.0)
I* = (0.0,1.0) (6)
I° = (0.1,0.9)
I° = (0.4,0.6)
I = ( )

0.5,0.5).

We denote bySr the set of training input patterns of Per-
mutation 1 (initially taken to be all thd’s), and by Sy
the set of training input patterns of Permutation 2 (initially
taken to be all thel’s). The application of (3) of Stage 1

ai| = [0.3 — 0.7 = 0.4. From the above of the ordering algorithm to the input patterns, designated in

Bermutation 1, produces the following numbers in order of
increasing index: 1.0, 0.8, 0.2, 0.0, 0.6, 0.4, 1.0. The maximum
umber (1.0) corresponds to patterfls = (0.0,1.0) and
We: (1.0,0.0); we choose (arbitrarily) pattert = (0.0,1.0)
since it is the input pattern closest to vertex “0.” Pattern
I' = (0.0,1.0) is eliminated from the training sefr. The
application of (3) of Stage 1 of the ordering algorithm to
the input patterns, designated in Permutation 2, produces the
following numbers in order of increasing index: 0.6, 0.4, 1.0,

Theorem 1: The order sequence of the training input patt 0, 0.8, 0.2, 0.0. The maximum number (1.0) corresponds

terns that the ordering algorithm produces is independentgf patternsi® = (1.0,0.0) and I* =

any permutations of their indexes.

(0.0,1.0); we choose
(arbitrarily) patternl* = (0.0, 1.0) since it is the input pattern

Proof: We can prove Theorem 1 in the general casgjosest to vertex “0.” Patterd* = (0.0,1.0) is eliminated
when dealing with an arbitrary number of training inpufom the training setSy. Thus, for both permutations, the
patterns and for an arbitrary choice 0fws;, but have not application of Stage 1 of the ordering algorithm led us to
provided this proof due to the cumbersome notation involveghoose the same input pattern to be presented first to ordered
We believe that presenting an example which verifies thg,,y ARTMAP.

theorem is more enlightening. Let us, therefore, refer to the application of (4) of Stage 2 of the ordering algorithm to

Example 1 of Fig. 3 (see Section IV in the main text). Wene input patterns, designated in Permutation 1, produces the
will consider two distinct permutations of the training inpufo|iowing distances in order of increasing index (remember
patterns. Permutation 1 assigns indexes in increasing orqght the pattern with index 1 in Permutation 1 was eliminated
first to input patterns of Class 1, and then to input patter$m s,. in Stage 1): 0.1, 0.4, 0.5, 0.2, 0.3, 1.0. The maximum
of Class 2. Within a class indexes are assigned in increasifgmber (1.0) corresponds to pattefh = (1.0,0.0), and as
order, according to increasing distance from the vertex “Orasylt this is the pattern chosen to be presented next to ordered
Hence, for Permutation 1 we designate the collection of iNPHizzy ARTMAP. Patternl’ = (1.0,0.0) is eliminated from
patterns as follows: the training setSr. The application of (4) of Stage 2 of
the ordering algorithm to the input patterns, designated in

I' = (0.0,1.0) Permutation 2, produces the following distances in order of
I? = (0.1,0.9) increasing index (remember that the pattern with index 4 in
T = (04,06) Permutation 2 was eliminated frosy in Stage 1): 0.2, 0.3,
A 1.0, 0.1, 0.4, 0.5. The maximum number (1.0) corresponds to
I* = (0.5,0.5) (5) patternI® = (1.0,0.0), and as result this is the pattern chosen
= (0.2,0.8) to be presented next to ordered fuzzy ARTMAP. Pattern
¢ = (0.3,0.7) I? = (1.0,0.0) is eliminated from the training sef;. Since
. ’ neust TOr this example equals 2, Stage 2 is completed at this
I" = (1.0,0.0) point,
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The application of Stage 3 of the ordering algorithm to th&M,rq1ust (PT — naust) Operations. Combining the distance-
input patterns designated in Permutation 1 produces distanoelated operations for Stages 1, 2, and 3 of the ordering
0.1, 0.4, 0.5, 0.2, 0.3 from the first cluster point, and distancalorithm we see that we need
0.9, 0.6, 0.5, 0.8, 0.7 from the second cluster point; distan
are reported in order of increasing index for the Permutatiorch“ [PT+(PT—1)+2(PT=2) + - + netust(PT = netust)|
patterns. Hence, according to the Stage 3 rules, the remaining 8
input patterns will be presented in the ordér= (0.1,0.9),
I’ = (0.2,0.8), I* = (0.3,0.7), I> = (0.4,0.6), andI* =
(0.5,0.5). The application of Stage 3 of the ordering algorithm SMPT1+ 1424 4 Nclust)
to the input patterns designated in Permutation 2 produces = 3MPT1 + nctust (1 + Netust) /2] 9)
distances 0.2, 0.3, 0.1, 0.4, 0.5 from the first cluster point, )
and distances 0.8, 0.7, 0.9, 0.6, 0.5 from the second clusgerations.
point, where distances are reported in order of increasing ) ) ) )
index for the Permutation 2 patterns. According to the Stag¥Perations for the Ordering Algorithm Required to
3 rules, the remaining input patterns will be presented alculate Max and/or Min of Distances
the orderI> = (0.1,0.9), I = (0.2,0.8), I? = (0.3,0.7), Stage 1: No maximum or minimum distance calculations
I° = (0.4,06), and I” = (0.5,0.5). Consequently, both are required in this stage.

