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in Fuzzy ARTMAP That Tends to Improve
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Abstract—In this paper we introduce a procedure, based on
the max–min clustering method, that identifies a fixed order
of training pattern presentation for fuzzy adaptive resonance
theory mapping (ARTMAP). This procedure is referred to as
the ordering algorithm, and the combination of this procedure
with fuzzy ARTMAP is referred to as ordered fuzzy ARTMAP.
Experimental results demonstrate that ordered fuzzy ARTMAP
exhibits a generalization performance that is better than the
average generalization performance of fuzzy ARTMAP, and in
certain cases as good as, or better than the best fuzzy ARTMAP
generalization performance. We also calculate the number of
operations required by the ordering algorithm and compare it to
the number of operations required by the training phase of fuzzy
ARTMAP. We show that, under mild assumptions, the number
of operations required by the ordering algorithm is a fraction of
the number of operations required by fuzzy ARTMAP.

Index Terms— Fuzzy ARTMAP, generalization, learning,
max–min clustering.

I. INTRODUCTION

PATTERN classification is a key element in many engi-
neering applications. For example, sonar, radar, seismic,

and diagnostic applications all require the ability to accurately
classify data. In addition, control, tracking, and prediction
systems will often use classifiers to determine input–output
relationships. Simpson has identified a number of desirable
properties that a pattern classifier should possess [1]. These
properties can be summarized as follows: A successful pattern
classifier should be able to 1) learn the required task quickly;
2) learn new data without having to retrain with old data (on-
line adaptation); 3) solve nonlinearly separable problems; 4)
provide the capability for soft and hard decisions regarding
the degree of membership of the data within each class;
5) offer explanations of how the data are classified, and
why the data are classified as such; 6) exhibit performance
that is independent of parameter tuning; 7) function without
knowledge of the distributions of the data in each class; and
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8) for overlapping pattern classes, create regions in the space
of the input parameters that exhibit the least possible overlap.

A neural-network classifier that satisfies most of the afore-
mentioned properties is fuzzy adaptive resonance theory map-
ping (fuzzy ARTMAP) [2]. Fuzzy ARTMAP is capable of
establishing arbitrary mappings between an analog input space
of arbitrary dimensionality and an analog output space of
arbitrary dimensionality. Fuzzy ARTMAP is a member of
the class of neural-network architectures referred to asART-
architecturesdeveloped by Carpenter, Grossberg, and col-
leagues. The ART-architectures are based on theART theory
introduced by Grossberg [3].

Fuzzy ARTMAP can operate inoff-line or on-line modes.
In the on-line mode, the network must process the data as it
becomes available, without storing or reusing it. In the off-line
mode, the data can be stored and repeatedly presented to the
network. In this paper, we consider the off-line operation of
fuzzy ARTMAP in classification problems(e.g., recognizing
handwritten digits). In particular, we consider one of the
major limitations of fuzzy ARTMAP, its dependence on tuning
parameters [which is a violation of property 6) above]. It
has been documented in the literature that the performance
of fuzzy ARTMAP depends on the values of two parameters
called the choice and vigilance parameters, and also on the
order of pattern presentation for the off-line mode of train-
ing. To circumvent the first problem, most fuzzy ARTMAP
simulations that have appeared in the literature assume zero
values for the choice and vigilance parameters. One of the
main reasons for the popularity of this choice is that it tends
to minimize the size of the resulting network architecture. This
is quite desirable, especially when performance comparisons
are made between fuzzy ARTMAP and other neural-network
architectures that offer more compact representations of the
data, such as multilayer perceptrons [4]. The problem of
pattern ordering is not as easy to solve. One way around it
is to consider different orders of presentations of the training
data, in order to find the one that maximizes the performance
of the network. The drawbacks of this approach include the
considerable experimentation that is required to find a random
order of pattern presentation that achieves a good network
performance, and the fact that this is essentially a guessing
exercise. In this paper, we preprocess the training data by
applying a systematic procedure (based on the Max–Min
clustering algorithm [5]), which identifies a fixed order of
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pattern presentation. We refer to this procedure as theordering
algorithm. When the training input patterns are presented to
fuzzy ARTMAP according to this fixed order we end up with a
trained fuzzy ARTMAP whose generalization performance is
better than the average generalization performance of fuzzy
ARTMAP, and in certain cases as good as, or better than
the best network generalization performance. In the former
case we consider the average of a fixed number of exper-
iments corresponding to random orders of training pattern
presentations, and in the latter case we consider the best
of a fixed number of experiments corresponding to random
orders of training pattern presentations. For simplicity, we
refer to fuzzy ARTMAP trained with the fixed order of input
pattern presentations asordered fuzzy ARTMAP. Ordered fuzzy
ARTMAP has the following desirable properties.

1) It achieves good generalization performance without
requiring parameter tuning.

2) The sizes of the networks that ordered fuzzy ARTMAP
creates are comparable to the sizes of the networks that
fuzzy ARTMAP creates when trained using a random
order of pattern presentation.

3) Under mild conditions, the computational overhead
imposed by the ordering algorithm is small compared to
the computations required to perform the training phase
of fuzzy ARTMAP for a single random order of pattern
presentation.

The organization of this paper is as follows. In Section II,
we briefly discuss the fuzzy ARTMAP architecture, including
the form of its inputs, training phase, performance phase,
and functionality. In Section III, we introduce the ordering
algorithm. In Section IV, we illustrate with simple exam-
ples the effect of the ordering algorithm on the categories
created by fuzzy ARTMAP, and we explain the motivation
for choosing this ordering algorithm. In Section V, we ex-
perimentally demonstrate the superiority of ordered fuzzy
ARTMAP’s generalization performance compared to the aver-
age fuzzy ARTMAP generalization performance, and in certain
cases compared to the best fuzzy ARTMAP generalization
performance. Also, in Section V we discuss the computa-
tional complexity of the ordering algorithm and compare
it to the computational complexity of the training phase
of fuzzy ARTMAP. Finally, in Section V we compare the
generalization performance of the ordered fuzzy ARTMAP
and other classification techniques that have appeared in the
literature. Section VI provides a summary of the paper and
offers some concluding remarks.

II. THE FUZZY ARTMAP NEURAL NETWORK

A detailed description of the fuzzy ARTMAP neural net-
work can be found in [2]; we present only the necessary details
here. The fuzzy ARTMAP neural network consists of two
fuzzy ART modules, designatedART and ART , as well as
an inter-ART module as shown in Fig. 1. Inputs are presented
at the ART module, while their corresponding outputs are
presented at theART module. The inter-ART module includes
a MAP field whose purpose is to determine whether the correct
input–output mapping has been established. The input pattern,

Fig. 1. A block diagram of the fuzzy ARTMAP neural-network architecture.

designated by has the form

where

and (1)

The output pattern, designated by, has the form

where (2)

Fuzzy ARTMAP operates in two distinct phases: the
training phase and the performance phase. As mentioned
earlier, in this paper we are interested in the off-line
operation of fuzzy ARTMAP in classification tasks, where
many inputs are mapped to a single, distinct output.
The off-line training phaseof fuzzy ARTMAP works as
follows: Given a list of training input–output pairs, such
as , we want to train
fuzzy ARTMAP to map every input pattern of the training
list to its corresponding output pattern. In order to achieve the
aforementioned goal, we present the training list repeatedly
to the Fuzzy ARTMAP architecture. That is we present

to ART and to ART , then to ART and
to ART , , and finally to ART and to ART .
This corresponds toone list presentation. The training list is
presented as many times as it is necessary for fuzzy ARTMAP
to correctly classify all the input patterns. The classification
task is considered accomplished (i.e., learning is complete)
when the weights do not change during a list presentation. The
performance phaseoccurs when the trained fuzzy ARTMAP
network is used to classify a list of test input patterns.

Two of the most important network parameters of the
fuzzy ARTMAP architecture are the choice parameter and
the vigilance parameter in theART module. For all of the
experiments in this paper the values of these parameters are
chosen to be zero (actually the choice parameter is a very
small positive constant), because our objective is to focus
on algorithms that do not require tuning of parameters. As
mentioned previously, this choice of the network parameters
leads to fuzzy ARTMAP network architectures of minimum
size. The functionality of fuzzy ARTMAP is better illustrated
by referring to the geometrical interpretation of the weights
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Fig. 2. The hyperrectangle which has coded the patternsI
1 = (a1; (a1)c);

I
2 = (a2; (a2)c); I

3 = (a3; (a3)c); I
4 = (a4; (a4)c), and

I
5 = (a5; (a5)c).

in ART . As initially discussed in [6] and further elaborated
in [7], every weight vector inART defines a hyperrectangle
(hyperbox) in the input pattern space that includes all patterns
that chose this weight vector as their representative during the
training process. In Fig. 2, we show the hyperrectangle that
the weight vector (i.e., the weight vector corresponding
to node in ) defines. Note that patterns

, and
were coded by , where

and correspond to the endpoints of the hyperrectangle
that defines. In Fig. 2, hyperrectangles are actually rect-
angles since the input patternsare four-dimensional, and
their components (the ’s) are two-dimensional. After the
training of fuzzy ARTMAP is completed, the weight vectors of
committed nodes inART represent clusters of input patterns
(hyperboxes) that are mapped to the same output pattern.

III. T HE ORDERING ALGORITHM

The purpose of the ordering algorithm of ordered fuzzy
ARTMAP is to identify the order in which patterns should
be presented during the training phase of fuzzy ARTMAP.
This task is accomplished by following a systematic procedure
that consists of three stages. Before we discuss these stages
let us first define the parameters , PT, and the set
that appear in the algorithm’s description. In this paper, the
parameter is taken to be either equal to the number
of distinct classes or equal to one more than the number of
distinct classes associated with the pattern classification task.
The parameterPT stands for the number of input–output pairs
in the training list. Finally, is, prior to the application of
the ordering algorithm, the set of all training input patterns.
In Stage 1, we choose the first pattern to be presented. This
pattern corresponds to the first cluster center of the training
input patterns. In Stage 2, we choose the next
patterns to be presented. These patterns correspond to the next

cluster centers of the training input patterns, and
are identified using theMax–Min clustering algorithm [5].
In Stage 3, we choose the remainingPT patterns

to be presented. These patterns are chosen according to the
minimum Euclidean distance criterion from the cluster
centers defined in Stages 1 and 2. Below, we describe in more
detail each of these stages.