Permutations 1 and 2 lead to the same ordering of the trainingStage 2: For the second cluster center we negTl —

input patterns, a result which verifies the validity of Theorerd) operations to find the minimum ofPT — 1) distances.
1 L For the third cluster center we ne&dPT — 3) operations
(comparisons) to find the minimum oPT — 2) distances
from cluster center 1 and the minimum @T — 2) distances

from cluster center 2. Then, we need one operation to find the

~The major operations involved in the computations assyayimum of these two minimum distances. Eventually for the
ciated with the ordering algorithm are: addition, SUbtraCt'o%dustth cluster center we nedt. s, —1)(PT— i) 10 find

muItipIication,_ absolute value, and cor_npariso_n. We assUms minimum Of(PT+1 —news:) distances from cluster center
these operations are equally expensive. This is in factiaihe minimum Of(PT + 1 — neu) distances from cluster
reasonable assumption for CISC (complex instruction S"c@nter 2, and eventually the minimum @T + 1 — ncjust)

computers. The operations required by the ordering algoritkiances from cluster centerg,., — 1. Then, we need

will be separated into two categories: Operations that a{ﬁdust_Q) operations to find the maximum of theSg, s, —1)
required to calculate the necessary distances, and operatigfi§imum distances. Hence. overall we need

required to find the minimum or maximum of these distances.

[(PT—2)+2(PT=3)+ -+ (Rcust — 1)(PT — ncrust )]
Operations for the Ordering Algorithm F[0+1+ -+ (Netust — 2)] (10)
Required to Calculate Distances

operations, or approximately (if...; < PT)

APPENDIX Il

operations, or approximately (ifq.s < PT)

Stage 1: 3M,PT operations to calculat® ™, |aitar, —ai
for the PT training input patterns. Each pattern requites 111 T2+ -+ (Rewust = 1] = PT[nctust (Retust — 1)/2]
subtractionsM, absolute value operations afd, additions. (12)

Stage 2: For the second cluster center we n&dd, (PT — . . . . .
1) calculations to compute the distances(BfT — 1) training operations to find thmax—mmo_f the necessary distances in
Stage 2 of the Ordering Algorithm.

input patterns from the first cluster center. The per patternSta e 3: In Stage 3 we need to find the minimum e
operations ar8{, because in order to compute the Euclideacrj‘u. ge <. 9 - “Clust
istances of each one of the remainifRJl — nc,s¢) training

distance of two pattems of dimensionality, we needM, input patterns from the cluster centers. This requires
subtractions,M, multiplications andM, additions. For the putp clust ) q

third cluster center we needlM,2(PT — 2) calculations to (PT— netust) (Metust — 1) 12)
compute the distances @PT— 2) training input patterns from
cluster centers 1 and 2. Eventually, for the,; cluster centers
we needB M, (ncius, — 1) (PT+1—nqusi ) OPerations to compute PT st (13)

the distances ofPT+ 1 — nquet) training input patterns from . o
(ness — 1) cluster centers. Hence, overall we need operations. Then, we need to sort th€B&—n..1,s¢) Minimum
distances. We know that these distances range in the interval

3M,[PT—1)+2(PT—2)+--- [0, M,]. We first make these distances integers by multiplying
+ (netust — DPT+ 1 — nequst )] ) each one of them by an appropriate integefe.g.,/N = 10).

This puts the distances in the ranffe M, N]. Subsequently
operations to calculate the necessary distances in Stage 2vefsort these integers using radix sorting [18]. This procedure
the Ordering Algorithm. consists of the following steps.

Stage 3: To calculate the distances OfPT — 7ciust) 1) Initialize M, N empty queues, one for each integer in
training input patterns from..,s: Cluster centers we need the range one ta/,N.

operations, or approximately (..t < PT)
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2) Scan the sequence of integer distancésds,--- operations for the calculation of the bottom-up inputs only. For
dpr_n,,., from left to right, placing element]; in the change of the weights during every pattern presentation we
the d; queue. need2M, operations. Hence, the total number of operations

3) Concatenate the queues with nonzero contents to obtiinweight changes during an epoch is equatid,PT. Thus
the sorted sequence. for the first epoch average number of operations needed by

Multiplying the (PT — ng.) distances byN requires fuzzy ARTMAP equals

(PT—ncust ) Operations. We assume that it takes one operation 3M,PT(2n1 + 2/3). (19)

to insert an element into théh queue. So to pladd T—7crust ) .
elements we nee(PT — nq.;) Operations. Concatenating theASsume that the average number of epochs required by fuzzy

N M, queues required’ M, operations. Hence, for the sortingARTMAP to converge ist.. For epochs beyond epoch 1, sim-
in Stage 3, we need ilar formulas are valid for the number of operations required

but the average number of categoriesA§ changes tons
2(PT — nelust) + Mo N (14) for epoch 2,n3 for epoch 3, and eventuallyz for epoch
_ ) E. Note thatng > --- > n3 > no > ny. Hence, the total
operations, or approximately (forus < PT) average number of operations needed for distance related and
9PT+ M,N (15) :/;/e;gqhutacl:ht%nges calculations, until fuzzy ARTMAP converges,

operations. Combining the max—min, and sorting related op- E
erations for Stages 1, 2, and 3 of the ordering algorithm we 3MaPT<2/3E + 22%)- (20)
see that we need e=1
Operations in Fuzzy ARTMAP Related to Calculating Max-
PTnetust (Retust — 1)/2] + PTnctuse + 2PT+ M N imum of Distances:In the first epoch of training in fuzzy
= PT[nctust (Petuse + 1)/2 + 2 + Mo N/PT] (16) ARTMAP we need to find the maximum ef; distances (the
T's) for every pattern presentation. Hence, the average number

operations. The major operations involved in the computatiogg gperations required to find these maximum distances in the
associated with the training phase of fuzzy ARTMAP argjst epoch of training is equal to

addition, minimum operation, division, and comparisons. We

assume that all these operations have the same cost. For the PT(n1 —1). (21)
training phase of fuzzy ARTMAP we can also break dowBjmilarly we can find the number of operations required to
the required operations into distance related operations (Whigtain the maximum of., distances RT times) in epoch 2,
correspond to calculations of the bottom-up inputs to athe maximum ofns distances RT times) in epoch 3, and
committed nodes, plus one uncommitted nodeFif), and eventually the maximum af ¢ distancesRT times) in epoch
operations related to finding the maximum of these distancgs. QOverall the average number of maximum distance related

Furthermore, for fuzzy ARTMAP we have to consider thgperations in the training phase of fuzzy ARTMAP is equal to
operations required to calculate weight changes as well; for

E
simplicity of presentation we lump these weight-change related PT Z n — El|.
operations with the distance related equations. gy ‘

Distance Related Operations for Fuzzy ARTM‘ (et us Note that in (21) and (22) we have omitted the operations
assume that the average number of nodes for which bottom-up "
auwed when resets of nodes i occur.

. . e
inputs need to be computed in epoch 1 of fuzzy ARTMAP Cumulative Operations for the Ordering Algorithm and

tra|n|n‘g. 's equal ton;. Recal th'at t.he bottom-up input tOFuzzy ARTMAP:Combining the number of operations
nodej in Fy of fuzzy ARTMAP is given by : : .
required by the ordering algorithmve get

;’ = ;:[/\7“’“ (17) 3M0PT[1 + n(‘,lust(l + n(‘,lust)/2]

Pa w5 + PT[netust (Petust + 1)/2 + 2+ M N/PT].  (23)
where/ denotes the minimum operator applied to two Vectorgjsq  combining theaverage number of operations required
The minimum operator applied on two vectoatsandy is a  py fuzzy ARTMARve get
vectorz with components the minimum of the corresponding .
components ok andy. Also the notation|x| stands for the -
size of a vectorx, and the size of a vector is defined to be SMAPT| 2/3E + 22% +PT
the sum of its components. Hence, the calculation of a single }
bottom-up input require&A, minimum operations, and}, Assuming thatM,N/PT = O(1), we see from the above
addition operations (for simplicity we are omitting the singl€auations that the number of operations required by the
division operation). Since we have assumed an average ofordering algorithm and the average number of operations

nodes inF¢ in the first epoch of training, we need, on théequired by fuzzy ARTMAP ar@(PT). As a result, a more
average accurate comparison between these two algorithms should rely

on the actual values of?,_, and Ef:lﬂe (see main text,
6M,nPT (18) second paragraph of Section V-C, for more details).

(22)

(24)

E
Zne—E .

e=1

e=1
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