Stage 1—The First Pattern:For each pattern
in the training set we

compute

(3)

The pattern from the training set that maximizes the above
sum is the first pattern presented to ordered fuzzy ARTMAP,
and the first cluster center used in Stage 2. The training pattern
that maximizes the above sum is removed from the training
set . To understand how the first pattern is produced in
the first stage of the ordering algorithm we present a simple
example in Appendix I. The following two stages of the
ordering procedure involve calculation of Euclidean distances
among patterns in the training set. In the calculation of these
distances only the first components of the input patterns
are used (i.e., the portion of the vector). To avoid switching
back and forth between theand notation, we refer to these
distances as the distances among the’s.

Stage 2—The Next Patterns: This stage uses
the Max–Min clustering algorithm to define
appropriate cluster centers (patterns), which constitute the next

input patterns to be presented during the training
phase of ordered fuzzy ARTMAP. The steps followed to define
these cluster centers are as follows. The index, initialized and
updated in the step-by-step description of Stage 2, corresponds
to the number of clusters that have been identified, at various
points, during the implementation of Stage 2.

1) Denote the first cluster center (input pattern) identified
in Stage 1 by , and initialize the index to one.

2) Compute the Euclidean distance of every input pattern
in the training set to the th cluster center, and find
the minimum one, . That is,

dist (4)

3) Find the input pattern from the training set that
maximizes , . Designate this input pattern by
the generic name. The next cluster center, designated
by , is equal to , that is . This cluster
center constitutes the next input pattern to be presented
during the training phase of ordered fuzzy ARTMAP.
Increment by one, and eliminate input patternfrom
the training set .

4) If this stage is completed; otherwise, go to
Step 2).

At the end of Stages 1 and 2, we have identified
cluster centers that correspond to the input patterns

, of the training set. The next stage identifies the
order according to which the remaining input patterns should
be presented to the ordered fuzzy ARTMAP.
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Fig. 3. Rectangles and decision regions of fuzzy ARTMAP (FAM) and ordered fuzzy ARTMAP (ordered FAM) for Example 1.

Stage 3—The RemainingPT Input Patterns: The
steps followed in this stage are as follows.

1) Set index to . The patterns in the training set
are all of the training input patterns except the ones

identified as cluster centers in Stages 1 and 2.
2) Calculate the Euclidean distance of every patternin

the set to the cluster centers.
3) Find the minimum of these distances. Assume that it

corresponds to input pattern. This pattern is the next
in sequence input pattern to be presented in the training
phase of fuzzy ARTMAP. Eliminate from the set ,
set , and increment .

4) If PT this stage is complete; otherwise, go to Step
2).

After the end of Stage 3, we have identified the ordered
set of patterns . This is the order according to
which the patterns in the training set will be presented to the
ordered fuzzy ARTMAP. The corresponding outputs of this
ordered sequence of input patterns are the outputs from the
training list that these input patterns need to be mapped to.
For example, if , then ’s corresponding output is

. It is worth mentioning that the ordering that the ordering
algorithm produces is independent of any permutations of the
input training patterns. Proof of this statement is provided in
Appendix II (Theorem 1).

IV. EXAMPLES—MOTIVATION

In order to better understand the differences between a
random order of training pattern presentation and the proposed
fixed order of training pattern presentation, we present some
illustrative examples. Once the examples are presented it will
be easier to explain the motivation for our work. In Example
1 (see Fig. 3) the data belong to Class 1,
while the data belong to Class 2. The ordering
algorithm, with , computed the following order
for training pattern presentation: .
Note that Stage 1 in this example identified pattern 0 as the

first pattern to be presented (the closest point to one of the
corners of the input pattern space), Stage 2 identified pattern 1
as the second pattern to be presented, and Stage 3 identified the
order for the rest of the patterns in the training set. The training
patterns in fuzzy ARTMAP were presented in the following
order: . Observe that in Fig. 3,
the numbers above the black and gray circles indicate the order
of their presentation in the training phases of fuzzy ARTMAP
and ordered fuzzy ARTMAP. After training is over in fuzzy
ARTMAP, rectangles (with endpoints 0.2 and one),
(with endpoints zero and 0.5), and (with endpoints 0.2
and 0.3) have been created. After training is over in ordered
fuzzy ARTMAP, rectangles (with endpoints zero and 0.1),

(containing the datum 1.0), (with endpoints 0.2 and
0.3), and (with endpoints 0.4 and 0.5) have been created.
The decision regions for fuzzy ARTMAP (shown in Fig. 3),
classify test data between 0.2 and 0.3 and between 0.5 and one,
as Class 2, and the rest of the test data as Class 1. On the other
hand, the decision regions for the ordered fuzzy ARTMAP
(shown in Fig. 3) classify the test data between zero and 0.15
and between 0.35 and 0.74 as Class 1, and the rest of the
data as Class 2. In this example, ordered fuzzy ARTMAP has
reduced the effect of the nonrepresentative rectangle. This
reduction was done by shrinking the decision region
to the region . Rectangle of fuzzy ARTMAP is
nonrepresentative of the data because it forces the network to
classify all test data in the interval as data belonging
to Class 2, despite the fact that there is no Class 2 training
data within the interval .

In Example 2 (see Fig. 4), the data
belong to Class 1, while the data

belong to Class 2. The ordering al-
gorithm, with , identified the following order
of training pattern presentation:

for ordered fuzzy ARTMAP.
Note that Stage 1 in this example identified patternas the first
pattern to be presented (the closest point to one of the corners
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Fig. 4. Rectangles and decision regions of fuzzy ARTMAP (FAM) and ordered fuzzy ARTMAP (ordered FAM) for Example 2.

of the input pattern space), Stage 2 identified pattern 0.7 as the
second pattern to be presented, and Stage 3 identified the order
for the rest of the patterns in the training set. The training
patterns in fuzzy ARTMAP were presented in the following or-
der: .
Observe that in Fig. 4, the numbers above the black and
gray circles indicate the order of their presentation during
the training phases of fuzzy ARTMAP and ordered fuzzy
ARTMAP. After training is over in fuzzy ARTMAP,
rectangles (with endpoints zero and 0.51), (with
endpoints 0.2 and 0.7), and (with endpoints 0.4 and 0.51)
have been created. After training is over in ordered fuzzy
ARTMAP, rectangles (with endpoints zero and 0.1),
(with endpoints 0.6 and 0.7), (with endpoints 0.2 and 0.3),
and (with endpoints 0.4 and 0.51) have been created. The
decision regions for fuzzy ARTMAP (shown in Fig. 4) classify
test data between zero and 0.2 and between 0.4 and 0.51 as
Class 1, and the rest of the data as Class 2. On the other hand,
the decision regions for the ordered fuzzy ARTMAP (shown
in Fig. 4) classify the test data between zero and 0.15 and the
test data between 0.35 and 0.55 as Class 1, and the rest of the
data as Class 2. In this example, ordered fuzzy ARTMAP has
reduced the overlap among rectangles that lead to different
outputs [see desired Property 8) of a pattern classifier].

The major motivation for our work was the design of a
fuzzy ARTMAP algorithm that is independent of the tuning of
parameters, and achieves good generalization by avoiding ex-
cessive experimentation. The dependence of fuzzy ARTMAP
on the choice parameter and the vigilance parameter is an
inherent characteristic of the algorithm. Choosing these pa-
rameters equal to zero frees the experimenter from the tedious
task of optimizing the network performance with respect to
these two parameters. With the choice parameter and the
vigilance parameter chosen equal to zero, one ends up with a
fuzzy ARTMAP algorithm that exhibits a significant variation

in generalization performance for different orders of training
pattern presentations. Furthermore, it is not an easy task to
guess which one of the exceedingly large number of orders
of pattern presentations exhibits the best generalization. Our
assumption was that orders of pattern presentation that create
unnecessarily large rectangles (e.g., rectangleof Example
1 for fuzzy ARTMAP), that force assumptions about the data
where training data do not exist (e.g., region for fuzzy
ARTMAP in Example 1), give credibility to possible outlier
data (e.g., datum “1” in Example 1 for fuzzy ARTMAP),
and include in their regions data that belong to more than
one class (e.g., Examples 1 and 2), would not lead to good
generalization performance. So, the idea was to address this
problem by spreading out enough initial clusters at locations
where data exist (e.g., clusters 1 and 2 in Examples 1 and 2),
and then present the rest of the training data in order of closest
distance to these initial clusters. The examples presented above
justified the validity of our approach.

V. EXPERIMENTAL RESULTS—COMPARISONS

In the following sections, we describe the databases used to
compare fuzzy ARTMAP and ordered fuzzy ARTMAP, define
performance measures, and compare the two algorithms by
conducting appropriate experiments.

A. Databases

In order to demonstrate the superior performance of ordered
fuzzy ARTMAP as compared to fuzzy ARTMAP, we chose to
conduct experiments on a number of databases extracted from
the UCI repository database [8]. The databases chosen from
the repository were: Iris [9], Wine [10], Sonar [11], Diabetes
[12], Breast [13], Balance [14], Bupa [8], Cars [8], and Glass
[8]. The Sonar, Diabetes, Breast, and Bupa are two-class
classification problems, the Iris, Wine, Balance are three-class
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TABLE I
GENERALIZATION PERFORMANCES OF THEFUZZY ARTMAP AND THE ORDERED FUZZY ARTMAP WITH nclust = (NUMBER OF CLASSES) + 1

classification problems, the Cars is a four-class classification
problem, and finally the Glass is a six-class classification
problem. Each of these datasets was split randomly into a
training set (2/3 of the data) and a test set (1/3 of the data).
The percentage of data from each class in the training and
test set reflected the percentage of data from each class in the
entire dataset. The number of the data used in the training set
for Iris, Wine, Sonar, Diabetes, Breast, Balance, Bupa, Cars
and Glass were 102, 120, 139, 513, 467, 417, 231, 566, 145,
respectively. The number of the data used in the test set for Iris,
Wine, Sonar, Diabetes, Breast, Balance, Bupa, Cars and Glass
were 48, 58, 69, 255, 232, 208, 114, 280, 69, respectively.
The dimensionality of the input patterns for Iris, Wine, Sonar,
Diabetes, Breast, Balance, Bupa, Cars and Glass were 4, 13,
60, 8, 9, 4, 6, 18, 9, respectively. More detailed descriptions
of each one of these databases can be found in the references.

B. Measures of Performance

One of the performance measures used to compare ordered
fuzzy ARTMAP and fuzzy ARTMAP isgeneralization. The
generalization performance of a network is defined as the
percentage of patterns in the test set that are correctly clas-
sified by a trained network. Since the performance of fuzzy
ARTMAP depends on the order of pattern presentation in the
training set, ten different random orders of pattern presentation
were investigated, and performance measures such as the
average generalization performance, the worst generalization
performance, the best generalization performance, and the
standard deviation of the generalization performance were
produced for fuzzy ARTMAP. Other measures of comparison
of ordered fuzzy ARTMAP and fuzzy ARTMAP are the sizes
of the networks that these two algorithms create, and the
numbers of operations required by ordered fuzzy ARTMAP
as compared to the number of operations required by fuzzy
ARTMAP.

C. Comparisons of Ordered Fuzzy ARTMAP
and Fuzzy ARTMAP

The only weak link in the procedure that finds an ordered
sequence of training patterns for ordered fuzzy ARTMAP is
that the number of clusters parameter must be specified
in Stage 2. Our experimental results have shown that a good
rule of thumb for choosing the number of clusters , is
the number of classesor one more than thenumber of classes

TABLE II
AVERAGE NETWORK SIZE FOR FUZZY ARTMAP AND NETWORK SIZE OF

ORDERED FUZZY ARTMAP WITH nclust = (NUMBER OF CLASSES) + 1

Fuzzy ARTMAP Ordered Fuzzy ARTMAP
Database Avg. Net Size nclust Net Size
Sonar 6 3 5
Diabetes 43 3 44
Breast 8 3 9
Bupa 31 3 31
Iris 5 4 4
Wine 4 4 6
Balance 79 4 120
Cars 46 5 56
Glass 27 7 30

in the data set. This rule of thumb tends to produce an ordered
fuzzy ARTMAP with the best generalization performance.

In Table I, we show generalization performance compar-
isons between fuzzy ARTMAP and ordered fuzzy ARTMAP
when is chosen to be equal to one more than the
number of classes. Looking at the results we observe the fol-
lowing: The generalization performance of the ordered fuzzy
ARTMAP is better than the worstgeneralization performance
of fuzzy ARTMAP by 16.19%, 11.59%, 9.64%, 8.34%, 8.23%,
6.89%, 4.29%, 3.85%, and 1.29% for the Sonar, Glass, Bupa,
Iris, Diabetes, Wine, Cars, Balance, and Breast databases,
respectively. The generalization performance of the ordered
fuzzy ARTMAP is better than the averagegeneralization per-
formance of fuzzy ARTMAP by 9.38%, 5.79%, 3.17%, 2.92%,
2.58%, 1.07%, 0.17%, 0.04%, and0.43% for the Sonar,
Glass, Diabetes, Iris, Wine, Cars, Bupa, Breast, and Balance
databases, respectively. The generalization performance of the
ordered fuzzy ARTMAP isbetter than the bestgeneralization
performance of fuzzy ARTMAP by 2.09%, 1.7%,0.01%,

1.18%, 1.73%, 1.79%, 3.37%, 6.15%, and 7.25%
for the Iris, Sonar, Wine, Diabetes, Breast, Cars, Balance,
Bupa, and Glass databases, respectively. Negative percentages
imply that the corresponding fuzzy ARTMAP generalization
performance (worst, average, or best) is better than the ordered
fuzzy ARTMAP generalization performance.

In Table II, we show the size of the network that ordered
fuzzy ARTMAP created and the average size of the network
that fuzzy ARTMAP created. It is worth pointing out that
the size of the neural-network architectures that ordered fuzzy
ARTMAP creates range between 0.80 and 1.52 of the average
size of the network architectures that fuzzy ARTMAP creates.
Also, for most of the databases (Sonar, Diabetes, Breast, Bupa,
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Iris and Glass) the ordered fuzzy ARTMAP network size is
either smaller or approximately equal to the average fuzzy
ARTMAP network size. In Appendix III we perform a very
detailed analysis of the number of operations required by
the ordering algorithm and the average number of operations
required by the training phase of fuzzy ARTMAP. This
analysis shows that in both cases the number of operations
required is PT , where the constant of proportionality
in the ordering algorithm is approximately equal to ,
while the constant of proportionality in fuzzy ARTMAP is
approximately equal to , where is the average
number of categories in during the th epoch of training,
and is the average number of epochs needed by fuzzy
ARTMAP to learn the required task. As can be seen in
Table II, there are databases (e.g., Diabetes, Bupa, Balance,
Cars), where the constant could be a small fraction of

, and as a result the operations required by ordered
fuzzy ARTMAP could be a small fraction of the operations
required by the training phase of fuzzy ARTMAP. It is worth
pointing out that we have repeated the experiments with the
above databases for three different collections of training/test
sets beyond the ones for which results were reported in
Tables I and II above. The numerical results obtained with
these new training/test data sets were slightly different than the
ones shown in Tables I and II, but the conclusions obtained
from these results were of the same nature as the conclusions
derived from Tables I and II.

Since ordered fuzzy ARTMAP does not have the on-
line capability of fuzzy ARTMAP, it is fair to compare the
performance of ordered fuzzy ARTMAP with other classi-
fication techniques that have appeared in the literature. In
order to make these comparisons we rely on the experi-
mental results produced by Joshiet al. [15]. These authors
compare a number of neuro-fuzzy, machine learning, and
statistical techniques on a variety of databases. The measure
of comparison is the generalization performance. The clas-
sical machine learning algorithms used in this comparison
were ID3, HOODG, Const, IB, C4.5, Bayes, oneR, Aha-
IB, Dis-Bayes, and OC1-Inducer. The statistical techniques
used were regression models and discriminant analysis. The
neuro-fuzzy techniques utilized consisted of backpropagation,
backpropagation with momentum, Quickprop, R-Prop, LVQ1,
OLVQ1, LVQ2, and LVQ3. The databases used were Iris,
Pythia, Soybean, Glass, Ionosphere, ECG and Wine. The
data were split (as is the the case in this paper) into a
training set and a test set (2/3 and 1/3 of the whole dataset,
respectively). The reported results correspond to the best set
of parameters for each one of the aforementioned techniques
[15]. For the Iris database, the range of the generalization
performances achieved by the above techniques was from a
minimum of 78.5% to a maximum of 95.7%. Ordered fuzzy
ARTMAP achieved a generalization performance of 97.92%
without any parameter optimization. For the Wine database,
the range of the generalization performances reported by using
the above techniques was from a minimum of 90.2% to a
maximum of 100%. The 100% performance was achieved
only by one algorithm (Simpson’s); the rest of the techniques
had a best performance of 98%. Ordered fuzzy ARTMAP

achieved a generalization performance of 98.27% without any
parameter optimization. For the Glass database the reported
generalization performance ranged from a minimum of 83.7%
to a maximum of 95.13%. The corresponding ordered fuzzy
ARTMAP generalization performance was 69.56%. Note that
the range of fuzzy ARTMAP generalization performances
for the Glass database was from a minimum of 57.97% to
a maximum of 76.81%. Hence, fuzzy ARTMAP does not
perform very well with this database and the poor gener-
alization reported for this database should not necessarily
be attributed to any limitations of the proposed ordering
algorithm. Actually, from [15], we see the best generalization
performances (95.13%) attained for the Glass is attributed to
Simpson’s algorithm, which is an example of an ART-like
architecture; although Simpson’s algorithm was allowed to
experiment with parameters in order to optimize generalization
performance. The objective in this paper was to propose an or-
dering algorithm that leads to a fuzzy ARTMAP network with
good generalization performance (at least for most databases)
without having to resort to excessive experimentation to tune
the network’s parameters. We believe that our experimental
results, and the above comparisons with other techniques
support the validity of our approach.

VI. REVIEW—CONCLUSIONS

In this paper we introduced a procedure, referred to as the
ordering algorithm, that identifies a fixed order of training
pattern presentation for fuzzy ARTMAP. The ordering algo-
rithm is based on the Max–Min clustering algorithm. The
combination of the ordering algorithm and fuzzy ARTMAP
is called ordered fuzzy ARTMAP. Experiments with nine
different classification problems have shown that ordered fuzzy
ARTMAP attains a superior generalization performance as
compared to the average performance of fuzzy ARTMAP,
and in certain cases as good as, or better than the best
fuzzy ARTMAP generalization performance. The average and
best generalization performances are obtained over a fixed
number of experiments with fuzzy ARTMAP corresponding
to different orders of training pattern presentations. We also
demonstrated that under mild conditions on the pattern classifi-
cation tasks, the operations required by the ordering algorithm
is a fraction of the operations required by the training phase of
fuzzy ARTMAP for a single order of training pattern presen-
tation. Furthermore, the sizes of the network architectures that
ordered fuzzy ARTMAP creates are comparable to the average
size of the network architectures that fuzzy ARTMAP creates.
Finally, the proposed procedure for ordering the training
data may also be applied to other ART-type architectures,
such as Simpson’s Min–Max architecture [1], the LAPART
architecture of Healyet al. [16], and the ARTEMAPQ and
ARTMAP-IC architectures of Carpenter’set al. [17].

APPENDIX I

In order to explain the choice of the first pattern in the
ordering algorithm, let us consider Example 2 of Fig. 4.
Example 2 was fully described in Section IV. In this example,
the data belong to Class 1, while
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the data belong to Class 2. If we
apply (3) to these datapoints: Datum “0” with representation

yields , Datum
“0.05” with representation yields

, Datum “0.1” with
representation yields

, Datum “0.2” with representation
yields , Datum

“0.25” of with representation yields
, Datum “0.3” with

representation yields
, Datum “0.4” with representation

yields ,
Datum “0.45” with representation
yields , Datum
“0.51” of with representation yields

, Datum “0.6” with
representation yields

, Datum “0.65” with representation
yields ,

Datum “0.7” with representation yields
. From the above

calculations it is easy to see that the datum that maximizes
is datum “0,” one of the endpoints of the

interval . In higher dimensions, we expect Stage 1 to
give us a datapoint that is close to one of the vertices of the
hypercube in which the input patterns reside.

APPENDIX II

Theorem 1: The order sequence of the training input pat-
terns that the ordering algorithm produces is independent of
any permutations of their indexes.

Proof: We can prove Theorem 1 in the general case,
when dealing with an arbitrary number of training input
patterns and for an arbitrary choice of , but have not
provided this proof due to the cumbersome notation involved.
We believe that presenting an example which verifies the
theorem is more enlightening. Let us, therefore, refer to
Example 1 of Fig. 3 (see Section IV in the main text). We
will consider two distinct permutations of the training input
patterns. Permutation 1 assigns indexes in increasing order,
first to input patterns of Class 1, and then to input patterns
of Class 2. Within a class indexes are assigned in increasing
order, according to increasing distance from the vertex “0.”
Hence, for Permutation 1 we designate the collection of input
patterns as follows:

(5)

Permutation 2 assigns indexes in increasing order first to
input patterns of Class 2, and then to input patterns, of Class
1. Within a class indexes are assigned in increasing order,
according to increasing distance from the vertex “0.” Hence,
for Permutation 2 we designate the collection of input patterns
as follows:

(6)

We denote by the set of training input patterns of Per-
mutation 1 (initially taken to be all the’s), and by
the set of training input patterns of Permutation 2 (initially
taken to be all the ’s). The application of (3) of Stage 1
of the ordering algorithm to the input patterns, designated in
Permutation 1, produces the following numbers in order of
increasing index: 1.0, 0.8, 0.2, 0.0, 0.6, 0.4, 1.0. The maximum
number (1.0) corresponds to patterns and

; we choose (arbitrarily) pattern
since it is the input pattern closest to vertex “0.” Pattern

is eliminated from the training set . The
application of (3) of Stage 1 of the ordering algorithm to
the input patterns, designated in Permutation 2, produces the
following numbers in order of increasing index: 0.6, 0.4, 1.0,
1.0, 0.8, 0.2, 0.0. The maximum number (1.0) corresponds
to patterns and ; we choose
(arbitrarily) pattern since it is the input pattern
closest to vertex “0.” Pattern is eliminated
from the training set . Thus, for both permutations, the
application of Stage 1 of the ordering algorithm led us to
choose the same input pattern to be presented first to ordered
fuzzy ARTMAP.

The application of (4) of Stage 2 of the ordering algorithm to
the input patterns, designated in Permutation 1, produces the
following distances in order of increasing index (remember
that the pattern with index 1 in Permutation 1 was eliminated
from in Stage 1): 0.1, 0.4, 0.5, 0.2, 0.3, 1.0. The maximum
number (1.0) corresponds to pattern , and as
result this is the pattern chosen to be presented next to ordered
fuzzy ARTMAP. Pattern is eliminated from
the training set . The application of (4) of Stage 2 of
the ordering algorithm to the input patterns, designated in
Permutation 2, produces the following distances in order of
increasing index (remember that the pattern with index 4 in
Permutation 2 was eliminated from in Stage 1): 0.2, 0.3,
1.0, 0.1, 0.4, 0.5. The maximum number (1.0) corresponds to
pattern , and as result this is the pattern chosen
to be presented next to ordered fuzzy ARTMAP. Pattern

is eliminated from the training set . Since
for this example equals 2, Stage 2 is completed at this

point.
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The application of Stage 3 of the ordering algorithm to the
input patterns designated in Permutation 1 produces distances
0.1, 0.4, 0.5, 0.2, 0.3 from the first cluster point, and distances
0.9, 0.6, 0.5, 0.8, 0.7 from the second cluster point; distances
are reported in order of increasing index for the Permutation 1
patterns. Hence, according to the Stage 3 rules, the remaining
input patterns will be presented in the order

, and
. The application of Stage 3 of the ordering algorithm

to the input patterns designated in Permutation 2 produces
distances 0.2, 0.3, 0.1, 0.4, 0.5 from the first cluster point,
and distances 0.8, 0.7, 0.9, 0.6, 0.5 from the second cluster
point, where distances are reported in order of increasing
index for the Permutation 2 patterns. According to the Stage
3 rules, the remaining input patterns will be presented in
the order

, and . Consequently, both
Permutations 1 and 2 lead to the same ordering of the training
input patterns, a result which verifies the validity of Theorem
1.

APPENDIX III

The major operations involved in the computations asso-
ciated with the ordering algorithm are: addition, subtraction,
multiplication, absolute value, and comparison. We assume
these operations are equally expensive. This is in fact a
reasonable assumption for CISC (complex instruction set)
computers. The operations required by the ordering algorithm
will be separated into two categories: Operations that are
required to calculate the necessary distances, and operations
required to find the minimum or maximum of these distances.

Operations for the Ordering Algorithm
Required to Calculate Distances

Stage 1: PT operations to calculate
for the PT training input patterns. Each pattern requires
subtractions, absolute value operations and additions.

Stage 2: For the second cluster center we need PT
calculations to compute the distances ofPT training

input patterns from the first cluster center. The per pattern
operations are because in order to compute the Euclidean
distance of two patterns of dimensionality we need
subtractions, multiplications and additions. For the
third cluster center we need PT calculations to
compute the distances ofPT training input patterns from
cluster centers 1 and 2. Eventually, for the cluster centers
we need PT operations to compute
the distances ofPT training input patterns from

cluster centers. Hence, overall we need

PT PT

PT (7)

operations to calculate the necessary distances in Stage 2 of
the Ordering Algorithm.

Stage 3: To calculate the distances ofPT
training input patterns from cluster centers we need

PT operations. Combining the distance-
related operations for Stages 1, 2, and 3 of the ordering
algorithm we see that we need

PT PT PT PT

(8)

operations, or approximately (if PT)

PT

PT (9)

operations.

Operations for the Ordering Algorithm Required to
Calculate Max and/or Min of Distances

Stage 1: No maximum or minimum distance calculations
are required in this stage.

Stage 2: For the second cluster center we needPT
operations to find the minimum ofPT distances.

For the third cluster center we needPT operations
(comparisons) to find the minimum ofPT distances
from cluster center 1 and the minimum ofPT distances
from cluster center 2. Then, we need one operation to find the
maximum of these two minimum distances. Eventually for the

th cluster center we need PT to find
the minimum of PT distances from cluster center
1, the minimum of PT distances from cluster
center 2, and eventually the minimum ofPT
distances from cluster center . Then, we need

operations to find the maximum of these
minimum distances. Hence, overall we need

PT PT PT

(10)

operations, or approximately (if PT)

PT PT

(11)

operations to find themax–minof the necessary distances in
Stage 2 of the Ordering Algorithm.

Stage 3: In Stage 3 we need to find the minimum of
distances of each one of the remainingPT training
input patterns from the cluster centers. This requires

PT (12)

operations, or approximately (if PT)

PT (13)

operations. Then, we need to sort thesePT minimum
distances. We know that these distances range in the interval

. We first make these distances integers by multiplying
each one of them by an appropriate integer(e.g., ).
This puts the distances in the range . Subsequently
we sort these integers using radix sorting [18]. This procedure
consists of the following steps.

1) Initialize empty queues, one for each integer in
the range one to .
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2) Scan the sequence of integer distances
from left to right, placing element in

the queue.
3) Concatenate the queues with nonzero contents to obtain

the sorted sequence.

Multiplying the PT distances by requires
PT operations. We assume that it takes one operation

to insert an element into theth queue. So to placePT
elements we needPT operations. Concatenating the

queues requires operations. Hence, for the sorting
in Stage 3, we need

PT (14)

operations, or approximately (for PT)

PT (15)

operations. Combining the max–min, and sorting related op-
erations for Stages 1, 2, and 3 of the ordering algorithm we
see that we need

PT PT PT

PT PT (16)

operations. The major operations involved in the computations
associated with the training phase of fuzzy ARTMAP are:
addition, minimum operation, division, and comparisons. We
assume that all these operations have the same cost. For the
training phase of fuzzy ARTMAP we can also break down
the required operations into distance related operations (which
correspond to calculations of the bottom-up inputs to all
committed nodes, plus one uncommitted node, in), and
operations related to finding the maximum of these distances.
Furthermore, for fuzzy ARTMAP we have to consider the
operations required to calculate weight changes as well; for
simplicity of presentation we lump these weight-change related
operations with the distance related equations.

Distance Related Operations for Fuzzy ARTMAP:Let us
assume that the average number of nodes for which bottom–up
inputs need to be computed in epoch 1 of fuzzy ARTMAP
training is equal to . Recall that the bottom–up input to
node in of fuzzy ARTMAP is given by

(17)

where denotes the minimum operator applied to two vectors.
The minimum operator applied on two vectorsand is a
vector with components the minimum of the corresponding
components of and . Also the notation stands for the
size of a vector , and the size of a vector is defined to be
the sum of its components. Hence, the calculation of a single
bottom-up input requires minimum operations, and
addition operations (for simplicity we are omitting the single
division operation). Since we have assumed an average of
nodes in in the first epoch of training, we need, on the
average

PT (18)

operations for the calculation of the bottom-up inputs only. For
the change of the weights during every pattern presentation we
need operations. Hence, the total number of operations
for weight changes during an epoch is equal to PT. Thus
for the first epoch average number of operations needed by
fuzzy ARTMAP equals

PT (19)

Assume that the average number of epochs required by fuzzy
ARTMAP to converge is . For epochs beyond epoch 1, sim-
ilar formulas are valid for the number of operations required
but the average number of categories in changes to
for epoch 2, for epoch 3, and eventually for epoch

. Note that . Hence, the total
average number of operations needed for distance related and
weight changes calculations, until fuzzy ARTMAP converges,
is equal to

PT (20)

Operations in Fuzzy ARTMAP Related to Calculating Max-
imum of Distances:In the first epoch of training in fuzzy
ARTMAP we need to find the maximum of distances (the

’s) for every pattern presentation. Hence, the average number
of operations required to find these maximum distances in the
first epoch of training is equal to

PT (21)

Similarly we can find the number of operations required to
obtain the maximum of distances (PT times) in epoch 2,
the maximum of distances (PT times) in epoch 3, and
eventually the maximum of distances (PT times) in epoch

. Overall the average number of maximum distance related
operations in the training phase of fuzzy ARTMAP is equal to

PT (22)

Note that in (21) and (22) we have omitted the operations
required when resets of nodes in occur.

Cumulative Operations for the Ordering Algorithm and
Fuzzy ARTMAP:Combining the number of operations
required by the ordering algorithmwe get

PT

PT PT (23)

Also, combining theaverage number of operations required
by fuzzy ARTMAPwe get

PT PT (24)

Assuming that PT , we see from the above
equations that the number of operations required by the
ordering algorithm and the average number of operations
required by fuzzy ARTMAP are PT . As a result, a more
accurate comparison between these two algorithms should rely
on the actual values of and (see main text,
second paragraph of Section V-C, for more details).
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